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Abstract

This is a complete study of the dynamics of polynomial planar vector fields whose
linear part is a multiple of the identity and whose nonlinear part is a contracting
homogeneous polynomial. The contracting nonlinearity provides the existence of an
invariant circle and allows us to obtain a classification through a complete invariant for
the dynamics, extending previous work by other authors that was mainly concerned
with the existence and number of limit cycles. The general results are also applied to
some classes of examples: definite nonlinearities, Z2 ⊕ Z2 symmetric systems and
nonlinearities of degree 3, for which we provide complete sets of phase-portraits.
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1 Introduction
Global planar dynamics of polynomial vector fields has been of interest for many years.
Part of this interest arises from its connection to Hilbert’s 16th problem on the number of
limit cycles for the dynamics. Because ofHilbert’s 16th problem, substantial effort has been
devoted in establishing a bound for the number of limit cycles. For some contributions
in this direction when the vector field has homogeneous nonlinearities see the work of
Huang et al. [15], Gasull et al. [13], Llibre et al. [16] or Carbonell and Llibre [6]. This
question has also been approached using bifurcations by, for instance, Benterki and Llibre
[4] or [13]. Problems with symmetry appear in Álvarez et al. [2]. Our references do not
pretend to be comprehensive. The reader can find further interesting work by looking at
the references within those we provide.
We are, of course, also concerned in establishing an upper bound for the number of

limit cycles. However, when no limit cycle exists, we take a different route and address
the question of the existence of policycles (sometimes called heteroclinic cycles) and the
number of equilibria in them.
As many authors before us, we are concerned with polynomial vector fields with homo-

geneous nonlinearities: vector fields of the form Ẋ = λX + Q(X), where X ∈ R2 and Q is
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homogeneous. However, our focus is on the special case where the nonlinear part is con-
tracting, when Field’s Invariant Sphere Theorem [11, Theorem 5.1, Theorem 2.1 below]
guarantees the existence of an invariant circle for the dynamics. Contracting nonlinearities
occur quite naturally in some settings. We provide a classification of the global dynamics
for all such problems and obtain a complete invariant for the dynamics, including the
behaviour at infinity.
Cima and Llibre in [7] define bounded vector fields in the plane and provide a classi-

fication of their behaviour at infinity. Since vector fields with contracting nonlinearities
are bounded in their sense, our results complement theirs by extending the classification
globally.
The classification is thenused to address someclasses of examples.We startwith definite

nonlinearities, that have been addressed by Gasull et al. [12]. When the nonlinear part
of the vector field is a contracting cubic, we are able to provide the full list of global
phase-portraits by making use of the results in Cima and Llibre [8]. If the vector field is
additionally Z2 ⊕ Z2-equivariant, we provide a complete description of the global planar
dynamics, including the study of stability and bifurcation of equilibria.

Structure of the article

In the next section we establish some notation and state some results that will be used.
A normal form for planar contracting vector fields and sufficient conditions for a planar
vector field to be contracting are obtained in Sect. 3. Dynamics is discussed in Sect. 4
for the restriction to the invariant circle and globally in Sect. 5, where we also obtain a
complete invariant for the dynamics and from it a complete classification of this type of
vector fields. This is used in the remainder of the article to obtain a complete description of
some families of examples: definite nonlinearities in Sect. 6; cubic nonlinearities in Sect. 7;
Z2 ⊕ Z2-equivariant nonlinearities as special cases in Subsections 4.1 and in 7.1.

2 Preliminary results and notation
In this article we are concerned with the differential equation

⎧
⎪⎨

⎪⎩

ẋ = λx + Q1(x, y)

ẏ = λy + Q2(x, y)
with λ > 0 (1)

where the Qi, i = 1, 2 are homogeneous nonzero polynomials of the same degree n > 1
and (x, y) ∈ R2.
We defineQ = (Q1, Q2) and say it is a homogeneous polynomial of degree n. The origin

of such a system is an unstable star node, a node with equal and positive eigenvalues.
For λ < 0 the origin is an attracting star node and the dynamics corresponds to the

equation with Q replaced by −Q and reversed time orientation.
We recall some elementary notions in (equivariant) dynamical systems. The standard

reference is the book [14]. We say that the dynamical system described by an ordinary
differential equation Ẋ = f (X), X ∈ Rn is equivariant under the action of a compact Lie
group � if

f (γ .X) = γ .f (X)

for all X ∈ Rn and γ ∈ �. An equilibrium of Ẋ = f (X) is a solution of f (X) = 0, the form
(1) implies that at least the origin is an equilibrium. A limit cycle is an isolated periodic
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orbit. A policycle is the cyclic union of finitely many equilibria and trajectories connecting
them.
Let 〈, 〉 denote the inner product and ||.|| the norm in R2, and let Pd(R2,R2) be the

vector space of homogeneous polynomial maps of degree d from R2 to itself. Denote by
Pd+1(R2,R) the vector space of homogeneous polynomial maps of degree d + 1 from R2

to R and let X ∈ R2. Consider the linear map:

M : Pd(R2,R2) −→ Pd+1(R2,R) MQ(X) = 〈X,Q(X)〉. (2)

A polynomial Q ∈ Pd(R2,R2), d > 1 is said to be contracting if

MQ(X) < 0, for all ||X || = 1.

It follows that polynomials of even degree are never contracting. It is also useful to recall
that, since the polynomial is homogeneous, stating that the inequality in the definition of
contracting holds on the unit sphere is equivalent to saying that it holds for any nonzero
vector. We will also need the linear map L : P2p+1(R2,R2) −→ P2p+2(R2,R), given by

LQ(X) = 〈X⊥, Q(X)〉 for X = (x, y) and X⊥ = (−y, x). (3)

For ease of reference we state next a two-dimensional version of the Invariant Sphere
Theorem [11, Theorem 5.1], which we will use extensively.

Theorem 2.1 (The Invariant Sphere Theorem) Let p ≥ 1 and suppose that Q ∈
P2p+1(R2,R2) is contracting. Then, for every λ > 0, there exists a unique topological circle
S(λ) ⊂ R2 \ {0} which is invariant by the flow of (1). Further,

(a) S(λ) is globally attracting in the sense that every trajectory (x(t), y(t)) of (1) with
nonzero initial condition is asymptotic to S(λ) as t → +∞.

(b) S(λ) is embedded as a topological submanifold of R2 and the bounded component of
R2 \ S(λ) contains the origin.

(c) The flow of (1) restricted to S(λ) is topologically equivalent to the flow of the phase
equation θ̇ = g(θ ) where g(θ ) = LQ(cos θ , sin θ ).

The odd degree of the nonlinear part Q in the statement of Theorem 2.1 implies that
the vector field is Z2-equivariant, where Z2 is generated by −Id.
We will use the representation of (1) in polar coordinates (x, y) = (r cos θ , r sin θ ), with

(r, θ ) ∈ R
+ × S1. This is given by

{
ṙ = λr + f (θ )r2p+1

θ̇ = g(θ )r2p
with

f (θ ) = MQ(cos θ , sin θ )

g(θ ) = LQ(cos θ , sin θ )
(4)

where L andM are the linear maps defined in (2) and (3).
Let C2p+1 ⊂ P2p+1(R2,R2) denote the set of contracting polynomial vector fields. Our

aim is to describe the global dynamics of (1) forQ ∈ C2p+1, p ≥ 1, including the behaviour
at infinity using the Poincaré disc, a compactification of R2 (see Chapter 5 of Dumortier
et al. [10]). The plane R2 is identified to a compact disc, with its boundary corresponding
to infinity. The disc is also identified to a hemisphere in the unit sphere S2 ⊂ R3, covered
by six charts Ui, Vi, i = 1, 2, 3. In the coordinates (u, v) on any of the charts v = 0
corresponds to the equator S1 of the sphere, the circle at infinity of the Poincaré disc.
A point with coordinates (u, v), u �= 0 in U1 corresponds to the point with coordinates
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(ũ, ṽ) = (1/u, v/u) in U2 and to the point with coordinates (û, v̂) = (u/v, 1/v) in U3. The
dynamics of (1) in the charts U1 and U2 are given, respectively, by

⎧
⎪⎨

⎪⎩

u̇ = Q2(1, u) − uQ1(1, u)

v̇ = −λv2p+1 − vQ1(1, u)
and

⎧
⎪⎨

⎪⎩

u̇ = Q1(u, 1) − uQ2(u, 1)

v̇ = −λv2p+1 − vQ2(u, 1)
(5)

and the expression on the chart U3 is just (1) computed at (x, y) = (u, v). The expressions
of the Poincaré compactification in the three remaining charts Vj are the same as in Uj .
The dynamics at infinity of (1) is thus given by the restriction of each one of the expres-

sions in (5) to the flow-invariant line (u, 0), since the second equation is trivially satisfied
for v = 0. An equilibrium at infinity of (1) is an equilibrium (u, 0) ∈ S1 of one of the two
equations.We refer to it as an infinite equilibrium, by opposition to finite equilibria (u, v),
v �= 0.
The dynamics of the restriction of (5) to the circle at infinity (u, 0) does not depend

on the linear part of (1). Hence, it is equivalent to the dynamics of the phase equation
θ̇ = g(θ ) equivalent to that in (4).

3 Contracting polynomial vector fields in dimension 2
The results in this section describe the homogeneous polynomial planar vector fields and
provide conditions for ensuring these are contracting. In this way we obtain a description
of vector fields (1) to which Theorem 2.1 applies.

Proposition 3.1 Any homogeneous polynomial vector field Q(x, y) = (Q1(x, y), Q2(x, y))
in R2 of degree 2p + 1may be written in the form

Q(x, y) = p1(x2, y2) (x, 0) + p2(x2, y2) (0, y) + p3(x2, y2) (y, 0) + p4(x2, y2) (0, x) (6)

where pj(u, v), j = 1, . . . , 4 are homogeneous polynomials of degree p.

Proof Each vector monomial occurring in Q has the form axky�ej where ej is the j-th
vector of the canonical basis and k + � = 2p + 1, hence in each case one of k, � is odd
and the other is even. Then xp1(x2, y2) is the sum of the vector monomials inQ1 with odd
k , and yp3(x2, y2) is the sum of those with odd �. Similarly, yp2(x2, y2) is the sum of the
vector monomials in Q2 with odd �, and xp4(x2, y2) is the sum of those with odd k . �


We call p1(x2, y2) (x, 0) + p2(x2, y2) (0, y) the symmetric part of Q and p3(x2, y2) (y, 0) +
p4(x2, y2) (0, x) the asymmetric part of Q. We write Qs(x, y) for the symmetric part of Q
and note that it is Z2 ⊕Z2-equivariant, where Z2 ⊕Z2 is the group generated by the maps
(x, y) �→ (−x, y) and (x, y) �→ (x,−y).

Proposition 3.2 A homogeneous polynomial vector field Q of degree 2p + 1 in R2 is con-
tracting if for the polynomials in (6), we have for all (u, v) �= (0, 0) with u ≥ 0, v ≥ 0, that
one of the pj(u, v) < 0, j = 1, 2 and

2max
j=1,2

{
pj(u, v)

}
< − ∣

∣p3(u, v) + p4(u, v)
∣
∣ .

Note that if p1(u, v) < 0, then the second condition implies p2(u, v) < 0 and vice-versa.
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Proof We haveMQ(x, y) = (x, y) · A(x2, y2) · (x, y)T where A is the symmetric matrix

A(u, v) =

⎛

⎜
⎜
⎜
⎝

p1(u, v)
p3(u, v) + p4(u, v)

2

p3(u, v) + p4(u, v)
2

p2(u, v)

⎞

⎟
⎟
⎟
⎠
.

The polynomialQ is contracting if for each (u, v) the quadratic form (x, y) ·A(u, v) · (x, y)T
is negative definite. This holds if and only if both eigenvalues of A(u, v) are negative. By
Gershgorin’s Theorem [9, Section 2.7.3] the eigenvalues of A lie in the union of the closed
intervals with centre at pj(u, v), j = 1, 2 and radius

∣
∣p3(u, v) + p4(u, v)

∣
∣ /2. The inequality

implies that both these intervals are contained in the negative half line. �


Proposition 3.3 A homogeneous polynomial vector field Q of degree 2p + 1 in R2 is con-
tracting if for the polynomials in (6), for all (u, v) �= (0, 0) with u ≥ 0, v ≥ 0, one of the
pj(u, v) < 0, j = 1, 2 and

4p1(u, v)p2(u, v) > (p3(u, v) + p4(u, v))2. (7)

Proof The eigenvalues of the matrix A of the proof of Proposition 3.2 are negative if
and only if TrA(u, v) < 0 and detA(u, v) > 0. In case (7) holds then the hypothesis
on the sign of one pj(u, v), j = 1, 2 implies that both pj(u, v) < 0, j = 1, 2 and hence
that TrA = p1(u, v) + p2(u, v) < 0. The result follows from detA = p1(u, v)p2(u, v) −
(p3(u, v) + p4(u, v))2 /4. �

The conditions in Propositions 3.2 and 3.3 are not necessary. A simple example is the

symmetric vector fieldwith p1(x, y) = y2−x2, p2(x, y) = −2x2−y2, p3(x, y) = p4(x, y) = 0,
for whichMQ(x, y) = −(x4+y4+x2y2) < 0 for (x, y) �= (0, 0), but p1(x, y) = 0 for x = ±y.

Corollary 3.4 If Q is a polynomial vector field satisfying the hypothesis of either Proposi-
tion 3.2 or 3.3 then its symmetric part Qs is also contracting.

Proof We have Qs(x, y) = p1(x2, y2) (x, 0) + p2(x2, y2) (0, y). Hence it follows that both
p1(x2, y2) and p2(x2, y2) are negative. Since in this caseMQ(x, y) = (x, y) ·D · (x, y)T where

D =
(
p1(x2, y2) 0

0 p2(x2, y2)

)

the definition of a contraction is satisfied. �


4 Dynamics on the invariant circle
The hypothesis of contracting homogeneous nonlinearities in the vector field given by (1),
allows us to apply Theorem 2.1, guaranteeing the existence of a globally attracting invari-
ant circle. Observe that, from the expression in polar coordinates (4), the homogeneous
polynomial vector field Q is contracting if and only if f (θ ) < 0 for all θ .
The form of the phase vector field on the invariant circle S1 ⊂ R

2 in Theorem 2.1
is θ̇ = g(θ ) = LQ(cos θ , sin θ ). It determines the same dynamics as the expression (4)
for θ̇ in polar coordinates, since they differ by a positive function r2p. It follows that the
dynamics on the invariant circle coincides with the dynamics on the circle at infinity. We
explore this in the following results, starting with three lemmas that are immediate. These
results are strongly related to [1] and [3].
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Fig. 1 Global planar dynamics with star nodes as described in Proposition 4.4 and Lemmas 4.1–4.3

Lemma 4.1 Assume that Q in (1) is contracting and homogeneous. The invariant circle
that exists for the dynamics of (1) is an attracting limit cycle if and only if g(θ ) �= 0 for
all θ ∈ [0, 2π ). Moreover, in this case the invariant circle is the curve LQ(x, y) = 0 and
another periodic orbit exists at infinity.

Proof There are no equilibria on the invariant circle and on the circle at infinity since the
phase equation has no zeros, hence both circles are limit cycles. The form of the invariant
circle follows from the invariance of this curve established in [3, Theorem 1 (a)], see also
Fig. 1a. �

Lemma 4.2 Assume that Q in (1) is contracting and homogeneous. The invariant circle
that exists for the dynamics of (1) is an attracting policycle if and only if g(θ ) = 0 for a
finite number of θ ∈ [0, 2π ). Moreover, in this case another policycle exists at infinity.

Proof Both the invariant circle and the circle at infinity contain equilibria, hence they
must be policycles as in Fig. 1b. �

Lemma 4.3 Assume that Q in (1) is contracting and homogeneous of degree 2p + 1. The
invariant circle that exists for the dynamics of (1) is a continuum of equilibria if and only
if g(θ ) = 0 for all θ ∈ [0, 2π ). Moreover, in this case the invariant circle is the graph of the
map r(θ ) = 2p

√−λ/f (θ ) and the circle at infinity is also a continuum of equilibria.

Proof The phase equation being identically zero, both the invariant circle and the circle at
infinity consist of equilibria. In polar coordinates, finite equilibria must also satisfy ṙ = 0
and this provides the equation for the invariant circle. Phase portrait in Fig. 1c. �


Proposition 4.4 Consider (1) with Q(x, y) ∈ C2p+1 a contracting polynomial vector field
in the form given by (6). Then:

(a) If p3(u, v)p4(u, v) < 0 and −4p3(u, v)p4(u, v) > (p2(u, v) − p1(u, v))2 the invariant
circle is a limit cycle.

(b) If p3(0, 1)p4(1, 0) ≥ 0 the invariant circle is either a policycle with at most 4(p + 1)
equilibria or a continuum of equilibria. Moreover, if p3(0, 1)p4(1, 0) > 0 then the
invariant circle is a policycle.

(c) If p3(u, v) ≡ p4(u, v) ≡ 0 and p1(u, v) ≡ p2(u, v), the invariant circle is a continuum
of equilibria.
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Note that in case (c) the equations areZ2⊕Z2-equivariant, this propertywill be explored
further in Subsections 4.1 and 7.1. We illustrate in Fig. 1 the possibilities described in
Proposition 4.4.

Proof Using (6) we can write LQ(x, y) = (x, y) · B(x2, y2) · (x, y)T where

B(x2, y2) =
(

p4(x2, y2)
(
p2(x2, y2) − p1(x2, y2)

)
/2

(
p2(x2, y2) − p1(x2, y2)

)
/2 −p3(x2, y2)

)

.

If p3(u, v)p4(u, v) < 0 and −4p3(u, v)p4(u, v) > (p2(u, v) − p1(u, v))2 then det B > 0.
Hence if p4(u, v) > 0 then g(θ ) = LQ(cos θ , sin θ ) > 0 for all θ , with g(θ ) < 0 provided
p4(u, v) < 0. In both cases g(θ ) �= 0 for all θ ∈ [0, 2π ] and item (a) holds by Lemma 4.1.
If either p3(0, 1) = 0 or p4(1, 0) = 0 then trivially g(θ ) vanishes on one of the axes

and one of Lemmas 4.2 and 4.3 holds. Assume p3(0, 1)p4(1, 0) �= 0. Since g(0) = p4(1, 0)
and g(π

2 ) = −p3(0, 1), then g(θ ) �≡ 0 and thus the invariant circle is not a continuum
of equilibria. Moreover, in this case g(θ ) changes sign in the interval (0,π/2). Therefore,
since g is continuous, there must be at least one θ∗ ∈ (0,π/2) for which g(θ∗) = 0. Hence
Lemma 4.2 applies and (1) has a policycle, establishing (b).
Item (c) is an immediate consequence of Lemma 4.3. �


The next example illustrates a situation not accounted for by Proposition 4.4.

Example 4.5 The family of vector fields studied by Boukoucha [5] is such that
p3(0, 1)p4(1, 0) < 0 and a limit cycle exists. When n = 1 in [5], we obtain

p1(x2, y2) = −βax2 − (βa + αb)y2 and p3(x2, y2) = (αa + βb)x2 + αay2

p2(x2, y2) = (αb − βa)x2 − βay2 and p4(x2, y2) = (βb − αa)y2 − αax2

for real constants α,β , a, b. Then p3(0, 1)p4(1, 0) = −α2a2 < 0. If b = 0, then p1 ≡ p2
and p3 + p4 ≡ 0. Hence if βa > 0 then Q is contracting by Proposition 3.2. Moreover,
p3p4(u, v) = −α2a2(u+v)2 < 0 and this example satisfies the conditions inProposition 4.4
(a).
Another choice of parameters for which Q is contracting is α = 0, βa > 0 and 4a2 −

b2 > 0, this time by Proposition 3.3. In this case p3(x, y) = bβx2, p4(x, y) = bβy2 and
p1(x, y) = p2(x, y) = −βa(x2+y2). Therefore with this choice of parameters and if bβ �= 0
the example does not satisfy the conditions in Proposition 4.4 (a) and yet the invariant
circle is a limit cycle.

Corollary 4.6 If Q(x, y) is a contracting polynomial vector field for which (1) has a finite
number of equilibria then:

(a) If all the equilibria of (1) are hyperbolic, then the number of equilibria away from the
origin is a multiple of 4 and they alternate as sinks and saddles;

(b) all the equilibria of (1) away from the origin are either sinks or saddles (possibly
non-hyperbolic) or saddle-nodes;

(c) the equilibria that are sinks and saddles appear at alternating positions in the poli-
cycle.
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Fig. 2 Phase portrait of Example 4.7

Example 4.7 The following vector field illustrates the global dynamics given in Proposi-
tion 4.4 (b) when the nonlinearity is of degree 2p + 1 = 5 (see Fig. 2):

{
ẋ = λx − x(x4 + x2y2 + y4) − y(−x4 + x2y2)
ẏ = λy − y(x4 + x2y2 + y4) − x(x2y2 − y4)

It follows by Proposition 3.3 that the nonlinear partQ(x, y) of this example is contracting
because, for all (x, y) �= (0, 0)

p1(x2, y2) = p2(x2, y2) = −(x4 + x2y2 + y2) < 0

and

4p1(x2, y2)2−(p3(x2, y2)+p4(x2, y2))2=3(x2 − y2)2 + 9x4y4 + 6x2y2(x2 − y2)2 > 0.

Then

g(θ ) = 2 cos2 θ sin2 θ cos (2θ ) = 1
2
sin2 (2θ ) cos (2θ )

and

g ′(θ ) = sin (2θ )[2 cos2 (2θ ) − sin2 (2θ )].

Hence, the four infinite equilibria on the axes are of saddle-node type and θ =
π
4 ,

3π
4 , 5π4 , 7π4 are repellor, saddle, repellor and saddle, respectively. Moreover, p3(0, 1) =

p4(1, 0) = 0 and the system has a policycle with the total number of equilibria away from
the origin equal to 8.

4.1 Special case: Z2 ⊕ Z2 equivariant nonlinearity

If the vector field (1) hasZ2⊕Z2 symmetry thenQ has the formQ(x, y) = p1(x2, y2) (x, 0)+
p2(x2, y2) (0, y) and we may say more about the dynamics on the invariant circle. In this
case if Q has degree 2p + 1 we may write

pj(x, y) =
∑

k
ajk (x2)p−k (y2)k j = 1, 2.
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Lemma 4.8 (Infinitelymany equilibria) LetQ be aZ2⊕Z2-equivariant contracting homo-
geneous polynomial vector field and suppose λ > 0. Then the invariant circle of (1) consists
entirely of non hyperbolic equilibria if and only if p1(x2, y2) ≡ p2(x2, y2).

Proof If p1(x2, y2) ≡ p2(x2, y2) then all points in the curve λ = −p1(x2, y2) are equi-
libria. Conversely, all the points in the invariant circle are equilibria if and only if
LQ(x, y) = xy

(
p2(x2, y2) − p1(x2, y2)

) ≡ 0. The equilibria are not hyperbolic since they
form a continuum. �

When there are finitely many equilibria we use the polar form (4) and write

g(θ ) = LQ(cos θ , sin θ ) = 1
2
sin(2θ )

[

p2
(
1 + ζ

2
,
1 − ζ

2

)

− p1
(
1 + ζ

2
,
1 − ζ

2

)]

= 1
2
sin(2θ )q(ζ )

where ζ = cos(2θ ). Denote (ξ1, ξ2) =
(
1 + ζ

2
,
1 − ζ

2

)

. Then

g ′(θ ) = cos(2θ ) [p2 (ξ1, ξ2) − p1 (ξ1, ξ2)]

+1
2
sin(2θ )

[
dp2
dξ2

(ξ1, ξ2) − dp1
dξ2

(ξ1, ξ2) + dp1
dξ1

(ξ1, ξ2) − dp2
dξ1

(ξ1, ξ2)
]

.

Corollary 4.9 (Equilibria on the axes) If a10 − a20 �= 0 then θ = 0 and θ = π are
hyperbolic equilibria; otherwise they are non-hyperbolic.
If a1p − a2p �= 0 then θ = π/2 and θ = 3π/2 are hyperbolic equilibria; otherwise they

are non-hyperbolic.

Proof On the horizontal axis g ′(θ ) = p2(1, 0) − p1(1, 0) = a10 − a20. On the vertical axis
g ′(θ ) = p1(0, 1) − p2(0, 1) = −a1p + a2p. �

Corollary 4.10 (Equilibria outside the axes) Equilibria with θ �= nπ/2, n ∈ Z, are hyper-
bolic if and only if

dp1
dθ

�= dp2
dθ

.

Proof In this case both cos(2θ ) �= 0, sin(2θ ) �= 0 and p1 = p2. Hence g ′(θ ) �= 0 if and
only if

dp1
dθ

− dp2
dθ

= dp1
dξ2

− dp2
dξ2

+ dp2
dξ1

− dp1
dξ1

�= 0.

�


5 Global dynamics and classification
Next we focus on the different possibilities for the dynamics of (1) when the nonlinear part
is a contracting homogeneous polynomial. We classify the possible dynamical behaviour,
up to a global planar homeomorphism that maps trajectories to trajectories, preserving
the time orientation in each trajectory, plus a global rescaling of time. This induces an
equivalence relation on the set C2p+1 of contracting homogeneous polynomial vector
fields in R2 of degree 2p + 1. Given Qa,Qb ∈ C2p+1 we indicate this equivalence relation
as Qa ∼ Qb.
Since the set of positive definite polynomials is an open half cone in P2p+2(R2,R) then

its inverse image C2p+1 ⊂ P2p+1(R2,R2) under the linear map M defined in (2) is also
an open half cone in P2p+1(R2,R2). The next result shows that L (C2p+1) = P2p+2(R2,R)
where L is the linear map defined in (3) that generates the phase vector field.
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Theorem 5.1 Given a homogeneous polynomial q(x, y) ∈ P2p+2(R2,R) of degree 2(p + 1)
there is a contracting homogeneous polynomial vector field Q(x, y) ∈ C2p+1 for which
LQ(x, y) = q(x, y).

Proof Write q(x, y) = x2b1(x2, y2) + xyb2(x2, y2) + y2b3(x2, y2) where bj(u, v) are homo-
geneous of degree p. LetQ be the vector field of the form (6) in Proposition 3.1 where, for
some K > 0 to be determined, the pj are

p1(u, v) = −K (up + vp) p2(u, v) = b2(u, v) + p1(u, v) p3(u, v) = −b3(u, v)

p4(u, v) = b1(u, v).

Then LQ(x, y) = x2p4(x2, y2) + xy
[
p2(x2, y2) − p1(x2, y2)

] − y2p3(x2, y2) = q(x, y).
Wewant to chooseK so that the pj satisfy the conditions of Proposition 3.3. SinceK > 0

then

max
t∈[0,π/2]

p1(cos t, sin t) = −21−p/2K < 0,

hence p1(u, v) < 0 for u ≥ 0, v ≥ 0, (u, v) �= (0, 0). It remains to find K > 0 such that (7)
holds for all (u, v) with u ≥ 0, v ≥ 0, i.e. such that for (u, v) = (x2, y2) we have:

4K 2(up + vp)2 − 4K (up + vp)b2(u, v) − [b1(u, v) − b3(u, v)]2 > 0 ∀u ≥ 0, v ≥ 0.

Since D(u, v) = b22(u, v) + (b1(u, v) − b3(u, v))2 ≥ 0, then if we find K such that 2p1 ≤
−b2 −√

D for u ≥ 0, v ≥ 0, (u, v) �= (0, 0) it will follow thatQ is contracting. LetM satisfy
M ≤ (−b2 − √

D)/2 for (u, v) = (cos2 t, sin2 t) with 0 ≤ t ≤ π/2. Since p1 and the bj are
homogeneous of the same degree then by taking −K ≤ M/21−p/2 the result is proved. �

We establish in this section that the global dynamics of (1) for Q ∈ C2p+1 is completely

determined by g(θ ) = LQ(cos θ , sin θ ). This feature allows us to have a complete classifi-
cation of vector fields in C2p+1 from the point of view of the dynamics of (1), by describing
the equivalence relation induced by ∼ in the set P2p+2(R2,R).
The natural classification in P2p+2(R2,R) is to allow linear changes of coordinates and

multiplication by a nonzero constant, that we will take to be always positive in order to
preserve stability, as discussed below. This classification has good properties with respect
to the topology induced in P2p+2(R2,R) by identifying the coefficients in the polynomials
to points in R2p+3. In particular, it creates a Whitney stratification of P2p+2(R2,R). It also
translates well to C2p+1 respecting the dynamics in the invariant circle, as the next simple
result shows.

Lemma 5.2 If L : R2 −→ R2 is an invertible linear map and G(X) = LQ(X) then
the change of coordinates LX̃ = X transforms (1) into an equation with LQ̃ (

X̃
) =

(det L)G (
LX̃

)
.

Proof The linear part λX of equation (1) commutes with every linear map of R2. There-
fore, the change of coordinates transforms Ẋ = λX + Q(X) into ˙̃X = λX̃ + L−1Q

(
LX̃

)
.

Writing X⊥ = (
PXT )T where P =

(
0 −1
1 0

)

we get

L (
L−1QL

) (
X̃

) = 〈
PX̃, L−1Q

(
LX̃

)〉 =
〈(
L−1)T PX̃, Q

(
LX̃

)〉

= (det L)
〈
PLX̃, Q

(
LX̃

)〉 = (det L)G (
LX̃

)

since by Cramer’s rule PL = 1
det L

(
L−1)T P. �




Alarcón et al. Res Math Sci           (2024) 11:21 Page 11 of 22    21 

g(θ)

θ

g(θ)

θ

g(θ)

θ

g(θ)

θ

(1+) (1−)

(2+) (2−)

Fig. 3 Dynamics around the equilibria in the invariant circle and codes for the cyclic sequence. Codes (1+)
and (1-) refer to repelling and attracting equilibria, respectively, codes (2+) and (2-) correspond the two
possible orientations around a saddle-node

Under the equivalence induced by ∼, the classification in P2p+2(R2,R) under linear
changes of coordinates gives rise to moduli: parametrized families of polynomials that
share the same geometry. For instance in Cima & Llibre’s [8] classification of P1, that we
use in Sect. 7 below, the families (I), (II) and (III) all contain a parameter μ that does not
have a qualitative meaning for the dynamics. The moduli arise from the position of the
roots of the polynomial LQ in the projective space RP1, since a linear map on the plane is
determined by its value at two points, so a linear change of coordinates only controls the
position of two roots. Therefore,∼ induces a coarser equivalence relation in P2p+2(R2,R),
since a homeomorphism would not have this restriction. This is addressed in the next
definition.

Definition 5.3 The symbol sequence σ (G) associated to G ∈ P2p+2(R2,R) is a cyclic ori-
ented list of the form σ (G) = (j1s1), (j2s2), . . . , (j�s�) where ji ∈ {1, 2} and si = ± obtained
from the ordered set of zeros 0 ≤ θ1 < θ2 < · · · < θ� < π of g(θ ) = G(cos θ , sin θ ) as
follows (see also Fig. 3):

(1) ji = 1 if the multiplicity of θi is odd and ji = 2 if it is even;
(2) if ji = 1 then si = + if g(θ ) is increasing around θi and si = − if g is decreasing;
(3) if ji = 2 then si = + if θi is a local minimum of g(θ ) and si = − if θi is a local

maximum;
(4) if g(θ ) �= 0 for all θ ∈ [0,π ) then σ (G) = ∅;
(5) if G(x, y) ≡ 0 then σ (G) = ∞.

For σ = (j1s1), (j2s2), . . . , (j�s�), the backward sequence is σ̄ = (j�s̃�), (j�−1s̃�−1), . . . , (j2s̃2),
(j1s̃1), where s̃i = −si if ji = 1 and s̃i = si if ji = 2. We identify σ and σ̄ , and indicate this
by σ ≡ σ̄ .

For instance, the symbol sequence for G1(x, y) = x3y2(x − y) is σ (G1) = (2+)(1−)(1+)
corresponding to θ1 = 0 (double), θ2 = π/4 (simple) θ3 = π/2 (triple). For G2(x, y) =
−x2y3(−x+ y) = −G1(y, x) the symbol sequence is σ (G2) = (1−)(1+)(2+) corresponding
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to θ1 = 0 (triple), θ2 = π/4 (simple) θ3 = π/2 (double). Since the sequences are cyclic,
they coincide. Moreover, in this example σ (G2) = σ (G1).
The sequence σ̄ does not always coincide with σ . An example is

σ = (2+), (1−), (2−), (1+), (1−), (1+) with σ̄ = (1−), (1+), (1−), (2−), (1+), (2+)

where σ = σ (G1) for

G1(x, y) = x(a1x − y)(a2x − y)2(a3x − y)(a4x − y)y2

with ai = tan(iπ/5) and σ̄ = σ (G2) for G2(x, y) = G1(−x, y) (with the (2+) moved to the
beginning).

Lemma 5.4 The symbol sequence σ (G) = (j1s1), (j2s2), . . . , (j�s�) of G ∈ P2p+2(R2,R)
always satisfies the following restrictions:

(a)
∑�

i=1 ji = 0 (mod 2);
(b) (1+) and (1−) occur in alternating sequences of sign + and -, even when the sequence

is interrupted by one or more symbols (2±);
(c) If si = + then (ji+1, si+1) ∈ {(1−), (2+)}. If si = − then (ji+1, si+1) ∈ {(1+), (2−)}.

Moreover, if σ satisfies these restrictions then σ̄ also satisfies the same restrictions.

Proof Since the degree of G is even, restriction (a) follows. The other two restrictions can
be seen immediately from Fig. 3. �


The restriction (b) corresponds to assertion (c) in Corollary 4.6. Heteroclinic cycles
occur for those Q such that σ (LQ) only contains one of the symbols (2±).

Proposition 5.5 The symbol sequence σ (G), under the identification≡, is invariant under
linear changes of coordinates in P2p+2(R2,R).

Proof Suppose L : R2 −→ R2 is an invertible linear map and let G1(x, y) = (det L)G2 ◦
L(x, y) with gj(θ ) = Gj(cos θ , sin θ ), j = 1, 2. Then L maps the roots of G1 in S1 into the
roots of G2 with the same multiplicity. Also there is a bijection ϕ : S1 −→ S1 such that
g2(ϕ(θ )) = (det L) g1(θ ). If L preserves orientation, i.e. det L > 0, then the roots of G1
and G2 occur in the same order in S1. The map ϕ is monotonically increasing, hence
σ (G2) = σ (G1).
If L reverses orientation, i.e. det L < 0, then the roots of G1 and G2 occur in the opposite

order in S1. In this case the function ϕ(θ ) is monotonically decreasing. Hence, if g1 is
a monotonically increasing (respectively, decreasing) function of θ ∈ [θa, θb] then g2
is also a monotonically increasing (respectively, decreasing) function of θ̃ = ϕ(θ ) for
θ̃ ∈ [ϕ(θb),ϕ(θa)]. Therefore σ (G2) = σ (G1) ≡ σ (G1). �


In order to deal with the full equivalence relation∼ in C2p+1 we use results of Neumann
and O’Brien [17] for which we need to establish some terminology. Let D be the Poincaré
disc and let φ be the flow of (1). Identifying each trajectory of (1) to a point we obtain the
cell complex K (φ) = D/φ, with projection π : D −→ K (φ) and some additional structure,
as follows:

(a) cells of dimension 1 correspond to canonical regions: open sets A ⊂ D, homeomor-
phic to R2 where the flow is equivalent to ẋ = 1, ẏ = 0;
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Fig. 4 a Phase portrait of (1) when g(θ ) �= 0. b Lattice for the partial order < on K (φ) for this case. Arrows
x → y indicate π (x) < π (y). Cells π (A1) and π (A2) are 1-dimensional, for A1 (respectively A2) they are the
projection of trajectories starting at the origin (respectively c2) and ending at c1. All the other cells are points

Fig. 5 a Phase portrait of (1) on a sector. b Lattice for the partial order < on K (φ) for the same sector: arrows
x → y indicate π (x) < π (y). Cells π (A1) and π (A2) are 1-dimensional, for A1 (respectively A2) they are the
projection of trajectories starting at the origin (respectively p2) and ending at q1. All the other cells are points

(b) cells c of dimension 0 correspond to equilibria and separatrices of the flow and are
initially classified by the dimension of the fibre π−1(c);

(c) a partial order < is defined on K (φ) as follows: separatrices in the boundary of
canonical regions have the order induced by the flow; if p is an equilibrium and q is a
point in a separatrix then if p ∈ α(q) then π (p) < π (q), if p ∈ ω(q) then π (q) < π (p),
otherwise π (q) and π (p) are not related.

Examples are shown in Figs. 4 and 5.

Theorem 5.6 The symbol sequence σ (LQ), under the identification ≡, is a complete
invariant for the equivalence relation ∼ in C2p+1.

Proof Let G = L(Q) and g(θ ) = G(cos θ , sin θ ). First suppose g(θ ) ≡ 0 or equivalently
σ (G) = ∞. In this case, as in Lemma 4.3, all points in the invariant circle and in the circle
at infinity are equilibria. Apart from the origin all other trajectories are contained in rays,
as in Fig. 1c, hence all Q for which L(Q) has this symbol sequence are equivalent.
The other simple case is g(θ ) �= 0 for all θ , as in Lemma 4.1, or equivalently σ (G) = ∅.

The invariant circle and the circle at infinity are closed trajectories and the invariant circle
attracts all finite trajectories not starting at the origin, by Theorem 2.1. Apart from the
origin all other trajectories are spirals, as in Fig. 1a. The cell complex consists of two 1-
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dimensional cells, two separatrices (the closed trajectories) giving rise to 0-dimensional
cells with 1-dimensional fibre, and the equilibrium at the orgin yielding a 0-dimensional
cell with 0-dimensional fibre, with the order shown in Fig. 4.
Suppose now g(θ ) = 0 at finitely many (and not zero) points, as in Lemma 4.2. If

g(θ1) = 0 then, from the equation (4) in polar coordinates, it follows that the ray given by
{
(r, θ1) : r ≥ 0

}
is flow-invariant. Therefore two consecutive zeros θ1 < θ2 of g define a

flow-invariant sector
{
(r, θ ) : r ≥ 0, θ1 ≤ θ ≤ θ2

}
.

If θ1 < θ2 < θ3 are consecutive zeros of g(θ ) we say the sector determined by θ2 and
θ3 comes after the sector determined by θ1 and θ2. The dynamics of (1) in each sector is
the same, as shown in Fig. 5a, up to a reflection on a line through the origin, since the
interior of the sector contains no equilibria and the invariant circle is globally attracting
by Theorem 2.1. Hence the part of the cell complex corresponding to the sector is always
the same: two 1-dimensional cells, six separatrices giving rise to 0-dimensional cells with
1-dimensional fibre, five equilibria yielding 0-dimensional cells with 0-dimensional fibre,
with the order shown in Fig. 5b.
The global cell complex is a concatenation of those obtained from the sectors, depending

on the stability within the invariant circle of the points denoted p1 and q1 in Fig. 5a. In
order to construct it, we start with the sector determined by θ1 and θ2. The point q1 is an
attractor if and only if it determines a (1−) in σ (G). Then the dynamics, and hence the
cell complex, in the sector coming after this one is a reflection of that of Fig. 5 on the line
containing the ray from the origin to q1. The other possibility is that q1 is a saddle-node
with symbol (2+) in σ (G), and hence the sector coming after and its cell complex are
copies of the first sector and its cell complex.
From the reasoning above it is clear that for G1 = L(Q1), G2 = L(Q2), we have σ (G1) ≡

σ (G2) if and only if they correspond to dynamics on D with isomorphic cell complexes.
From [17, Theorem 2’], two continuous flows on the plane with finitely many separatrices
are topologically equivalent if and only if they have isomorphic cell complexes. It follows
that Q1 ∼ Q2 if and only if σ (G1) ≡ σ (G2). �

Thus, the global dynamics of (1) forQ ∈ C2p+1 is completely determinedby thedynamics

on the invariant circle, or equivalently, by the dynamics on the circle at infinity of the
Poincaré disc.WhenQ is contracting the dynamics of (1) only depends on the polynomial
LQ, in sharp contrast with the general (not contracting) case where the dynamics also
depends onMQ, as described in [1].
The invariant may now be used to decompose C2p+1 under ∼ into the following sets:

�0 is the set of Q ∈ C2p+1 such that σ (L(Q)) does not contain the symbols (2±) and
σ (L(Q)) �= ∞;
�j for j = 1, 2, . . . , p + 1 is the set of Q ∈ C2p+1 such that σ (L(Q)) contains exactly j
occurrences of the symbols (2±);
�p+2 is the set of Q ∈ C2p+1 such that σ (L(Q)) = ∞.

The next result describes the geometry of these sets. In particular, it follows that gener-
ically Q ∈ �0.

Theorem 5.7 The sets �j ⊂ C2p+1 satisfy:
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(a) �0 is the union of an open and dense subset of C2p+1 with a set of codimension 2 in
C2p+1;

(b) each �j , j = 1, 2, . . . , p + 1 is the union of a subset of codimension j of C2p+1 and a
set of codimension 2j + 2 in C2p+1;

(c) �p+2 = C2p+1 ∩ kerL and has codimension 2p + 3 in C2p+1.

Proof The main argument in the proof is that for A ⊂ P2p+2(R2,R) we have that
codL−1(A)∩C2p+1 = cod(A).This is truebecauseC2p+1 is anopen subset of P2p+1(R2,R2)
and L(C2p+1) = P2p+2(R2,R) by Theorem 5.1.
The set O0 of polynomials that only have simple roots in RP1 is open and dense in

P2p+2(R2,R). Since L is a continuous and open map, therefore L−1(O0) ⊂ �0 is open
and dense in C2p+1. The complement �0\L−1(O0) consists of those Q such that LQ has
at least one root of multiplicity at least 3 in RP1, and this latter set is the union of sets of
codimension ≥ 2. This establishes (a).
Similarly, the setOj , j = 1, 2, . . . , p+ 1 of polynomials with simple roots in RP1, except

for exactly j roots of multiplicity 2 satisfies codOj = j in P2p+2(R2,R) and L−1(Oj) ⊂ �j .
The complement �j\L−1(Oj) consists of those Q such that either one of the roots of LQ
in RP1 that corresponds to a symbol (1±) has multiplicity at least 3, or one of the roots
corresponding to a symbol (2±) has multiplicity at least 4, establishing (b).
Finally,�p+2 = kerL∩C2p+1 and hence cod�p+2 = dim P2p+2(R2,R) = 2p+3, hence

(c) holds. �


The partition C2p+1 = ⋃p+2
j=0 �j is not a stratification of C2p+1. For instance, polynomials

with σ (G) = (2+)(2+) and two different roots of multiplicity 2 may accumulate on a
polynomial with a single root of multiplicity 4 for which σ = (2+). Therefore, the closure
of �2, a set of codimension 2, contains points of �1 that has lower codimension.

6 A class of examples—definite nonlinearities
We consider the family of planar vector fields given in [12]

X(v) = Av + ϕ(v)Bv (8)

where A =
(

λ 0
0 λ

)

, λ > 0, B =
(
a b
c d

)

is a 2 × 2 matrix and ϕ : R → R is a homogeneous

polynomial of even degree 2n ≥ 2.
The polynomial ϕ is said to be positive (negative) definite if ϕ(v) > 0 (ϕ(v) < 0) for all

v �= (0, 0). Hence, the polynomial Q(x, y) = ϕ(x, y)B
(
x
y

)

is contracting provided by ϕ(v)

is positive (negative) definite and B is a negative (positive) definite matrix in the sense that
(x, y)B(x, y)T is a negative (positive) definite binary form. In that case we say that ϕ and B
are of opposite sign.

Proposition 6.1 Suppose ϕ and B in (8) are of opposite sign. Then, the qualitative phase-
portrait of (8) (up to orientation of the orbits) is of one of types given in Fig. 6.

Proof SinceLQ(x, y) = ϕ(x, y)(cx2 + (d−a)xy−by2) and ϕ is definite, the phase-portrait
at infinity is given by the second order binary formψ(x, y) = cx2 + (d−a)xy−by2 (up the
orientation of the orbits). According to [8, Theorem 1.3] and the proof of Theorem 7.2
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Table 1 Expressions of g(θ ) = LQ(cos θ , sin θ ) and symbol sequences for the normal forms in
Proposition 6.1 σ (LQ) where α = ±1

case (I) (II) (III) (IV)

g(θ ) αϕ(cos θ , sin θ ) cos (2θ )ϕ(cos θ , sin θ ) α cos2 θϕ(cos θ , sin θ ) 0

σ (LQ) ∅ (1+)(1-) (2+) ∞

Fig. 6 Phase-portraits for Proposition 6.1 where α = ±1

below, the following vector fields give all possible dynamics of the vector field (8) (up to
orientation of the orbits):

(I)
{
ẋ = λx + ϕ(x, y)(ax − αy)
ẏ = λy + ϕ(x, y)(αx + ay), α = ±1

(II)
{
ẋ = λx + ϕ(x, y)(ax + y)
ẏ = λy + ϕ(x, y)(x + ay), a2 − 1 > 0

(III)
{
ẋ = λx + aϕ(x, y)x
ẏ = λy + ϕ(x, y)(αx + ay), α = ±1, 4a2 − 1 > 0

(IV)
{
ẋ = λx + aϕ(x, y)x
ẏ = λy + aϕ(x, y)y, a �= 0

If a < 0 (a > 0) in the normal forms above, then B is negative (positive) definite. So,
if ϕ(x, y)a < 0 the vector field Q(x, y) = ϕ(x, y)B(x, y)T is contracting and by Theorem
2.1 there exists a globally attracting circle. The dynamics on the circle is given by θ̇ =
LQ(cos θ , sin θ ) = g(θ ) and coincides with the dynamics on the circle at infinity. The
expressions for g(θ ) for (I)–(IV) are given in Table 1, hence the phase-portraits are those
in Fig. 6. �

Observe that the family (8) realizes all possibilities given by Proposition 4.4. In case

λ < 0, the polynomial ϕ and the matrix Bmust be of the same sign for Proposition 6.1 to
hold.

7 Another class of examples—cubic nonlinearities
We can now describe the phase diagrams for star nodes in the plane with contracting
homogeneous cubic nonlinearity. First we note that Proposition 3.3 takes a particularly
simple form stated in the next result:

Corollary 7.1 (of Proposition 3.3) A homogeneous polynomial vector field Q of degree 3 in
R2 is contracting if writing Q in the form (6) the following conditions hold:

(i) either p1(1, 0) and p1(0, 1) < 0 or p2(1, 0) and p2(0, 1) < 0, and
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Table 2 Normal forms for contracting cubic nonlinearities in
Theorem 7.2 with G(x, y) = LQ(x, y)

(I)

{
ẋ = λx + 3μx(x2 + y2) − y3

ẏ = λy + 3μy(x2 + y2) + x(x2 + 6μy2)

μ < − 1
3

G(x, y) = x4 + 6μx2y2 + y4

(II)

{
ẋ = λx − Kx(x2 + y2) − αy3

ẏ = λy − Ky(x2 + y2) − αx(x2 + 6μy2)

α = ±1,μ > − 1
3 ,μ �= 1

3

G(x, y) = α(x4 + 6μx2y2 + y4)

K = max{(3μ)2 , 1/2}
(III)

{
ẋ = λx − Kx(x2 + y2) + y3

ẏ = λy − Ky(x2 + y2) + x(x2 + 6μy2)

G(x, y) = x4 + 6μx2y2 − y4

K = max{(3μ)2 , 1/2}
(IV)

{
ẋ = λx − 4x(x2 + y2) − αy(6x2 + y2)

ẏ = λy − 4y(x2 + y2)

α = ±1

G(x, y) = α(6x2y2 + y4)

(V)

{
ẋ = λx − x(x2 + y2) − αy(+x2 − y2)

ẏ = λy − y(x2 + y2)

α = ±1

G(x, y) = α(6x2y2 − y4)

(VI)

{
ẋ = λx − x(x2 + y2)

ẏ = λy − y(x2 + y2) + 6xy2
G(x, y) = 6x2y2

(VII)

{
ẋ = λx − x(x2 + y2)

ẏ = λy − y(x2 + y2)
G(x, y) = 0

Table 3 Normal forms for contracting cubic nonlinearities in the list of [8, Theorem 2.6] that do not
appear in Theorem 7.2 with G(x, y) = LQ(x, y)

(VIII)

{
ẋ = λx − x(x2 + y2) − αy3

ẏ = λy − y(x2 + y2) + αx(x2 + 2y2)

α = ±1

G(x, y) = α(x2 + y2)2

(IX)

{
ẋ = λx − 2x(x2 + y2)

ẏ = λy − 2y(x2 + y2) + 4yx2
G(x, y) = 4yx3

(X)

{
ẋ = λx − x(x2 + y2)

ẏ = λy − y(x2 + y2) + αx3
α = ±1

G(x, y) = αx4

(ii) 4p1(1, 0)p2(1, 0) > (p3(1, 0) + p4(1, 0))2

(iii) 4p1(0, 1)p2(0, 1) > (p3(0, 1) + p4(0, 1))2.

Proof Writing pj(x2, y2) = aj0x2 + aj1y2 for j = 1, . . . , 4, the result follows from Propo-
sition 3.3, since for all (x, y) �= (0, 0):

(i) implies that either p1(x2, y2) = a10x2 + a11y2 < 0 or p2(x2, y2) = a20x2 + a21y2 < 0.
It has been observed before that together with the second condition (here ensured
by (ii) and (iii)), it is enough to verify one of the inequalities.

(ii) and (iii) imply that 4p1(x2, y2)p2(x2, y2)−(p3(x2, y2)+p4(x2, y2))2 = (4a10a20−(a30+
a40)2)x4 + (4a10a21 + 4a11a20 − 2(a30 + a40)(a31 + a41))x2y2 + (4a11a21 − (a31 +
a41)2)y4 > 0 since all the coefficients are positive. Note that 4a10a20 > (a30 + a40)2

and 4a11a21 > (a31 + a41)2 imply that (a30 + a40)(a31 + a41) < 4√a10a20a11a21
which is smaller than 2(a10a21 + a11a20).

�


Theorem 7.2 Let λ > 0 and Q be a contracting homogeneous cubic vector field. Then (1)
is equivalent to one of the 7 normal forms in Table 2. The qualitative phase-portrait of (1)
is of one of types shown in Fig.7 and symbol sequences are given in Table 4.

Proof Normal forms for binary forms of degree 4, up to a linear change of coordinates, are
given in [8, Theorem 2.6]. For each binary form G on this list, Theorem 5.1 ensures that
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Table 4 Number and angular stability of finite and infinite equilibria for normal forms in
Theorem 7.2

Normal Equilibria Type of Angular Symbol cod�j

form at infinity roots stability sequence

(I) 8 Simple Hyperbolic (1+), (1−), (1+), (1−) 0

(II) 0 None – ∅ 0

(III) 4 Simple Hyperbolic (1+), (1−) 0

(IV) 2 Double Saddle-nodes (2+) 1

(V) 6 4 Simple 4 hyperbolic (2+), (1−), (1+) 1

2 Double 2 saddle-nodes or (2−), (1+), (1−)

(VI) 4 Double Saddle-nodes (2+), (2+) 2

(0, π/2, π , 3π/2)

(VII) ∞ All – ∞ 3

(VIII) 0 None – ∅ 0

(IX) 4 2 simple 2 hyperbolic (1+), (1−) 0

(0, π/2, π , 3π/2) 2 triple 2 hyperbolic-like

(X) 2 Quadruple Saddle-nodes (2+) 1

(π/2, 3π/2)

Hyperbolic-like are weak non-hyperbolic attractors or repellors. Symbol sequences refer to the coding of Section 5 and the
sign (2+)may be replaced by (2−) depending on the value of α = ±1. The subset �j is that of Theorem 5.7

Fig. 7 Qualitative portraits on the Poincaré disc for (1) with a contracting cubic nonlinearity. On the six top
figures only half the disc is shown, the other half is obtained by rotation of π around the origin. Numbering
corresponds to normal forms in Theorem 7.2. In Case (VII) both the circle at infinity and the invariant sphere
are continua of equilibria
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Table 5 Calculation of a value of K for which Q in the normal forms in Theorem 7.2 is contracting
from Corollary 7.1

Normal Modal
(
p3(1, 0) + p4(1, 0)

)2 (
p3(0, 1) + p4(0, 1)

)2
K2

form parameter

(I) μ < −1/3 1 (−1 + 6μ)2 > 4(3μ)2 > 4 (3μ)2

(II) 1/3 �= μ > −1/3 α2 = 1 (1 + 6μ)2 > 4(3μ)2 max{(3μ)2 , 1/2}
α = ±1

(III) μ ∈ R 1 (−1 + 6μ)2 > 4(3μ)2 max{(3μ)2 , 1/2}
(IV) α = ±1 (−6α)2 (−α)2 = 1 16

(V) α = ±1 (−α)2 = 1 α2 = 1 1

(VI) 0 1 1

(VII) 0 0 1

(VIII) α = ±1 α2 = 1 (−α + 2α)2 = 1 1

(X) α = ±1 α2 = 1 0 1

The case (IX) is different and K is computed in the text

there is a vector field (1)with contractingnonlinearityQ such thatG(x, y) = LQ(x, y). Since
the dynamics of (1) is totally determined by g(θ ) = G(cos θ , sin θ ) and since by Lemma 5.2
a linear change of coordinates in (1) corresponds to a linear change of coordinates in G,
this gives a list of all possible dynamical behaviour.
The list of [8, Theorem 2.6] contains ten normal forms, three of which do not appear

in our list because they yield dynamics that is globally equivalent to one of the forms in
Table 2. They are listed in Table 3.
The cubic nonlinearities in both lists were obtained following the construction in the

proof of Theorem 5.1. The constant K such that Q is contracting was obtained from
Corollary 7.1 as follows: in all cases, except for (IX), the binary form G is written as
G(x, y) = x2b1(x2, y2) + y2b3(x2, y2). This yields, in the notation of Proposition 3.1, the
choices p1(x2, y2) = p2(x2, y2) = −K (x2 + y2), hence p1(1, 0) = p2(1, 0) = p1(0, 1) =
p2(0, 1) = −K < 0. Conditions (ii) and (iii) of the corollary become

4K 2 > (p3(1, 0) + p4(1, 0))2 and 4K 2 > (p3(0, 1) + p4(0, 1))2.

These expressions are evaluated in Table 5. For the remaining case (IX) we have
p1(x2, y2) = −K (x2+y2) and p2(x2, y2) = −K (x2+y2)+4x2 with p3(x2, y2) = p4(x2, y2) =
0. Conditions (ii) and (iii) of the corollary are then−4K (4−K ) > 0 and 4K 2 > 0, satisfied
by any K ∈ (0, 4), for instance, K = 2.
Since λ > 0 and the nonlinearities in Systems (I)–(VII) are contracting, it follows by

Theorem 2.1 that there exists a globally attracting circle. The dynamics on the circle is
given by θ̇ = g(θ ), where g(θ ) = G(cos θ , sin θ ) and coincides with the dynamics on the
circle at infinity. The number of solutions of g(θ ) = 0, their type and stability are given in
Table 4.
FromTable 4 it follows that there are three normal forms in Table 3 that share the same

symbol sequence. These are:

(VIII) ∼ (II) (IX) ∼ (III) and (X) ∼ (IV ).

Thus, these normal forms have globally equivalent dynamics. �
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7.1 Cubic Z2 ⊕ Z2 nonlinearities

As in 4.1 above, we may say more in the symmetric case, writing
Q(x, y) = (−x(a10x2 + a11y2),−y(a20x2 + a21y2)

)
(9)

we start by finding when Q is contracting.

Theorem 7.3 The polynomial Q of the form (9) is contracting if and only if a10 > 0,
a21 > 0 and one of the following conditions holds:

(a) a11 + a20 ≥ 0;
(b) a10a21 − (a11 + a20)2/4 > 0.

Proof In this case we have

MQ(x, y) = −x2(a10x2 + a11y2) − y2(a20x2 + a21y2).

Sufficiency: If a10 > 0, a21 > 0 and (a) holds then clearly MQ(x, y) < 0 for all (x, y) �=
(0, 0). The case (b) follows from the proof of Proposition 3.3.
Necessity: The functionMQ(x, y) is a quadratic form p(u, v) on (u, v) = (x2, y2), repre-

sented by the symmetric matrix

M =
(

−a10 −(a11 + a20)/2
−(a11 + a20)/2 −a21

)

.

If Q is contracting then MQ(x, y) < 0 for all (x, y) �= (0, 0). In particular, MQ(x, 0) =
−a10x4 < 0 for x �= 0 andMQ(0, y) = −a20y4 < 0 for y �= 0, hence a10 > 0 and a21 > 0
and TrM < 0.
The conditionMQ(x, y) < 0 for all (x, y) �= (0, 0) implies that p(u, v) = −a10u2− (a11+

a20)uv−a21v2 < 0 for all u ≥ 0, v ≥ 0with (u, v) �= (0, 0). Letμ+ ≥ μ− be the eigenvalues
ofM. Since TrM < 0 then μ− < 0. There are three possibilities:

(i) The quadratic form p(u, v) is negative definite, or equivalently, both μ+ < 0 and
μ− < 0. This implies detM > 0, hence (b) holds.

(ii) The eigenvalues of M satisfy μ− < 0 and μ+ = 0. In suitable coordinates (ũ, ṽ), we
have p(ũ, ṽ) = μ−ũ2, where ũ is the coordinate in the direction of the eigenvector of
μ− and ṽ is the coordinate in the direction of the eigenvector of zero. Thus, if Q is
contracting then the eigenvector of zero does not lie in the first or third quadrants.
The eigenvectors (u, v) of the zero eigenvalue satisfy −a10u − (a11 + a20)v/2 = 0,
then they are scalar multiples of (u, v) = (a11 + a20,−2a10). This last vector is not in
the first or the third quadrants if and only if a11 + a20 > 0, as in (a).

(iii) The eigenvalues of M satisfy μ− < 0 and μ+ > 0. In suitable coordinates (ũ, ṽ),
we have p(ũ, ṽ) = μ+ũ2 + μ−ṽ2, where ũ is the coordinate the direction of the
eigenvector of μ+ and ṽ is the coordinate in the direction of the eigenvector of μ−.
Therefore, ifQ is contracting, then the eigenvector of μ+ does not lie in the (closure
of) first nor in the third quadrant.
The characteristic polynomial ofM is

pM(μ) = μ2 + (a10 + a21)μ + a10a21 − (a11 + a20)2/4

and 2μ+ = −(a10+a21)+
√

�with� = (a10−a21)2+(a11+a20)2. The eigenvectors
(u, v) of μ+ satisfy −a10u − (a11 + a20)v/2 = μ+u or, equivalently,

(a11 + a20)v = (−2a10 − 2μ+)u =
(
a21 − a10 − √

�
)
u
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Fig. 8 Planar dynamics as in Proposition 7.4 (I). The invariant sphere is an ellipse of equilibria

and are scalar multiples of (u, v) =
(
a11 + a20, a21 − a10 − √

�
)
. Suppose a11 +

a20 < 0. Then we must have a21 − a10 >
√

� > 0 and this is equivalent to (a21 −
a10)2 > � = (a10 − a21)2 + (a11 + a20)2, or equivalently 0 > (a11 + a20)2, a
contradiction. Hence, a11 + a20 ≥ 0. �


From (9) we get:

LQ(x, y) = xy
(
Ax2 − By2

) = xyq(x, y) A = a10 − a20 and B = a21 − a11.(10)

The dynamics is completely determined by the values ofA and B, as the next result shows.

Proposition 7.4 If Q is a contracting cubic Z2 ⊕ Z2 equivariant vector field then the
dynamics of (1) in the invariant circle is the following:

(I) If A = B = 0 then σ (LQ) = ∞.
(II) If AB = 0 and A + B �= 0 then σ (LQ) = (1+)(1−) and one of the equilibria is not

hyperbolic.
(III) If AB < 0 then σ (LQ) = (1+)(1−).
(IV) If AB > 0 then σ (LQ) = (1+)(1−)(1+)(1−).

Moreover, in cases (III) and (IV) all equilibria are hyperbolic.

Proof First note that from (10) there are always equilibria on the axes, at the 4 points
where they cross the invariant circle. Equilibria on the invariant circle are hyperbolic if
and only if they are simple roots of LQ.
(I) From Lemma 4.8 the invariant circle is a continuum of equilibria if and only if

A = B = 0, establishing (I). The invariant circle is the ellipse a10x2 + a11y2 = λ, all
the trajectories are contained in lines through the origin and go from the origin (or from

infinity) to a point in the ellipse. Indeed,
ẏ
ẋ

= y
x
, hence

dy
dx

= y
x
and y = Kx, where K is a

real constant. See Fig. 8.
(II) If A �= 0 and B = 0 then q(x, y) = Ax2 so all the equilibria lie on the axes. The

equilibria on the x = 0 axis are not hyperbolic, since they are roots of multiplicity 3 of
LQ. The case A = 0 and B �= 0 is analogous.
When both A �= 0 and B �= 0 then q(x, 0) �= 0 �= q(0, y). Therefore the equilibria on the

axes are hyperbolic. Other equilibria satisfy Ax2 = By2. There are two cases to consider.
(III) If AB < 0 then q(x, y) = 0 has no solutions so all the equilibria lie on the axes.
(IV) If AB > 0 then q(x, y) = 0 has solutions y = ±√

Ax2/B, corresponding to one
hyperbolic equilibrium on the interior of each one of the quadrants in the plane. �
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