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Abstract

The Neumann–Zagier matrices of an ideal triangulation are integer matrices with
symplectic properties whose entries encode the number of tetrahedra that wind
around each edge of the triangulation. They can be used as input data for the
construction of a number of quantum invariants that include the loop invariants, the
3D-index and state-integrals. We define a twisted version of Neumann–Zagier matrices,
describe their symplectic properties, and show how to compute them from the
combinatorics of an ideal triangulation. As a sample application, we use them to define
a twisted version of the 1-loop invariant (a topological invariant) which determines the
1-loop invariant of the cyclic covers of a hyperbolic knot complement, and
conjecturally is equal to the adjoint twisted Alexander polynomial.
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1 Introduction
1.1 Motivation

Ideal triangulations of 3-manifolds with torus boundary components were introduced
by Thurston [26] as a convenient way to describe and effectively compute [2] complete
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hyperbolic structures on 3-manifolds. To do so, one assigns a complex number different
from 0 or 1 to each tetrahedron and a polynomial equation around each edge of the
triangulation. These so-called gluing equations have special shape that can be described
by two matrices A and B (with rows and columns indexed by the edges and by the
tetrahedra, respectively) whose entries describe the number of times (but not the order by
which) tetrahedra wind around an edge. One of the main discoveries of Neumann–Zagier
is that the matrix (A|B) becomes, after some minor modifications, the upper part of a
symplectic matrix with integer entries [22]. The symplectic property of the NZ matrices
and of the corresponding gluing equations define a linear symplectic structure on a vector
space whose quantization leads to a plethora of quantum invariants that include the
loop invariants of Dimofte and the first author [6,8], the 3D-index in both the original
formulation of Dimofte-Gaiotto-Gukov [9,10] as well as the state-integral formulation of
Kashaev and the first author [13] and Kashaev–Luo–Vartanov state-integral [1,20]. All of
those invariants are defined using the NZ matrices of a suitable ideal triangulation, and
their topological invariance follows by proving that they are unchanged under Pachner
2–3 moves.
Our original motivation was to study the behavior of the loop invariants of [6] under

cyclic covers. Since the latter are defined in terms of NZ data of an ideal triangulation,
we were led to study the behavior of the NZ matrices under cyclic covers. By elementary
topology, each tetrahedron of an ideal triangulation lifts to n tetrahedra in the n-fold
cyclic cover, and lifting all the way to the infinite cyclic cover leads to the notion of
NZ matrices which we can call equivariant or twisted (as is common in algebraic and
geometric topology) or t-deformed (as is common in physics). We will use the term
“twisted”, and keep in mind that the variable t below encodes topological information of
cyclic covers.
Said differently, as the triangulation of the cyclic cover unfolds, so do its edges and the

tetrahedra that wind around them. This is the content of the twisted NZ matrices. How
can this elementary idea be non-trivial or interesting?
It turns out that the twistedNZmatrices have twisted symplectic properties which come

from topology and using them one can give twisted versions of the above mentioned
invariants, i.e., of the loop invariants [6,8], the 3D-index in [9,10] and [13] and KLV
state-integral [1,20]. A key property of such a twisted invariant is that it determines the
corresponding (untwisted) invariant of all cyclic covers. For example, the twisted 1-loop
invariant of a knot complement defined below satisfies this property.
Our goal is to define the twisted NZ matrices, describe their properties and show how

to compute them in terms of the methods developed by SnapPy [2]. Having done so, we
can use the twisted NZ matrices to define a twisted version of the 1-loop invariant, prove
its topological invariance and conjecture that it equals to the adjoint twisted Alexander
polynomial. It is interesting to note that the twisted 1-loop invariant depends only on
the combinatorics of the NZ matrices of the infinite cyclic cover (which is abelian infor-
mation), whereas the adjoint twisted Alexander polynomial depends on the complete
hyperbolic structure given as a representation of the fundamental group.
The twisted NZ matrices introduced in this paper have further applications aside from

the topological 1-loop polynomial invariants studied in the present paper. In the sequel
paper [16], we use the twisted NZ matrices to study the behavior of the higher-loop
invariants of [6] under cyclic coverings. The latter were recently shown to be topological



S. Garoufalidis, S. Yoon Res Math Sci (2023) 10:37 Page 3 of 23 37

invariants of cusped hyperbolic 3-manifolds [14]. A further application of twisted NZ
matrices was given in our joint work [17] where we introduced a super-version of them
to define 1-loop torsion polynomials for all representations of sl2(C) that we conjectured
to be equal to their corresponding twisted Alexander polynomials. This conjecture was
recently proven for all fibered 3-manifolds [15].

1.2 Torsion and its twisted version

Before discussing twisting matters further, let us recall a key motivating example. A basic
invariant of a compact 3-manifold is the order of the torsion of its first homology. The
behavior of this invariant for all cyclic covers of a knot complement is determined by a
single Laurent polynomial, the Alexander polynomial. Explicitly, we have

∣
∣
∣tor(H1(M(n);Z))

∣
∣
∣ =

∏

ωn=1
�K (ω) (1)

where �K (t) ∈ Z[t±1] is the Alexander polynomial of a knot K ⊂ S3, M(n) is the n-
fold cyclic cover of M = S3 \ K , and the left-hand side is the order of the torsion
part of H1(M(n);Z). This classical result connecting the torsion of the first homology
to the Alexander polynomial (see, e.g., [12, (6.3), p.417]) is deeply rooted in the idea that
the Alexander polynomial is the torsion of the infinite cyclic cover of M twisted by the
abelianization map α : π1(M) → H1(M;Z) = Z. In other words, we have

The twisted torsion determines the torsion of the cyclic covers (2)

This idea has been extended in several directions. Among them, one can define the
torsion of a 3-manifold using interesting representations of its fundamental group. For
example, when M is a cusped hyperbolic 3-manifold, one can define a torsion using a
(lifted) geometric SL2(C)-representationρ of the fundamental groupof its complement, or
a symmetric power thereof. There are some technical difficulties that onemust overcome,
stemming fromthe fact that sometimes the corresponding chain complexes arenot acyclic,
hence the torsion depends on a choice of peripheral curves, as well as normalization issues,
since the torsion is usually well defined up to a sign. These issues have been addressed
in detail by [5,11,23]. Among the several torsion nvariants, we will be interested in the
adjoint (Reidemeister) torsion τγ (M) of a one-cusped hyperbolic 3-manifold (such as a
knot complement) using the adjoint representation Adρ = Sym2(ρ) : π1(M) → SL3(C),
where γ is a fixed peripheral curve. The adjoint torsion τγ (M) ∈ F×/± is a nonzero
element of the trace field F of M, well defined up to a sign [23]. Just as in the case of
the Alexander polynomial, there is a version of the adjoint twisted Alexander polynomial
τ (M,α, t) ∈ F [t±1]/(±tZ) (abbreviated by τ (M, t) when α is clear) defined in [5,11,27]
using an epimorphism α : π1(M) → Z. Here, the ambiguity is given by multiplication by
an element of ±tZ := {±tr | r ∈ Z}.
Two key properties of the adjoint twisted Alexander polynomial are the behavior under

finite cyclic covers [11]

τ (M(n), tn) =
∏

ωn=1
τ (M,ω t) (3)

and the relation with the adjoint torsion [28], namely

τ (M, 1) = 0,
d
dt

∣
∣
∣
∣
t=1

τ (M, t) = τλ(M) (4)

where λ is the canonical longitude, i.e., the peripheral curve satisfying α(λ) = 0.
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Fig. 1 An ideal tetrahedron

1.3 Neumann–Zagier matrices and their twisted version

Having already discussed the torsion and twisted torsion, we now recall some basic facts
from ideal triangulations of 3-manifolds and their gluing equations, following [22,26].
Let M be an oriented hyperbolic 3-manifold with a torus boundary component (often
called a one-cusped hyperbolic 3-manifold) equipped with an ideal triangulation T . An
Euler characteristic argument shows that the numberN of tetrahedra in T is equal to the
number of edges. We order the edges ei and the tetrahedra �j of T for 1 ≤ i, j ≤ N . A
quad type of a tetrahedron is a pair of opposite edges; hence each tetrahedron has three
quad types. We fix an orientation and a quad type of each tetrahedron �j so that each
edge of �j admits a shape parameter among

zj, z′
j = 1

1 − zj
, or z′′

j = 1 − 1
zj

∈ C \ {0, 1}

with opposite edges having same parameters (see Fig. 1). We denote by � the three pairs
of opposite edges of a tetrahedron, so that the edges of� are assigned the edge parameter
z�.
A complete hyperbolic structure of M can be described by a special solution of the

gluing equations. The latter describe the holonomy of the hyperbolic structure around
each edge ei of T , and have the (logarithmic) form

N
∑

j=1

(

Gij log zj + G′
ij log z

′
j + G′′

ij log z
′′
j

)

= 2π
√−1. (5)

HereG,G′ andG′′ are the gluing equation matrices whose rows and columns are indexed
by the edges and by the tetrahedra of T , respectively, such that the (i, j)-entry of G� is
the number of edges of �j with parameter z�

j is incident to the edge ei in T . It will be
convenient to introduce ζ -variables

ζ = d log z
dz

= 1
z
, ζ ′ = d log z′

dz
= 1

1 − z
, ζ ′′ = d log z′′

dz
= 1

z(z − 1)
(6)

following [25]. Note that the three shape parameters in each tetrahedron satisfy the rela-
tion zz′z′′ = −1, and this implies the linear relation ζ + ζ ′ + ζ ′′ = 0. Thus one can
eliminate the variable ζ ′ from any expression given in terms of ζ , ζ ′, and ζ ′′, arriving at
the Neumann–Zagier matrices

A := G − G′, B := G′′ − G′. (7)

Note that

G diag(ζ ) + G′ diag(ζ ′) + G′′ diag(ζ ′′) = A diag(ζ ) + B diag(ζ ′′) (8)
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where diag(ζ�) denotes the diagonal matrix with diagonal entries ζ�
1 , . . . , ζ�

N .
TheNZmatrices have remarkable properties discovered in [22] which is a starting point

for the quantization of the gluing equations and for passing from hyperbolic geometry to
quantum topology. The symplectic property of the NZ matrices implies that

ABT = BAT . (9)

There are two enhancements of the gluing equations and of their corresponding matri-
ces. The first is obtained by looking at the cusp, i.e., the peripheral (also called boundary)
torus of the 3-manifold. By a peripheral curve, we mean an oriented, homotopically non-
trivial, simple closed curve in the peripheral torus ofM. A peripheral curve γ gives a triple
(Cγ ,C′

γ ,C′′
γ ) of row vectors in ZN that describe the completeness equation as

N
∑

j=1

(

Cγ j log zj + C′
γ j log z

′
j + C′′

γ j log z
′′
j

)

= 0. (10)

Fixing a peripheral curve γ , let G�
γ denote the matrix obtained from G� by replacing the

last row by C�
γ , and likewise for Aγ and Bγ .

The second enhancement is a combinatorial flattening of T , that is a triple (f, f ′, f ′′) of
column vectors in ZN such that

Gf + G′f ′ + G′′f ′′ = (2, . . . , 2)T , (11)

f + f ′ + f ′′ = (1, . . . , 1)T , (12)

Cγ f + C′
γ f ′ + C′′

γ f ′′ = 0 (13)

for any peripheral curve γ . This term was introduced in [6, Sec.4.4] as a necessary ingre-
dient to define the 1-loop invariant (and there, it was called a combinatorial flattening
compatible with any peripheral curve). Every ideal triangulation has combinatorial flat-
tenings [21, Thm.4.5].
This concludes our discussion of the NZ matrices. We now introduce a twisted version

of the NZ matrices of an ideal triangulation T of a 3-manifoldM as above. We will fix an
epimorphism α : π1(M) → Z and a peripheral curve μ satisfying α(μ) = 1. For instance,
if M is a knot complement in S3, then α is the abelianization map and μ is a meridian
of the knot. Let M̃ and M(n) denote the cyclic covers of M corresponding to α−1(0) and
α−1(nZ), respectively. The ideal triangulation T̃ of the infinite cyclic cover M̃ induced
from T is equipped with an action of the deck transformation group Z (generated by the
μ-action), and induces an ideal triangulation T (n) of the n-fold cyclic coverM(n).
We choose lifts ẽi and �̃j of ei and �j to T̃ , respectively, and for k ∈ Z let G�

k be the
N × N matrix whose (i, j)-entry is the number of edges of μk · �̃j with parameter z�

j
is incident to the edge ẽi in T̃ . Note that G�

k is a zero matrix for all but finitely many
k , as there are finitely many tetrahedra around ẽi. We define the twisted gluing equation
matrices G�(t) of T by

G�(t) :=
∑

k∈Z
G�
k tk (14)

and the twisted Neumann–Zagier matrices by

A(t) := G(t) − G′(t), B(t) := G′′(t) − G′(t). (15)
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(More generally, if X(t) is a matrix with entries in Z[t±1], we denote by Xk the coefficient
of tk in X(t).) Note that the rows and columns of these matrices are indexed by the edges
and tetrahedra of T , respectively, and that their entries are in the ring Z[t±1]. Since the
above matrices are well defined after fixing lifts of each edge and tetrahedron of T , a
different choice of lifts changes G�(t), A(t) and B(t) by multiplication from the left or
right by the same diagonal matrix diag(tc1 , tc2 , . . . , tcN ) for integers c1, c2, . . . , cN . This
ambiguity propagates to any invariant constructed using these matrices.
A first property of the twisted NZ matrices A(t) and B(t) is that they determine the NZ

matrices A(n) and B(n) of the cyclic covers T (n) of T , and moreover they do so via block
circulant matrices, i.e., square matrices such that each row is obtained by its predecessor
by a cyclic shift. We refer to [4] and [24] for details on the properties of block circulant
matrices.

Theorem 1.1 We have

X(n) =

⎛

⎜
⎜
⎜
⎜
⎝

∑

r≡0 Xr
∑

r≡1 Xr · · · ∑

r≡n−1 Xr
∑

r≡n−1 Xr
∑

r≡0 Xr · · · ∑

r≡n−2 Xr
...

...
. . .

...
∑

r≡1 Xr
∑

r≡2 Xr · · · ∑

r≡0 Xr

⎞

⎟
⎟
⎟
⎟
⎠

(16)

for X = G�, A or B.

The twisted NZ matrices satisfy a twisted version of the symplectic property of Equa-
tion (9).

Theorem 1.2 We have

A(t)B(1/t)T = B(t)A(1/t)T . (17)

In other words, A(t)B(1/t)T is symmetric under tranposition followed by t 	→ 1/t. In
particular, A(ω)B(ω)∗ is Hermitian for ω ∈ C with |ω| = 1 and so is B(ω)−1A(ω) if B(ω)
is non-singular. Here X∗ is the complex conjugate of the transpose of a matrix X . Note
that given any ideal triangulation, we can choose quads so that B (hence also B(t), since
B(1) = B) is invertible; see [6, App.A].

Remark 1.3 One can check that Equation (17) (or equivalently, its restriction to n-th roots
of unity t) is equivalent to that A(n)(B(n))T = B(n)(A(n))T for all n ≥ 1.

We now come to a conjectural property of the twisted NZ matrices, which we have
checked in numerous examples.

Conjecture 1.4 The Laurent polynomials det(A(t)) and det(B(t)) are palindromic, i.e.,
satisfy p(t) = εtrp(1/t) for some ε = ±1 and an integer r.

We next discuss the behavior of the twisted NZ matrices under a 2–3 Pachner move
relating an ideal triangulationT withN tetrahedra to another oneT withN+1 tetrahedra.
Recall that such a move is determined by two tetrahedra with a common face in T , which
become three tetrahedra with a common edge in T as shown in Fig. 2 below. Let us write
the twisted NZ matrices A(t) and B(t) of the triangulation T schematically in columns as

A(t) = (a1, a2, ai), B(t) = (b1, b2, bi), (18)
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with ai meaning (a3, a4 , ..., aN ) and similarly for bi. Let A(t) and B(t) denote the corre-
sponding twisted NZ matrices of T .

Theorem 1.5 With the above notation, there exists a lower triangular matrix P with 1’s
on the diagonal such that

PA(t) =
(

−1 −1 −1 0
b1 + b2 a1 a2 ai

)

, P B(t) =
(

−1 −1 −1 0
0 a2 + b1 a1 + b2 bi

)

. (19)

This corrects the omission of P in [6, Eqn.(3.27)], which does not affect the validity of the
proofs in [6].

1.4 The 1-loop invariant and its twisted version

The adjoint Reidemeister torsion has a conjectural description in terms of the 1-loop
invariant of [6]. The latter depends on the NZ matrices of an ideal triangulation, its
shapes, their flattenings and a peripheral curve γ . With the notation of Sect. 1.3, the
1-loop invariant is defined by

τCSγ (T ) := det
(

Aγ diag(ζ ) + Bγ diag(ζ ′′)
)

2
∏N

j=1 ζ
fj
j ζ

′f ′
j

j ζ
′′f ′′

j
j

=
det

(

Gγ diag(ζ ) + G′
γ diag(ζ ′) + G′′

γ diag(ζ ′′)
)

2
∏N

j=1 ζ
fj
j ζ

′f ′
j

j ζ
′′f ′′

j
j

∈ F/(±1)

(20)

where the last equality follows from Equation (8). In [6], it is conjectured that the 1-loop
invariant τCSγ (T ) is equal to the adjoint torsion τγ (M) with respect to γ

τCSγ (T ) ?= τγ (M) ∈ F×/(±1). (21)

Given the above conjecture and the discussion of Sect. 1.2, it is natural to predict the
existence of a twisted version of the 1-loop invariant, defined in terms of the twisted NZ
matrices. With the notation of Sect. 1.3, we define the twisted 1-loop invariant by

τCS(T , t) := det
(

A(t) diag(ζ ) + B(t) diag(ζ ′′)
)

∏N
j=1 ζ

fj
j ζ

′f ′
j

j ζ
′′f ′′

j
j

:= det
(

G(t) diag(ζ ) + G′(t) diag(ζ ′) + G′′(t) diag(ζ ′′)
)

∏N
j=1 ζ

fj
j ζ

′f ′
j

j ζ
′′f ′′

j
j

∈ F [t±1]/(±tZ)

(22)

where the second equality follows from the fact (analogous to Equation (8))

G(t) diag(ζ ) + G′(t) diag(ζ ′) + G′′(t) diag(ζ ′′) = A(t) diag(ζ ) + B(t) diag(ζ ′′). (23)

An elementary observation is that τCS(T , t) is well defined up to multiplication by
an element in ±tZ. Indeed, the computation in [6, Sec.3.5] shows that up to sign, the
twisted 1-loop invariant is independent of the choice of a combinatorial flattening. It is
also manifestly independent of the choice of a quad type of �j , as the definition (22) is
symmetric with respect to ζ , ζ ′, and ζ ′′. Finally, a different choice of lifts of the edges
and tetrahedra of T results to left or right multiplication of all of the matrices G�(t)
by the same diagonal matrix diag(tc1 , tc2 , . . . , tcN ) for integers c1, c2, . . . , cN , hence the
observation follows.
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By the very definition of τCS(T , t), it leads to a twisted version of Conjecture (21), namely

τCS(T , t) ?= τ (M, t) ∈ F [t±1]/(±tZ). (24)

We now list some properties of the twisted 1-loop invariant. The first concerns the
topological invariance.

Theorem 1.6 τCS(T , t) is invariant under Pachner 2–3 moves between ideal triangula-
tions that support the geometric representation.

Combining the above theorem with Proposition 1.7 of [6], we conclude that the twisted
1-loop invariant defines a topological invariant of one-cusped hyperbolic 3-manifolds.
The next two theorems concern the properties (3) and (4) of the adjoint twisted Alexan-

der polynomial.

Theorem 1.7 For all n ≥ 1, we have

τCS(T (n), tn) =
∏

ωn=1
τCS(T ,ω t). (25)

Theorem 1.8 We have τCS(T , 1) = 0 and d
dt

∣
∣
∣
t=1

τCS(T , t) = τCSλ (T ) where λ is the
peripheral curve satisfying α(λ) = 0.

A corollary of the above theorems is a relation between the twisted 1-loop invariant and
the 1-loop invariant of [6] for cyclic covers, namely

τCSμ (T (n))
τCSμ (T )

=
∏

ωn=1
ω �=1

τCS(T ,ω). (26)

The next result concerns the symmetries of the twisted 1-loop invariant. Conjecture 1.4
implies a symmetry of the twisted 1-loop invariant which is known to hold for the adjoint
twisted Alexander polynomial [18,19], namely τ (M, t) = τ (M, 1/t).

Corollary 1.9 (assuming Conjecture 1.4) We have

τCS(T , t) = τCS(T , 1/t) ∈ F [t±1]/(±tZ). (27)

We end our discussion on the twisted 1-loop invariant with a remark which suggests
that the t-deformation variable is independent from the variablemwhich is an eigenvalue
of the meridian of an SL2(C)-representation of π1(M).

Remark 1.10 By varying the representation, the adjoint Reidemeister torsion can be
extended to a rational function on the geometric component XM of the SL2(C)-character
variety of a knot complement M [7], and consequently to a rational function of the geo-
metric component of the A-polynomial curve. The same holds for the 1-loop invariant;
see [6, Sec.4]. Likewise, we can extend the twisted 1-loop invariant to a twisted ratio-
nal function on the geometric component of the character variety, i.e., to an element of
the ring C(XM)[t±1]/(±tZ), where C(XM) is the field of rational functions on XM . Then,
m ∈ C(XM) is a variable independent of t.
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2 Proofs: twisted NZmatrices
In this section, we give proofs of the properties of the twisted NZ matrices, namely the
relation to the NZ matrices of cyclic covers (Theorem 1.1), the symplectic properties
(Theorem 1.2), and the behavior under 2–3 Pachner moves (Theorem 1.5).

Proof of Theorem 1.1 It is clear that T (n) has nN tetrahedra, as T has N tetrahedra �j ,
j = 1, . . . , N . Fixing a lift �̃j of each �j to the infinite cyclic cover, we choose lifts of the
tetrahedra of T (n) by μk · �̃j for k = 0, . . . , n− 1. Similarly, we choose lifts of the edges of
T (n). Then it is clear from the construction of the n-fold cyclic cover that

G(n)�
k =

⎛

⎜
⎜
⎜
⎜
⎝

G�
nk G�

nk+1 · · · G�
nk+n−1

G�
nk−1 G�

nk · · · G�
nk+n−2

...
...

. . .
...

G�
nk−n+1 G�

nk−n+2 · · · G�
nk

⎞

⎟
⎟
⎟
⎟
⎠

(28)

for all k ∈ Z, which implies

G(n)� =

⎛

⎜
⎜
⎜
⎜
⎝

∑

r≡0G�
r

∑

r≡1G�
r · · · ∑

r≡n−1G�
r

∑

r≡n−1G�
r

∑

r≡0G�
r · · · ∑

r≡n−2G�
r

...
...

. . .
...

∑

r≡1G�
r

∑

r≡2G�
r · · · ∑

r≡0 G�
r

⎞

⎟
⎟
⎟
⎟
⎠

(29)

This completes the proof of Theorem 1.1. �
Proof of Theorem 1.2 Following Neumann [21], we consider theZ[t±1]-moduleV gener-
ated by variables Zj, Z′

j , Z
′′
j subject to linear relations Zj +Z′

j +Z′′
j = 0 for 1 ≤ j ≤ N . We

define a symplectic form on V as

〈Zi, Z′′
j 〉 = 〈Z′

i , Zj〉 = 〈Z′′
i , Z

′
j 〉 = δij (30)

and

〈cZj, Z′′
j 〉 = 〈Zj, c̄Z′′

j 〉 = c, c ∈ Z[t±1]

where δij is the Kronecker delta and ¯ : Z[t±1] → Z[t±1] is the involution induced
from the inversion t 	→ t−1. Note that 〈Z′′

i , Zj〉 = 〈Z′′
i ,−Z′

j − Z′′
j 〉 = −δij and similarly,

〈Zi, Z′
j 〉 = 〈Z′

i , Z
′′
j 〉 = −δij .

We associate an element Ei ∈ V to each edge ei of T as

Ei =
N

∑

j=1

(

G(t)ijZj + G′(t)ijZ′
j + G′′(t)ijZ′′

j

)

. (31)

In what follows, we use the same argument given in the proof of [3, Thm.3.6] to show that

〈Ea, Eb〉 = 0 for all 1 ≤ a, b ≤ N. (32)

Considering the linear expansion of 〈Ea, Eb〉 using the equation (31), we have a non-trivial
termwhen the edges ea and eb appear in some�j withdifferent shapeparameters.Without
loss of generality, suppose that ea and eb have parameters Zj and Z′′

j , respectively. It is
clear that �̃j contains μα · ẽa and μβ · ẽb for some α and β ∈ Z. Equivalently, μ−α · �̃j
and μ−β · �̃j are attached to ẽa and ẽb, respectively. We thus get a non-trivial term

〈t−αZj, t−βZ′′
j 〉 = tβ−α (33)
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in the linear expansion from the triple (�̃j ,μα · ẽa,μβ · ẽb). On the other hand, considering
the face-pairing of the face of �j containing ea and eb, there is another tetrahedron �i
(possibly i = j), which also contains both ea and eb. It follows that �̃i contains μα+γ · ẽa
and μβ+γ · ẽb for some γ ∈ Z. From this triple (�̃i,μα+γ · ẽa,μβ+γ · ẽb), we get another
non-trivial term −t(β+γ )−(α+γ ) = −tβ−α which we can pair with the term (33) to cancel
out. Note that we have theminus sign here, since the face-pairing is orientation-reversing:
the shape parameters of ea and eb for�i are either (Zi, Z′

i), (Z
′
i , Z

′′
i ), or (Z

′′
i , Zi). In this way,

every non-trivial term that appears in the expansion of 〈Ea, Eb〉 is paired to cancel out.
This proves the equation (32). We then directly obtain the desired equation (17), since we
have

〈Ea, Eb〉 =
N

∑

j=1

〈

G(t)ajZj + G′(t)ajZ′
j + G′′(t)ajZ′′

j ,G(t)bjZj + G′(t)bjZ′
j + G′′(t)bjZ′′

j

〉

=
N

∑

j=1

(

G(t)aj
(

G′′(1/t)bj − G′(1/t)bj
)

+ G′(t)aj
(

G(1/t)bj − G′′(1/t)bj
) + G′′(t)aj

(

G′(1/t)bj − G(1/t)bj
))

=
N

∑

j=1

((

G(t)aj − G′(t)aj
)(

G′′(1/t)bj − G′(1/t)bj
)

− (

G′′(t)aj − G′(t)aj
)(

G(1/t)bj − G′(1/t)bj
))

=
N

∑

j=1

(

A(t)ajB(1/t)bj − B(t)ajA(1/t)bj
)

.

�
Proof of Theorem 1.5 Recall that a 2–3 Pachner move on T is determined by two tetra-
hedra �α and �β with a common face in T . Dividing the bipyramid �α ∪ �β into three
tetrahedra �a,�b, and �c as in Fig. 2, we obtain a new ideal triangulation T with one
additional edge e0. We choose lifts of the five tetrahedra �α , �β , �a, �b, �c and the
edge e0 (to the infinite cyclic cover) such that �̃α ∪ �̃β and �̃a ∪ �̃b ∪ �̃c are the same
bipyramid containing ẽ0. Note that the (twisted) gluing equation of e0 is

log z′
a + log z′

b + log z′
c = 2π

√−1. (34)

There are nine edges on the bipyramid whose gluing equations are affected by the
Pachner move: three at the triangle of the base pyramid and six others on the bipyramid
but not on its base. The six edges give

log zα = log zb + log z′′
c log z′

α = log z′′
a + log zc log z′′

α = log za + log z′′
b

log zβ = log z′′
b + log zc log z′

β = log z′′
a + log zb log z′′

β = log za + log z′′
c , (35)

and the three edges give

log zα + log zβ = log z′
a log z′

α + log z′′
β = log z′

b log z′′
α + log z′

β = log z′
c. (36)

The relations (36) are obtained from the relations (35) up to the gluing equation (34) of
e0 and the relation log z + log z′ + log z′′ = π

√−1. For instance,

log zα + log zβ = log zb + log z′′
c + log z′′

b + log zc
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Fig. 2 2-3 Pachner move

= 2π
√−1 − log z′

b − log z′
c

= log z′
a.

Therefore, we can obtain the twisted gluing equation matrices G�(t) for T from the
twisted gluing equation matrices for T by substituting log z�

α and log z�
β in terms of the

right hand side of equation (35) and the substitution is correct up to the gluing equation
of e0 and the relation log z + log z′ + log z′′ = π

√−1. In matrix form, this implies that

for some lower triangular matrix Q =
(

1 0
∗ IN

)

and an integer matrix C , we have

(

G(t)a G(t)b G(t)c
) = Q

(

0 0 0
G′′(t)α + G′′(t)β G(t)α + G′(t)β G′(t)α + G(t)β

)

+ C,

(

G′(t)a G′(t)b G′(t)c
)

= Q
(

1 1 1
0 0 0

)

+ C,

(

G′′(t)a G′′(t)b G′′(t)c
)

= Q
(

0 0 0
G′(t)α + G′(t)β G′′(t)α + G(t)β G(t)α + G′′(t)β

)

+ C.

(37)

Here IN is the identitymatrix of sizeN andXj is the j-th columnof amatrixX .Multiplying

P =
(

1 0
G′(t)α + G′(t)β IN

)

Q−1 on both sides of Equation (37), we obtain

P
(

G(t)a G(t)b G(t)c
) =

(

0 0 0
G′′(t)α + G′′(t)β G(t)α + G′(t)β G′(t)α + G(t)β

)

+ PC,

P
(

G′(t)a G′(t)b G′(t)c
)

=
(

1 1 1
G′(t)α + G′(t)β G′(t)α + G′(t)β G′(t)α + G′(t)β

)

+ PC,

P
(

G′′(t)a G′′(t)b G′′(t)c
)

=
(

0 0 0
G′(t)α + G′(t)β G′′(t)α + G(t)β G(t)α + G′′(t)β

)

+ PC .

(38)

It follows that

P
(

A(t)a A(t)b A(t)c
)

=
(

−1 −1 −1
B(t)α + B(t)β A(t)α A(t)β

)

,

P
(

B(t)a B(t)b B(t)c
)

=
(

−1 −1 −1
0 A(t)β + B(t)α A(t)α + B(t)β

)

,

where P is a lower triangular matrix with 1’s on the diagonal. �
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Fig. 3 The triangulation of the peripheral torus of 41

3 Examples
In this section, we explain how to compute the twisted NZ matrices of an ideal triangu-
lation using the methods of SnapPy. As is customary, we do so by the example of the
simplest hyperbolic 41 knot, and later by the 63 knot.

3.1 The knot 41
The knot complement M of the knot 41 decomposes into two ideal tetrahedra �1
and �2. Using the default triangulation of SnapPy for 41 with isometry signature
cPcbbbiht_BaCB, the gluing equations are

e1 : z21z
′
1z

2
2z

′
2 = 1,

e2 : z′
1(z

′′
1 )

2z′
2(z

′′
2 )

2 = 1 ,

the corresponding gluing equation matrices are

G =
(

2 2
0 0

)

, G′ =
(

1 1
1 1

)

, G′′ =
(

0 0
2 2

)

,

and the NZ matrices are

A =
(

1 1
−1 −1

)

, B =
(

−1 −1
1 1

)

with

ABT =
(

−2 2
2 −2

)

symmetric. We can read the above information by looking at the triangulated cusp shown
in Fig. 3.
To describe the ideal triangulation T̃ of the infinite cyclic cover M̃ of M, we consider

the triangulation of the peripheral torus induced from T = {�1,�2} (see Fig. 3) together
with its lift to the universal cover, the Euclidean plane E2. Note that each triangle of E2

with corner zj has a label j ∈ {1, 2} of the corresponding tetrahedron.
We now describe a second labeling of each triangle of E2 by an integer, obtained by

choosing a cocycle representative of the abelianization map α : π1(M) � Z. This con-
struction is standard and is appears in unpublished work of Goerner and also in Zickert
[29, Sec.3.5]. Let G denote the dual dual 1-skeleton of the triangulation ofE2 (see Fig. 4).
Each vertex and edge ofG correspond to a tetrahedron and face-pairing of T , respectively,
and that the edges of G are oriented from �0 to �1. Since the face-pairings generate the
fundamental group π1(M), one can assign an integer α(pi) to each face-pairing pi cor-
responding to the abelianization map α : π1(M) � Z. Since in our case there are two
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Fig. 4 Face-pairings

Fig. 5 The dual 1-complex ofE2, where the labeling α(v)j of a vertex v indicates that v is labeled by the j-th
tetrahedron

tetrahedra, we have four face-pairings, thus four integersα(p1), . . . ,α(p4) that are required
to satisfy

α(p2) − α(p4) = 1 α(p1) − α(p4) = 1,

α(p1) − α(p3) = 1 α(p2) − α(p3) = 1.
(39)

Note that these equations are directly obtained from Fig. 4 with the μ-action described in
Fig. 3.
Since E2 is a contractible space, we can assign an integer α(v) to each vertex v of G

such that α(v2)− α(v1) = α([v1, v2]), where [v1, v2] is an oriented edge of G from v1 to v2.
Explicitly, the general solution of the linear equations (39) is given by

(α(p1),α(p2),α(p3),α(p4)) = (a, a, a − 1, a − 1) (a ∈ Z). (40)

It follows from the construction that if a vertex v corresponds to �j in T , then it corre-
sponds to μα(v) · �̃j in T̃ . Choosing (α(p1),α(p2),α(p3),α(p4)) = (0, 0,−1,−1) and α(v)
and ẽi as in Fig. 4, we obtain the table

0 1 2
ẽ1 z′

2 z21z
2
2 z′

1
ẽ2 z′

1(z
′′
2 )2 (z′′

1 )2z
′
2

where the (i, k)-entry is the product of shape parameters contributed from μk · �̃1 and
μk · �̃2 to ẽi (the empty entries are 1). The gluing equation around ẽi is the product of the
entries of the corresponding row in the above table, i.e., the product over the vertices of
polygons around each edge ẽi in Fig. 4. Hence, we have

G(t) =
(

2t 2t
0 0

)

, G′(t) =
(

t2 1
t t2

)

, G′′(t) =
(

0 0
2t2 2t

)

, (41)

A(t) =
(

−t2 + 2t 2t − 1
−t −t2

)

, B(t) =
(

−t2 −1
2t2 − t −t2 + 2t

)

, (42)
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Fig. 6 The triangulation of the peripheral torus of 63

giving that

A(t)B(1/t)T =
(

−2t + 2 − 2t−1 t + t−2

t2 + t−1 −2t + 2 − 2t−1

)

,

which specializes to the matrix ABT when t = 1.

3.2 The knot 63
The default SnapPy triangulation of the knot 63 with isometry signature
gLLPQccdefffhggaacv_aBBbhas six tetrahedra�1, . . . ,�6 with the peripheral torus
shown in Fig. 6.
The gluing equations of the six edges are

e1 : z1z2z3z4z6 = 1,

e2 : z′
1z

′
2(z

′′
2 )

2z′
4(z

′′
4 )

2z′
6 = 1,

e3 : z′′
1z

′
2z

′
3z

′
5z

′′
6 = 1,

e4 : z′′
1z

′
3z

′
4z

′
5z

′′
6 = 1,

e5 : z′
1z3(z

′′
3 )

2z5(z′′
5 )

2z′
6 = 1,

e6 : z1z2z4z5z6 = 1

and the corresponding gluing equation matrices are

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0
1 1 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
1 1 0 1 0 1
0 1 1 0 1 0
0 0 1 1 1 0
1 0 0 0 0 1
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G′′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 2 0 2 0 0
1 0 0 0 0 1
1 0 0 0 0 1
0 0 2 0 2 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (43)
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Fig. 7 The dual 1-skeleton ofE2

The NZ matrices are

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 0 1
−1 −1 0 −1 0 −1
0 −1 −1 0 −1 0
0 0 −1 −1 −1 0

−1 0 1 0 1 −1
1 1 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
−1 1 0 1 0 −1
1 −1 −1 0 −1 1
1 0 −1 −1 −1 1

−1 0 2 0 2 −1
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with

ABT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 −1 −1 2 0
0 −1 3 2 −4 0
0 −1 2 3 −4 0
0 2 −4 −4 6 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

symmetric. As in Sect. 3.1, we assign an integer to (each oriented edge and) each vertex
of the dual complex according to the abelianization map α : π1(M) � Z. See Fig. 7.
Choosing a lift ẽi of ei as in Fig. 7, we have the table

0 1 2 3
ẽ1 z4 z1z3z6 z2
ẽ2 z′

1z
′′
4 z′′

2z
′
4 z′

2z
′′
4 z′′

2z
′
6

ẽ3 z′′
1z

′
5 z′

2z
′
3z

′′
6

ẽ4 z′′
1z

′
3z

′
4 z′

5z
′′
6

ẽ5 z′′
3z

′′
5z

′
6 z3z5 z′

1z
′′
3z

′′
5

ẽ6 z1z2z4z5z6
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where the (i, k)-entry is the product of shape parameters contributed fromμk ·�̃1, . . . ,μk ·
�̃6 to ẽi. Hence, we have

G(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t t2 t 1 0 t
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 t 0 t 0
t2 t2 0 t2 t2 t2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,G′(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
1 t2 0 t 0 t3

0 t t 0 1 0
0 0 t2 t2 t3 0
t2 0 0 0 0 1
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

G′′(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 t + t3 0 1 + t2 0 0
1 0 0 0 0 t
t2 0 0 0 0 t3

0 0 1 + t2 0 1 + t2 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(44)

and

A(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t t2 t 1 0 t
−1 −t2 0 −t 0 −t3

0 −t −t 0 −1 0
0 0 −t2 −t2 −t3 0

−t2 0 t 0 t −1
t2 t2 0 t2 t2 t2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
−1 t − t2 + t3 0 1 − t + t2 0 −t3

1 −t −t 0 −1 t
t2 0 −t2 −t2 −t3 t3

−t2 0 1 + t2 0 1 + t2 −1
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (45)

giving that
A(t)B(1/t)T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 −2t + 4 − 2t−1 −t2 + t − 1 −1 + t−1 − t−2 t3 + t−2 0
0 −1 + t−1 − t−2 3 t−1 + t−3 −t − 1 − t−1 − t−2 0
0 −t2 + t − 1 t3 + t 3 −t3 − t2 − t−1 − 1 0
0 t2 + t−3 −t2 − t1 − 1 − t−1 −1 − t−1 − t−2 − t−3 2t + 2 + 2t−1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

which specializes to matrix ABT when t = 1.

4 Proofs: twisted 1-loop invariant
In this section, we give proofs of the properties of the twisted 1-loop invariant.

Proof Theorem 1.6 Wewill use the notation ofTheorem1.5which relates theNZmatrices
of two triangulations T and T obtained by a 2–3 Pachnermove shown in Fig. 2. Recall that
a 2–3 Pachner move on T is determined by two tetrahedra �α and �β with a common
face in T . Dividing the bipyramid �α ∪ �β into three tetrahedra �a,�b, and �c as in
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Fig. 2, we obtain a new ideal triangulation T with one additional edge e0. Note that one
can read off relations of shape parameters between T and T directly from Fig. 2:

z′
a = zαzβ , z′

b = 1 − 1/zβ
1 − zα

, z′
c = 1 − 1/zα

1 − zβ
and zα = 1 − 1/z′

b
1 − z′

c
, zβ = 1 − 1/z′

c
1 − z′

b
(46)

with the gluing equation z′
az′

bz
′
c = 1 for the edge e0.

We first consider the flattening part of the definition (22). A combinatorial flattening of
T satisfies the equation f ′

a + f ′
b + f ′

c = 2 (coming from the edge e0) and determines one of
T by

fα = fb + f ′′
c , f ′

α = f ′′
a + fc f ′′

α = fa + f ′′
b ,

fβ = f ′′
b + fc, f ′

β = f ′′
a + fb, f ′′

β = fa + f ′′
c .

(47)

Then a straightforward computation shows that
∏

�
ζ

�f �
aa ζ

�f �
b

b ζ
�f �

cc = ±zα(1 − zα)zβ (1 − zβ )
1 − zαzβ

∏

�
ζ

�f �
α

α ζ
�f �

β

β . (48)

Moreover, combining Equation (37) with (46), one checks that

(∑

�
G�(t)aζ�

a
∑

�
G�(t)bζ�

b
∑

�
G�(t)cζ�

c

)

⎛

⎜
⎜
⎝

1
zαzβ

1
zαzβ − 1 1

zαzβ − 1
0 zβ (1−zα )(1−zαzβ )

1−zβ 0
0 0 zα (1−zβ )(1−zαzβ )

1−zα

⎞

⎟
⎟
⎠

= Q

⎛

⎝

1 0 0
∗

∑

�
G�(t)αζ�

α

∑

�
G�(t)βζ�

β

⎞

⎠

⎛

⎝

1 0 0
0 zαzβ (1 − zα) zα(1 − zα)
0 zβ (1 − zβ ) zαzβ (1 − zβ )

⎞

⎠ ,

where the determinant of the 3× 3 matrix in the left (resp., right) hand side is (1− zαzβ )2

(resp., zα(zα −1)zβ (zβ −1)(1− zαzβ )). Combining this fact with the equation (48) and the
fact that detQ = 1, we conclude that τCS(T , t) = ±τCS(T , t). �

Proof of Theorem 1.7 Using Equation (28) and the fact that a combinatorial flattening of
T (n) is simply given by n copies of that of T , it follows that

τCS(T (n), tn) = det
(

∑

k∈Z

(
∑

�
G(n)�
k diag(ζ�, . . . , ζ�)

)

tnk
)

·
⎛

⎝

N
∏

j=1
ζ
fj
j ζ

′f ′
j

j ζ
′′f ′′

j
j

⎞

⎠

−n

(49)

= det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W0 W1 · · · Wn−2 Wn−1
tnWn−1 W0 · · · Wn−3 Wn−2

...
...

. . .
...

tnW2 tnW3 · · · W0 W1
tnW1 tnW2 · · · tnWn−1 W0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·
⎛

⎝

N
∏

j=1
ζ
fj
j ζ

′f ′
j

j ζ
′′f ′′

j
j

⎞

⎠

−n

(50)

whereWr = ∑

k∈Z
∑

� G�
nk+r diag(ζ

�) tnk for 0 ≤ r ≤ n − 1.
The block matrix in the equation (50) is called a factor block circulant matrix where

the factor is diag(tn, . . . , tn). It is known that a factor block circulant matrix admits a
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block-diagonalization in terms of the representer P(z) = W0 + W1z + · · · + Wn−1zn−1:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W0 W1 · · · Wn−2 Wn−1
tnWn−1 W0 · · · Wn−3 Wn−2

...
...

. . .
...

tnW2 tnW3 · · · W0 W1
tnW1 tnW2 · · · tnWn−1 W0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= V

⎛

⎜
⎜
⎜
⎜
⎝

P(t)
P(ω t)

. . .
P(ωn−1 t)

⎞

⎟
⎟
⎟
⎟
⎠

V−1 (51)

where ω is a primitive n-th root of unity and V is a block Vandermonde matrix

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I I · · · I
H0 H1 · · · Hn−1
H2
0 H2

1 · · · H2
n−1

...
...

...
Hn−1
0 Hn−1

1 · · · Hn−1
n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Hi = ωi diag(t, . . . , t). (52)

We refer to [24] for details. In particular, we have

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W0 W1 · · · Wn−2 Wn−1
tnWn−1 W0 · · · Wn−3 Wn−2

...
...

. . .
...

tnW2 tnW3 · · · W0 W1
tnW1 tnW2 · · · tnWn−1 W0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∏

ωn=1
det P(ω t) (53)

where, by definition,

P(ω t) =
n−1
∑

r=0
Wr(ω t)r

=
n−1
∑

r=0

(
∑

k∈Z

∑

�
G�
nk+rdiag(ζ

�)(ωt)nk
)

(ωt)r

=
n−1
∑

r=0

∑

k∈Z

(
∑

�
G�
nk+rdiag(ζ

�)
)

tnk+rωnk+r

=
∑

k∈Z

(
∑

�
G�
k diag(ζ�)

)

(ω t)k (since ωn = 1).

Combining the above calculations, we obtain

τCS(T (n), tn) =
∏

ωn=1

det
(
∑

k∈Z
∑

� G�
k diag(ζ�) (ω t)k

)

∏N
j=1 ζ

fj
j ζ

′f ′
j

j ζ
′′f ′′

j
j

=
∏

ωn=1
τCS(T ,ω t). (54)

�

Proof of Theorem 1.8 Let R(t) = ∑

� G�(t) diag(ζ�) and Ri(t) denote its i-th row. Since
the sum of all rows of G�(1) = G� is (2, . . . , 2) and ζj + ζ ′

j + ζ ′′
j = 0, the sum R1(1) +

· · · + RN (1) is a zero vector. It follows that det R(1) = 0 and thus τCS(T , 1) = 0.
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Since the determinant is a multilinear map, we have

∂

∂t

∣
∣
∣
∣
t=1

det R(t) =
N

∑

i=1
det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R1(1)
...

∂
∂t

∣
∣
t=1 Ri(t)
...

RN (1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (55)

For i �= N , we exchange the i-th row ∂
∂t

∣
∣
t=1 Ri(t) with the N -th row RN (1) and replace

RN (1) by −R1(1)− · · · −RN−1(1). Then after some elementary row operations, we obtain

∂

∂t

∣
∣
∣
∣
t=1

det R(t) =
N

∑

i=1
det

⎛

⎜
⎜
⎜
⎜
⎝

R1(1)
...

RN−1(1)
∂
∂t

∣
∣
t=1 Ri(t)

⎞

⎟
⎟
⎟
⎟
⎠

= det

⎛

⎜
⎜
⎜
⎜
⎝

R1(1)
...

RN−1(1)
∂
∂t

∣
∣
t=1

∑N
i=1 Ri(t)

⎞

⎟
⎟
⎟
⎟
⎠

. (56)

Comparing the definitions of equation (20) and (22), it suffices to show that
∂
∂t

∣
∣
t=1

∑N
i=1 Ri(t) agrees with 1

2
∑

� C�
λ diag(ζ�) up to linear combination of

R1(1), . . . , RN (1).
Let �̃ be the pre-image of the peripheral torus � under the covering map M̃ → M.

Note that T induces a triangulation of �̃ where vertices and triangles of �̃ correspond
to edges and tetrahedra of T̃ , respectively. For each triangle � of �̃ corresponding to the
tetrahedronμk · �̃j , we assign a corner parameter tk log z�

j to each corner of� according
to the quad type of �j . Then the sum ri(t) of corner parameters around a vertex of �̃

corresponding to the edge ẽi is

ri(t) =
N

∑

j=1

∑

�
(G�(t))ij log z�

j . (57)

It follows that (see Equation (6))

Ri(t) =
(

∂
∂z1 ri(t) · · · ∂

∂zN ri(t)
)

. (58)

We choose any lift λ̃ of λ to �̃. Since α(λ) = 0, λ̃ is still a loop in �̃. Up to homotopy,
we may assume that λ̃ is an edge-path in �̃ so that the surface S bounded by λ̃ and μ · λ̃

is triangulated. Here we view S as a closed cylinder whose boundary is consisted of λ̃ and
μ · λ̃. Let cλ(t) (resp., čλ(t)) be the sum of corner parameters in S that are adjacent (resp.,
not adjacent) to λ̃. By definition, the equation cλ(1) = 0 represents the completeness
equation of λ. Hence,

∑

�
C�

λ diag(ζ�) =
(

∂
∂z1 cλ(1) · · · ∂

∂zN cλ(1)
)

. (59)

Also, since S consists of triangles and ζj + ζ ′
j + ζ ′′

j = 0 for all j, we have

∂

∂zj
(cλ(t) + čλ(t)) = 0. (60)

On the other hand, tcλ(t) is the sum of corner parameters adjacent to μ · λ̃ and not in S. It
follows that the sum of corner parameters around vertices in S\̃λ is given by tcλ(t)+ čλ(t).
Since S\̃λ is a fundamental domain of �, exactly two vertices in S \ λ̃ correspond to a lift
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of ei for each 1 ≤ i ≤ N . It follows that

tcλ(t) + čλ(t) =
N

∑

i=1
(tai + tbi ) ri(t). (61)

for some ai and bi ∈ Z and thus

∂

∂t

∣
∣
∣
∣
t=1

(tcλ(t) + čλ(t)) =
N

∑

i=1
(ai + bi)ri(1) + 2

∂

∂t

∣
∣
∣
∣
t=1

N
∑

i=1
ri(t). (62)

Taking the partial derivative with respect to zj , we obtain

∂

∂t

∣
∣
∣
∣
t=1

∂

∂zj

N
∑

i=1
ri(t) = 1

2
∂

∂zj
∂

∂t

∣
∣
∣
∣
t=1

(tcλ(t) + čλ(t)) − 1
2

N
∑

i=1
(ai + bi)

∂

∂zj
ri(1) (63)

= 1
2

∂

∂zj
cλ(1) − 1

2

N
∑

i=1
(ai + bi)

∂

∂zj
ri(1) , (64)

where the second equation is followed from the equation (60) with the fact tcλ(t) +
čλ(t) = (t − 1)cλ(t) + cλ(t) + čλ(t). Combining the equations (58), (59), and (64), we
obtain the desired result that ∂

∂t
∣
∣
t=1

∑N
i=1 Ri(t) agreeswith 1

2
∑

� C�
λ diag(ζ�) up to linear

combination of R1(1), . . . , RN (1):

∂

∂t

∣
∣
∣
∣
t=1

N
∑

i=1
Ri(t) = 1

2
∑

�
C�

λ diag(ζ�) + 1
2

N
∑

i=1
(ai + bi)Ri(1). (65)

�
Remark 4.1 Rewriting Equation (65) in terms of NZ matrices, we have

Xλ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1(1)
...

xN−1(1)
2 d

dt

∣
∣
∣
t=1

(x1(t) + · · · + xN (t))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

for X = A and B where x1(t), . . . , xN (t) are the rows of X(t).

Proof of Corollary 1.9 The statement is equivalent to

det
(

A(t) diag(ζ ) + B(t) diag(ζ ′′)
) = εtr det

(

A(1/t) diag(ζ ) + B(1/t) diag(ζ ′′)
)

(66)

for some ε = ±1 and some integer r and somechoice of quads ofT .Wemake such a choice
such that B is non-singular. This is always possible; see [6, App.A]. Then, detB(t) �= 0,
sinceB(1) = B. Conjecture 1.4 implies that detB(t) = εtr detB(1/t) �= 0. This, combined
with Theorem 1.2 gives

det
(

A(t) diag(ζ ) + B(t) diag(ζ ′′)
)

= detB(t) det
(

B(t)−1A(t) + diag(ζ ′′/ζ )
)

det(diag(ζ ))

= εtr detB(1/t) det
(

B(1/t)−1A(1/t) + diag(ζ ′′/ζ )
)

det(diag(ζ ))

= εtr det
(

A(1/t) diag(ζ ) + B(1/t) diag(ζ ′′)
)

Note that Theorem 1.2 implies that B(t)−1A(t) = (B(1/t)−1A(1/t))T which is used in the
second equality above. �
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We end this section by giving a proof of Equation (26). Taking the derivative of Equa-
tion (25) at t = 1 and then simplifying the result by Theorem 1.8, we obtain

τCSλ (T (n))
τCSλ (T )

= 1
n

∏

ωn=1
ω �=1

τCS(T , w) (67)

which is equivalent to Equation (26) due to Theorem 4.1 of [23] (explicitly, the ratio
τCSλ (T )/τCSμ (T ) is the cusp shape ofM and τCSλ (T (n))/τCSμ (T (n)) is n times of that).

5 Examples, continued
In this section, which is a continuation of Sect. 3, we compute the twisted 1-loop invariant
of an ideal triangulation using the methods of SnapPy.

5.1 The knot 41
In Sect. 3.1, we already gave the twisted NZ matrices of the 41 knot. Using the same
notation, we now give the remaining data, namely the shapes of the complete hyperbolic
structure and flattenings, which are needed to compute the twisted 1-loop invariant.
The solution for the complete structure is z1 = z2 = 1+√−3

2 . Equations (41) and (42)
give

G(t) diag(ζ ) + G′(t) diag(ζ ′) + G′′(t) diag(ζ ′′) =
(

2ζ1t + ζ ′
1t2 ζ ′

2 + 2ζ2t
ζ ′
1t + 2ζ ′′

1 t2 2ζ ′′
2 t + ζ ′

2t2

)

. (68)

One easily checks that (f1, f2) = (0, 0), (f ′
1 , f

′
2) = (1, 1), and (f ′′

1 , f
′′
2 ) = (0, 0) are a combina-

torial flattening of T . Therefore, the twisted 1-loop invariant of T is given by

τCS(T , t) = ±
det

(

2ζ1t + ζ ′
1t2 ζ ′

2 + 2ζ2t
ζ ′
1t + 2ζ ′′

1 t2 2ζ ′′
2 t + ζ ′

2t2

)

ζ ′
1ζ

′
2

(69)

= ±t(t − 1)
(

t2 − z1z2 + 2z1 + 2z2 − 4
z1z2

t + 1
)

. (70)

Substituting the solution for the complete structure into the above, we obtain

τCS(T , t) = ±t(t − 1)(t2 − 5t + 1)

well defined up to multiplication by a monomial ±tr for some integer r, hence

τCSλ (T ) = ±3 .

5.2 The knot 63
In this section, we give the geometric solution and the flattenings of the triangulation of
the 63 knot to compute its twisted 1-loop invariant, following the notation of Sect. 3.2.
The trace field of the 63 knot is the number field of type [0, 3] and discriminant−11 ·312

given by F = Q[ξ ] where ξ ≈ 1.073− 0.558
√−1 satisfies ξ6 − ξ5 − ξ4 + 2ξ3 − ξ + 1 = 0.

The solution for the complete structure is given exactly

(z1, z2, z3, z4 , z5, z6) = (−ξ2 + ξ ,−ξ2 + 1,−ξ3 + ξ ,−ξ2 + 1,−ξ3 + ξ ,−ξ2 + ξ )

(71)

and approximately by

z1 ≈ 0.23279 + 0.64139 i, z2 ≈ 0.15884 + 1.20014 i, z3 ≈ 0.84116 + 1.20014 i,
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z4 ≈ 0.15884 + 1.20014 i, z5 ≈ 0.84116 + 1.20014 i, z6 ≈ 0.23279 + 0.64139 i.

It is easy to check that (f1, . . . , f6) = (0, 1, 0, 1, 0, 0), (f ′
1 , . . . , f

′
6) = (1, 0, 1, 0, 1, 1), and

(f ′′
1 , . . . , f

′′
6 ) = (0, 0, 0, 0, 0, 0) is a combinatorial flattening of T . Equations (44) and (45)

give that

τCS(T , t) = det
(

G(t) diag(ζ ) + G′(t) diag(ζ ′) + G′′(t) diag(ζ ′′)
)

ζ ′
1ζ2ζ

′
3ζ4ζ

′
5ζ

′
6

=

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ζ1t ζ2t2 ζ3t ζ4 0 ζ6t
ζ ′
1 ζ ′′

2 t + ζ ′
2t2 + ζ ′′

2 t3 0 ζ ′′
4 + ζ ′

4t + ζ ′′
4 t2 0 ζ ′

6t
3

ζ ′′
1 ζ ′

2t ζ ′
3t 0 ζ ′

5 ζ ′′
6 t

ζ ′′
1 t2 0 ζ ′

3t2 ζ ′
4t2 ζ ′

5t
3 ζ ′′

6 t
3

ζ ′
1t2 0 ζ ′′

3 + ζ3t + ζ ′′
3 t2 0 ζ ′′

5 + ζ5t + ζ ′′
5 t

2 ζ ′
6

ζ1t2 ζ2t2 0 ζ4t2 ζ5t2 ζ6t2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

ζ ′
1ζ2ζ

′
3ζ4ζ

′
5ζ

′
6

Substituting the solution for the complete structure into the above, we obtain

τCS(T , t) = (t − 1)t8
(

44 − 15ξ − 15ξ2 + 34ξ3 − 19ξ5

+ (t + t−1)(−31 + 7ξ + 7ξ2 − 10ξ3 + 3ξ5)

+ (t2 + t−2)(15 − 3ξ − 3ξ2 + 2ξ3 + ξ5) − 5(t3 + t−3) + (t4 + t−4)
)

≈ t4(−1.000 + 6.000t − 12.805t2 + 33.472t3 − 85.242t4

+ 85.242t5 − 33.472t6 + 12.805t7 − 6.000t8 + 1.000t9).

up to multiplication by a monomial ±tr for some integer r, hence

τCSλ (T ) = ±(4 − 7ξ − 7ξ2 + 18ξ3 − 11ξ5) ≈ ±15.8506 .
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