
H. Bachmann, A. Burmester Res Math Sci (2023) 10:35
https://doi.org/10.1007/s40687-023-00398-8

RESEARCH

Combinatorial multiple Eisenstein series
Henrik Bachmann1 and Annika Burmester2*

*Correspondence:
aburmester@math.uni-
bielefeld.de
2Faculty of Mathematics,
Bielefeld University, Bielefeld,
Germany
Full list of author information is
available at the end of the article

Abstract

We construct a family of q-series with rational coefficients satisfying a variant of the
extended double shuffle equations, which are a lift of a givenQ-valued solution of the
extended double shuffle equations. We call these q-series combinatorial (bi-)multiple
Eisenstein series, and in depth one they coincide with (classical) Eisenstein series.
Combinatorial multiple Eisenstein series can be seen as an interpolation between the
givenQ-valued solution of the extended double shuffle equations (as q → 0) and
multiple zeta values (as q → 1). In particular, they are q-analogues of multiple zeta
values closely related to modular forms. Their definition is inspired by the Fourier
expansion of multiple Eisenstein series introduced by Gangl-Kaneko-Zagier. Our explicit
construction is done on the level of their generating series, which we show to be a
so-called symmetril and swap invariant bimould.
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1 Introduction
Multiple zeta values are defined for r � 1 and k1 � 2, k2, . . . , kr � 1 by

ζ (k1, . . . , kr) =
∑

m1>···>mr>0

1
mk1

1 · · ·mkrr
. (1.1)

We call the number k1 +· · ·+ kr itsweight and r its depth. ByZ , we denote theQ-algebra
of all multiple zeta values. There are two ways of expressing the product of multiple zeta
values, and both can be written in terms of quasi-shuffle products ( [22]). The relations
obtained from the two product expressions, together with some regularization process,
are referred to as the extended double shuffle relations of multiple zeta values ( [24]).
Conjecturally these give all algebraic relations among multiple zeta values. Multiple zeta
values have various different connections tomodular forms. For example, in the case r = 1
multiple zeta values are the Riemann zeta values, which also appear as the constant termof
Eisenstein series. In [20] the authors defined double Eisenstein series, which have double
zeta values ((1.1) in the case r = 2) as their constant terms, and which in some sense give a
natural depth two version of Eisenstein series. This raised the question if these objects also
satisfy some of the extended double shuffle relations. Partial answers for this were given
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in [20] and in arbitrary depths for so-called multiple Eisenstein series in [1,2] and [9]. In
this work, we present a new approach and lift Eisenstein series with rational coefficients in
a purely combinatorial1 way to q-series which we call combinatorial multiple Eisenstein
series. This provides a new framework for relatingmodular forms andmultiple zeta values.
We discuss the relations satisfied by these q-series and give an interpretation of them as
a variant of the extended double shuffle relations.
We first recall the extended double shuffle relations for multiple zeta values before

explaining how the combinatorial multiple Eisenstein series fit into the picture. Consider
the alphabet Lz = {zk | k � 1} and let H1 = Q〈Lz〉 be the free algebra over Lz . Define a
product on QLz by zi � zj = zi+j for all i, j � 1. The corresponding quasi-shuffle product
(3.1) ∗ = ∗� is usually called harmonic or stuffle product. Let H0 be the subalgebra of H1

generated by all words not starting in z1. Due to the usual power series multiplication, the
linear map2 defined on the generators by

ζ : H0 −→ Z
zk1 . . . zkr �−→ ζ (k1, . . . , kr)

(1.2)

gives an algebra homomorphism from (H0, ∗) toZ . This homomorphism can be extended
to a homomorphism ζ ∗ : H1 → Z , so we obtain elements ζ ∗(k1, . . . , kr) ∈ R for all
k1, . . . , kr � 1 called the stuffle regularized multiple zeta values (see [24]). In the case
k1 � 2 these coincide with themultiple zeta values (1.1) and they are uniquely determined
by this property together with ζ ∗(1) = 0 and the fact that theQ-linear map ζ ∗ : H1 → Z
defined on the generators by zk1 . . . zkr �→ ζ ∗(k1, . . . , kr) is an algebra homomorphism
from (H1, ∗) to Z .
Next, consider the alphabet given by the two letters Lxy = {x, y} and write H = Q〈Lxy〉.

Define the product a � b = 0 for all a, b ∈ QLxy, then the corresponding quasi-shuffle
product ∗� is the shuffle product, denoted by �. Via the identification zk = xk−1y we
can view H1 and H0 as subalgebras of the shuffle algebra (H,�), we have H1 = Q1 + Hy
and H0 = Q1 + xHy. Due to the iterated integral expression of multiple zeta values, one
obtains that the map (1.2) gives an algebra homomorphism from (H0,�) to Z . There is
also a unique extension of the map ζ to an algebra homomorphism ζ� : (H1,�) → Z
given by shuffle regularized multiple zeta values and satisfying ζ�(1) = 0. These two
regularizations differ and their difference can be described explicitly (see [24, Theorem
1]). For example, we have in depth two for all k1, k2 � 1

ζ ∗(k1)ζ ∗(k2) = ζ ∗(k1, k2) + ζ ∗(k2, k1) + ζ ∗(k1 + k2)

=
k1+k2−1∑

j=1

((
j − 1
k1 − 1

)
+

(
j − 1
k2 − 1

))
ζ ∗(j, k1 + k2 − j) + δk1+k2 ,2ζ

∗(2) ,

(1.3)

1In the sense thatweworkwith formal q-serieswithout any convergence issues in contrast toworkingwith holomorphic
functions given as sums over lattice points.
2By abuse of notation, we use the same symbol for the maps as well as for the objects. From the context, it should
always be clear if we are talking about the maps or the objects.
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where δ denotes the Kronecker delta. We call these equations obtained by comparing
products of shuffle- and stuffle-regularizedmultiple zeta values the extendeddouble shuffle
equations (see Definition 3.5 for a precise definition in terms of generating series).
Beside the multiple zeta values there are other objects satisfying the extended dou-

ble shuffle equations. In particular, it is known that there exist (non-trivial) ratio-
nal3 solutions to the extended double shuffle equations, i.e. numbers β(k1, . . . , kr) ∈ Q

for k1 � 2, k2, . . . , kr � 1 and corresponding stuffle and shuffle regularized maps
β∗,β� : H1 → Q. In this article, we focus on the stuffle regularized objects and thus
we write by abuse of notation β = β∗. We restrict to rational solutions, which in depth
one for even k � 2 are given by

β(k) = ζ (k)
(2π i)k

= − Bk
2k !

(1.4)

and for odd k � 1 by β(k) = 0. These rational numbers also appear as the constant terms
in the Fourier expansion of the Eisenstein series, defined for k � 1 by

G(k) = β(k) + 1
(k − 1)!

∑

d,m�1
dk−1qmd ∈ Q�q� . (1.5)

For even k � 4 these are, when viewed as functions in τ ∈ H = {τ ∈ C | Im(τ ) > 0}
with q = e2π iτ , modular forms of weight k for the full modular group. In our context,
they can also be seen as interpolations between ζ (k) and β(k), i.e. the depth one objects
of the two solutions of the extended double shuffle equations mentioned above. More
precisely, we have limq→0 G(k) = β(k) and limq→1(1 − q)kG(k) = ζ (k), where the latter
is a consequence of (2.4).
In this paper, we generalize this idea to arbitrary depths and lift a rational solution β

satisfying (1.4), to objects4 G(k1, . . . , kr) ∈ Q�q�, which we call combinatorial multiple
Eisenstein series. In the case r = 1 they are exactly given by the Eisenstein series (1.5). The
combinatorial multiple Eisenstein series interpolate between ζ ∗ and β in arbitrary depths,
i.e. we have for k1, . . . , kr � 1 (Proposition 6.17)

lim
q→0

G(k1, . . . , kr) = β(k1, . . . , kr),

lim
q→1

∗(1 − q)k1+···+krG(k1, . . . , kr) = ζ ∗(k1, . . . , kr) ,
(1.6)

where the lim∗ indicates that we need to do some regularization in the case k1 = 1 (see
(6.7)). The construction of the combinatorial multiple Eisenstein series depends on the
choice of the rational solution to the extended double shuffle equations β , thoughmost of
their properties are independent of this choice as we have already seen in (1.6). Moreover,
the combinatorial multiple Eisenstein series can also be viewed as a map G : H1 → Q�q�
satisfying forw, v ∈ H1 an analogue of the extended double shuffle equations. For example

3We callQ-valued solutions in the following also just rational solutions, which should not get confused with solutions
given by rational functions.
4In particular, the G(k1 , . . . , kr ) depend on the choice of the non-unique rational solution β , i.e. we should write
Gβ (k1 , . . . , kr ). But to keep notations cleaner we omit the β .
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as an analogue of (1.3) we have for k1, k2 � 1 (Proposition 6.7)

G(k1)G(k2) = G(k1, k2) + G(k2, k1) + G(k1 + k2)

=
k1+k2−1∑

j=1

((
j − 1
k1 − 1

)
+

(
j − 1
k2 − 1

))
G(j, k1 + k2 − j) + RG(k1, k2) , (1.7)

where the q-series RG(k1, k2) is given by

RG(k1, k2) =
⎧
⎨

⎩

(k1+k2−3)!
(k1−1)!(k2−1)!q

d
dqG(k1 + k2 − 2) k1 + k2 � 3

G(2) k1 + k2 = 2
. (1.8)

Observe thatwehave limq→0 RG(k1, k2) = δk1+k2 ,2β(2) and limq→1(1−q)k1+k2RG(k1, k2) =
δk1+k2 ,2ζ (2). In particular, the formula (1.7) gives an explicit expression for q d

dqG(k) in
terms of combinatorial double Eisenstein series by choosing k2 = 2. This actually works
for arbitrary depths, for any w ∈ H1 we have (Corollary 6.31)

q
d
dq

G(w) = G(z2 ∗ w − z2 � w) .

This is a nice example for the fact that derivatives are an obstacle for the combinatorial
multiple Eisenstein series satisfying the extended double shuffle relations. The expression
G(z2 ∗w − z2�w) does not vanish in general, but it is exactly given by a derivative. So in
particular, its constant term (and also its limit for q → 1) indeed vanishes.
In order todealwithderivatives and to include them into the algebraic setup,we consider

objects depending on double indices. More precisely, we introduce combinatorial bi-
multiple Eisenstein series G

(k1 ,...,kr
d1 ,...,dr

) ∈ Q�q� defined for k1, . . . , kr � 1 and d1, . . . , dr � 0.
The sum k1 + · · · + kr + d1 + · · · + dr is called its weight. The combinatorial multiple
Eisenstein series are given in the special case

G(k1, . . . , kr) = G
(
k1, . . . , kr
0, . . . , 0

)
.

In general one can think of the combinatorial bi-multiple Eisenstein series as some kind of
‘partial derivatives’ of the combinatorial multiple Eisenstein series, since we have (Propo-
sition 6.29)

q
d
dq

G
(
k1, . . . , kr
d1, . . . , dr

)
=

r∑

i=1
kiG

(
k1, . . . , ki + 1, . . . , kr
d1, . . . , di + 1, . . . , dr

)
.

With this the extra term in (1.8) can be written as RG(k1, k2) = (k1+k2−2
k1−1

)
G

(k1+k2−1
1

)
. For

example, as an analogue of the double shuffle equation (which also holds for the rational
solution β)

ζ (2, 1)ζ (3) = ζ (3, 2, 1) + ζ (2, 3, 1) + ζ (2, 1, 3) + ζ (5, 1) + ζ (2, 4)

= 5ζ (3, 2, 1) + 2ζ (2, 3, 1) + ζ (2, 1, 3) + 2ζ (3, 1, 2) + 9ζ (4, 1, 1) + ζ (2, 2, 2)
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the combinatorial multiple Eisenstein series satisfy

G(2, 1)G(3) = +G(3, 2, 1) + G(2, 3, 1) + G(2, 1, 3) + G(5, 1) + G(2, 4)

= 5G(3, 2, 1) + 2G(2, 3, 1) + G(2, 1, 3) + 2G(3, 1, 2) + 9G(4, 1, 1)

+ G(2, 2, 2) + 3G
(
4, 1
1, 0

)
+ 3G

(
3, 2
0, 1

)
+ G

(
2, 3
0, 1

)
. (1.9)

The additional terms 3G
(4,1
1,0

)+ 3G
(3,2
0,1

)+G
(2,3
0,1

)
in (1.9) vanish for both limits q → 0 and

q → 1 (after multiplying with (1 − q)6).
In some special cases, the combinatorial bi-multiple Eisenstein series are modular

(Proposition 6.13) and the same holds for some linear combinations (Proposition 6.19).
But in general, the combinatorial bi-multiple Eisenstein series do not satisfy the modular-
ity condition and it is not clear which linear combinations of them do.
In contrast to the case of multiple zeta values, we do not describe the relations of the

combinatorial bi-multiple Eisenstein series in terms of two different product expressions.
Instead, we consider a bi-version of the stuffle product and a second family of relations
given by the invariance under a certain involution. This involution has a natural origin
coming from the theory of partitions ( [1,2,4,12]) and it can be described nicely in terms of
generating series. Therefore, we work entirely with generating series for the construction
of the combinatorial bi-multiple Eisenstein series. For r � 1 these are denoted by

G

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

k1 ,...,kr�1
d1 ,...,dr�0

G
(
k1, . . . , kr
d1, . . . , dr

)
Xk1−1
1 · · ·Xkr−1

r
Y d1
1
d1!

· · · Y
dr
r
dr !

,

and in general a collection of such generating series for all r is called a bimould (Defi-
nition 3.7). To describe the bi-analogue of the stuffle product we consider the alphabet
Lbiz = {zkd | k � 1, d � 0} and define the quasi-shuffle product ∗ = ∗� on Q〈Lbiz 〉 by
zk1d1 � zk2d2 = zk1+k2

d1+d2 . Then we call the bimould G symmetril (Definition 3.8) if the linear
map, defined on the generators by

zk1d1 . . . zkrdr �→ G
(
k1, . . . , kr
d1, . . . , dr

)
,

gives an algebra homomorphism from (Q〈Lbiz 〉, ∗) to Q�q�. The bimould G is called swap
invariant (Definition 3.10), if it satisfies for all r � 1 the functional equation

G

(
X1, . . . , Xr
Y1, . . . , Yr

)
= G

(
Y1 + · · · + Yr, Y1 + · · · + Yr−1, . . . , Y1 + Y2, Y1

Xr, Xr−1 − Xr, . . . , X2 − X3, X1 − X2

)
,

which implies linear relations among combinatorial bi-multiple Eisenstein series in homo-
geneous weight. The main result of this work is the following.

Theorem (Theorem 6.5, Proposition 6.17) Let β be a Q-valued solution to the extended
double shuffle equations, which is in depth one given by (4.1). Then there exists a Q�q�-
valued bimouldG, which is symmetril, swap invariant and whose coefficients in depth one
are the Eisenstein series (1.5), i.e.

G

(
X
0

)
=

∑

k�1
G(k)Xk−1.
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The coefficients of the bimould G interpolate between (stuffle regularized) multiple zeta
values and the given Q-valued solution β , i.e., they satisfy (1.6).

From this theoremwe get that the combinatorial multiple Eisenstein seriesG(k1, . . . , kr)
satisfy the stuffle product formula. By combining symmetrility and swap invariance ofG,
we get that the combinatorial (bi-)multiple Eisenstein series also satisfy an analogue of
the shuffle product formula. This is made explicit in depth two in Proposition 6.7.
The constructionof the bimouldG is inspiredby the calculationof theFourier expansion

of themultiple Eisenstein seriesG introduced byGangl-Kaneko-Zagier ( [2,20]).We recall
this calculation (Theorem2.1) in Sect. 2. The following diagramprovides a rough overview
of how the building blocks of our constructions (right-hand side) are related to the classical
building blocks of multiple Eisenstein series (left-hand side).

G (2.1)

ζ (1.1)

(2.7)
G = ĝ∗ × ζ

ĝ∗ (2.8)

�k1 ,...,kr (2.6)

ĝ (2.5)

Thm. 2.1

�k (2.2) Lm (5.1)

G Def. 6.4

Thm. 2.2 b Def. 4.6

G = g∗ × b

g∗ Def. 6.3

Lm Def. 6.1

g Def. 5.1

In particular, the bimouldG is constructed out of four bimoulds b, g∗, Lm and g, whose
constructions are all inspired by the corresponding objects/statements in Sect. 2.We show
that the bimoulds g∗ and b are symmetril (Proposition 6.22, 4.7), hence the same holds for
the bimould G (by Proposition 3.9). On the other hand, the bimould G is a sum of swap
invariant bimouldsGj (Theorem 6.26, Proposition 6.27), thusG is also swap invariant.
By (1.6) combinatorial multiple Eisenstein series can also be interpreted as q-analogues

of multiple zeta values. Our notion of weight is compatible with the weight of quasi-
modular forms, and both product expressions of the combinatorial bi-multiple Eisenstein
series (given in Proposition 6.7 for depth two) are homogeneous in weight. As far as
the authors know, combinatorial multiple Eisenstein series provide the first model of
q-analogues of multiple zeta values with this property. In particular, this might give a
positive answer to a question raised byOkounkov in [26], since the spaceqMZV introduced
there is exactly spanned by all G(k1, . . . , kr) with k1, . . . , kr � 2. Moreover, we show
(Proposition 6.15) that the combinatorial bi-multiple Eisenstein series span the space of
q-analogues of multiple zeta values Zq considered5 in [1,2,4] and [7].
Conjecturally all algebraic relations among combinatorial bi-multiple Eisenstein are

consequences of combining the symmetrility and the swap invariance (Remark 6.11).
Since these relations are all in homogeneous weight, we, in particular, expect that the
combinatorial bi-multiple Eisenstein are graded by weight.
In [5] the authors introduce the algebra of formal multiple Eisenstein series Gf , which

is given by (Q〈Lbiz 〉, ∗) modulo the relations coming from the swap invariance. In this
algebra one can also define a projection to the space of formal multiple zeta values, which

5In [1] and [2] this space is denoted by BD.
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can be seen as a formal version of (1.6). Further it is shown, that the sl2-action from
quasi-modular forms can be extended to this algebra. By the abovementioned conjecture,
the algebra of combinatorial bi-multiple Eisenstein series Gbi (Definition 6.10) should be
isomorphic to the algebra of formal multiple Eisenstein series and therefore Gbi should
also be an sl2-algebra.
A similar formal algebraic approach is used independently in the thesis of the second

named author [14]. Here another quasi-shuffle algebra is considered together with an
involution, which is of a simpler shape than the operator swap. It is shown in [15, Theorem
7.10] that this weight-graded algebra is isomorphic to the weight-graded algebra of formal
multiple Eisenstein series. The description in terms of this other quasi-shuffle algebra
seems to be a good choice to proceed as in [27], which means giving a generalization of
the pro-unipotent affine group scheme DM and the double shuffle Lie algebra dm0.
Finally we remark that the name of the combinatorial multiple Eisenstein series was

inspired by the combinatorial double Eisenstein series Zk1 ,k2 introduced in [20, (17)].
These differ slightly from our G(k1, k2), but they can be related using [8, Proposition 2.5]
and adding the constant term β(k1, k2). Combinatorial multiple Eisenstein series might
also have a connection to iterated integrals of quasi-modular forms ( [25]).

2 Multiple Eisenstein series
In this section, we recall multiple Eisenstein series and the calculation of their Fourier
expansion.Details canbe found in [1,2], and [9].This gives amotivationandanexplanation
for our construction of combinatorial multiple Eisenstein series in Sect. 6.
For k1 � 3, k2, . . . , kr � 2 and τ ∈ H themultiple Eisenstein series are defined by

Gk1 ,...,kr (τ ) :=
∑

λ1	···	λr	0
λi∈Zτ+Z

1
λ
k1
1 . . . λ

kr
r

, (2.1)

where the order 	 on the lattice Zτ + Z is defined bym1τ + n1 	 m2τ + n2 iffm1 > m2
orm1 = m2 ∧ n1 > n2. Since Gk1 ,...,kr (τ + 1) = Gk1 ,...,kr (τ ) the multiple Eisenstein series
possess a Fourier expansion, i.e. an expansion in q = e2π iτ , which was calculated in [20]
for the r = 2 case and for arbitrary depth by the first author ( [2]). In depth one we have
for k � 3

Gk (τ ) =
∑

λ∈Zτ+Z
λ	0

1
λk

=
∑

m>0∨ (m=0∧n>0)

1
(mτ + n)k

= ζ (k) +
∑

m>0

∑

n∈Z

1
(mτ + n)k

︸ ︷︷ ︸
=:�k (mτ )

.

For even k � 4 these are just the classical Eisenstein series, which are modular forms
for the full modular group. When k is even, these differ from the Eisenstein series (1.5)
defined in the introduction just by a factor of (2π i)k .We refer to�k (τ ) as themonotangent
function ( [10]), which satisfies for k � 2 the Lipschitz formula

�k (τ ) =
∑

n∈Z

1
(τ + n)k

= (−2π i)k

(k − 1)!
∑

d>0
dk−1qd . (2.2)
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This gives

Gk (τ ) = ζ (k) +
∑

m>0
�k (mτ ) = ζ (k) + (−2π i)k

(k − 1)!
∑

m>0
d>0

dk−1qmd =: ζ (k) + (−2π i)kg(k) .

Here the g(k) are the generating series of the divisor-sums and for higher depths multiple
versions of these q-series appear, which are defined for k1, . . . kr � 1 by

g(k1, . . . , kr) =
∑

m1>···>mr>0
n1 ,...,nr>0

nk1−1
1

(k1 − 1)!
. . .

nkr−1
r

(kr − 1)!
qm1n1+···+mrnr ∈ Q�q� . (2.3)

These q-series were studied in detail in [2,6] and they can be seen as q-analogues of
multiple zeta values since one can show that for k1 � 2

lim
q→1

(1 − q)k1+···+kr g(k1, . . . , kr) = ζ (k1, . . . , kr) . (2.4)

In the Fourier expansion of (multiple) Eisenstein series, the q-series g always appear
together with a power of −2π i and therefore we set for k1, . . . , kr � 1

ĝ(k1, . . . , kr) := (−2π i)k1+···+kr g(k1, . . . , kr) ∈ Q[π i]�q� .

A multiple version of Gk (τ ) = ζ (k) + ĝ(k) is given by the following.

Theorem 2.1 (r = 1, 2 [20], r � 1 [2]) For k1 � 3, k2, . . . , kr � 2 there exist explicit
α
k1 ,...,kr
l1 ,...,lr ,j ∈ Z, such that for q = e2π iτ we have

Gk1 ,...,kr (τ ) = ζ (k1, . . . , kr) +
∑

0<j<r
l1+···+lr=k1+···+kr

l1�2,l2 ,...,lr�1

α
k1,...,kr
l1 ,...,lr ,j ζ (l1, . . . , lj)ĝ(lj+1, . . . , lr )

+ ĝ(k1, . . . , kr) .

In particular,Gk1 ,...,kr (τ ) = ζ (k1, . . . , kr)+∑
n>0 ak1 ,...,kr (n)qn for some ak1 ,...,kr (n) ∈ Z[π i].

We sketch the proof of Theorem 2.1 in the following and then give an explicit example
at the end of the section. First, observe that for k1, . . . , kr � 2 we have by the Lipschitz
formula (2.2), that the q-series ĝ can be written as an ordered sum over monotangent
functions

ĝ(k1, . . . , kr) =
∑

m1>···>mr>0
�k1 (m1τ ) · · · �kr (mrτ ) . (2.5)

In general themultiple Eisenstein series can be written as ordered sums overmultitangent
functions ( [10]), which are for k1, . . . , kr � 2 and τ ∈ H defined by

�k1 ,...,kr (τ ) :=
∑

n1>···>nr
ni∈Z

1
(τ + n1)k1 · · · (τ + nr)kr

. (2.6)
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These functions were originally introduced by Ecalle and then studied in detail by Bouillot
in [10]. To write Gk1 ,...,kr (τ ) in terms of these functions, one splits the summation in the
definition (2.1) into 2r parts, corresponding to the different cases where eithermi = mi+1
ormi > mi+1 for λi = miτ + ni and i = 1, . . . , r (λr+1 = 0). Then one can check that the
multiple Eisenstein series can be written as

Gk1 ,...,kr (τ ) =
r∑

j=0
ĝ∗(k1, . . . , kj)ζ (kj+1, . . . , kr) , (2.7)

where the q-series ĝ∗ are given as ordered sums over multitangent functions by

ĝ∗(k1, . . . , kr) :=
∑

1�j�r
0=r0<r1<···<rj−1<rj=r

m1>···>mj>0

j∏

i=1
�kri−1+1 ,...,kri (miτ ) . (2.8)

Further, one can show ( [1, Construction 6.7]) that the q-series ĝ∗ satisfy the harmonic
product formula, e.g. ĝ∗(k1)ĝ∗(k2) = ĝ∗(k1, k2)+ ĝ∗(k2, k1)+ ĝ∗(k1+k2).Wewill generalize
this construction later in termsof generating series (Lemma6.21) and thenuse an analogue
of (2.7) as the definition for the combinatorial multiple Eisenstein series. To obtain the
statement in Theorem 2.1 one then uses the following theorem.

Theorem 2.2 [10, Theorem 6] For k1, . . . , kr � 2 with k = k1 +· · ·+ kr the multitangent
function can be written as

�k1 ,...,kr (τ ) =
∑

1�j�r
l1+···+lr=k

(−1)l1+···+lj−1+kj+k
∏

1�i�r
i �=j

(
li − 1
ki − 1

)
ζ (l1, . . . , lj−1)�lj (τ )

ζ (lr , lr−1, . . . , lj+1) .

Moreover, the terms containing �1(τ ) vanish.

This theorem can be proven by using partial fraction decomposition (see Example 2.3)
and then using the shuffle product to show that the coefficient of �1(τ ) vanishes.
Applying Theorem 2.2 to (2.8), we see by (2.5), that the ĝ∗ can be written as a Z-linear

combination of ĝ . This proves Theorem 2.1, since one can also show that all the appearing
multiple zeta values have the correct depth.

Example 2.3 We give one explicit example in depth two. In this case, (2.7) reads

Gk1 ,k2 (τ ) = ζ (k1, k2) + ĝ∗(k1)ζ (k2) + ĝ∗(k1, k2) ,

where ĝ∗(k1) = ∑
m1>0 �k1 (m1τ ) = ĝ(k1) and

ĝ∗(k1, k2) =
∑

m1>0
�k1 ,k2 (m1τ ) +

∑

m1>m2>0
�k1 (m1τ )�k2 (m2τ )

=
∑

m1>0
�k1 ,k2 (m1τ ) + ĝ(k1, k2) .
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Considering the special case (k1, k2) = (3, 2) one sees by partial fraction decomposition

�3,2(τ ) =
∑

n1>n2

1
(τ + n1)3(τ + n2)2

=
∑

n1>n2

(
1

(n1 − n2)2(τ + n1)3
+ 2

(n1 − n2)3(τ + n1)2
+ 3

(n1 − n2)4(τ + n1)

)

+
∑

n1>n2

(
1

(n1 − n2)3(τ + n2)2
− 3

(n1 − n2)4(τ + n2)

)
= 3ζ (3)�2(τ ) + ζ (2)�3(τ ) ,

and therefore ĝ∗(3, 2) = 3ζ (3)ĝ(2) + ζ (2)ĝ(3) + ĝ(3, 2). In total we get

G3,2(τ ) = ζ (3, 2) + 3ζ (3)ĝ(2) + 2ζ (2)ĝ(3) + ĝ(3, 2) .

3 Moulds, bimoulds and quasi-shuffle products
First,we recall somebasic facts onquasi-shuffleproducts ( [11,22,23]). LetLbe a countable
set whose elements we refer to as letters. A monic monomial in the non-commutative
polynomial ring Q〈L〉 is called a word and we denote the empty word by 1. Suppose
we have a commutative and associative product � on the vector space QL. Then the
quasi-shuffle product ∗� on Q〈L〉 is defined as the Q-bilinear product, which satisfies
1 ∗� w = w ∗� 1 = w for any word w ∈ Q〈L〉 and

aw ∗� bv = a(w ∗� bv) + b(aw ∗� v) + (a � b)(w ∗� v) (3.1)

for any letters a, b ∈ L and words w, v ∈ Q〈L〉. This gives a commutative Q-algebra
(Q〈L〉, ∗�), which is called quasi-shuffle algebra. Moreover, one can equip this algebra
with the structure of a Hopf algebra [22, Section 3], where the coproduct is given for
w ∈ Q〈L〉 by the deconcatenation coproduct


(w) =
∑

uv=w
u ⊗ v . (3.2)

A well-known example is the shuffle Hopf algebra. Define the product onQL by a� b = 0
for all a, b ∈ L. Then the corresponding quasi-shuffle product ∗� on Q〈L〉 is the shuffle
product, usually denoted by�. The antipode in the shuffle Hopf algebra is given by

S(a1 . . . ar) = (−1)rar . . . a1, a1, . . . , ar ∈ L,

so the defining property of S yields the following relations in Q〈L〉.

Lemma 3.1 For any non-empty word w = a1 . . . ar in Q〈L〉, it is
r∑

i=0
(−1)iaiai−1 . . . a1 � ai+1ai+2 . . . ar = 0.

To work with quasi-shuffle products it is convenient to consider generating series. For
this, we will introduce the notion of moulds and bimoulds, which were introduced by
Ecalle. We refer to the article [11] for a good overview on mould theory and a thorough
list of reference for the original works of Ecalle.
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Definition 3.2 Let A be a unital Q-algebra. A family Z = (Z(r))r�0 with Z(0) ∈ A and
Z(r) ∈ A�X1, . . . , Xr� for r � 1 is called a mould with values inA.

Given amouldZ = (Z(r))r�0 we call theZ(r) the depth r part ofZ. Allmoulds considered
in this article satisfy Z(0) = 1, so we usually just give the depth r � 1 parts when defining
moulds. Since the depth is clear from the number of variables we just write Z(X1, . . . , Xr)
instead of Z(r)(X1, . . . , Xr ) in the following. Let Z = (Z(r))r�0 be anA-valued mould, then
we define for r � 1 and k1, . . . , kr � 1 the elements z(k1, . . . , kr) ∈ A as the coefficients
of its depth r part

Z(X1, . . . , Xr ) =:
∑

k1 ,...,kr�1
z(k1, . . . , kr)Xk1−1

1 . . .Xkr−1
r . (3.3)

Consider the set of letters Lz = {zk | k � 1}. Then for any commutative and associative
product � on QLz we obtain a quasi-shuffle algebra (Q〈Lz〉, ∗�).

Definition 3.3 LetA be an unitalQ-algebra, Z anA-valued mould with coefficients z as
defined in (3.3), and � a commutative and associative product on QLz .

(i) The mould Z is called �-symmetril if the coefficient map ϕZ : Q〈Lz〉 → A given on
the generators by ϕZ(1) = 1 and

zk1 . . . zkr �→ z(k1, . . . , kr)

is an algebra homomorphism from (Q〈Lz〉, ∗�) toA.
(ii) If � is given by zk1 � zk2 = zk1+k2 , then we call a �-symmetril mould symmetril.
(iii) If the product� is given by zk1 �zk2 = 0, thenwe call a�-symmetrilmould symmetral.

Let Z1 and Z2 be moulds with values inA. The product Z1 × Z2 is the mould given by

(Z1 × Z2)(X1, . . . , Xr ) =
r∑

j=0
Z1(X1, . . . , Xj)Z2(Xj+1, . . . , Xr ) .

Since we usually have Z(0) = 1, the first term (j = 0) in the above sum is simply given
by Z2(X1, . . . , Xr) and the last term (j = r) is given by Z1(X1, . . . , Xr ). Equipped with this
product the space of all (A-valued) moulds becomes a non-commutative Q-algebra.

Definition 3.4 (i) For a mould Z we define the mould Z� by

Z�(X1, . . . , Xr ) = Z(X1 + · · · + Xr, . . . , X1 + X2, X1).

(ii) Let F = ∑
r�0 arTr ∈ A�T� be a formal power series with coefficients inA. We can

view F as a mould with values inA, which we also denote by F and which is in depth
r � 0 defined by F (r)(X1, . . . , Xr) = ar . We call such a mould a constant mould.
Also notice that the product of two constant moulds is exactly the constant mould
coming from the product of their power series.

(iii) For anA-valuedmould Z with coefficients (3.3) we define the constant mould 
Z by


Z :=
∞∑

r=0
γ Z
r Tr := exp

( ∞∑

n=2

(−1)n

n
z(n)Tn

)
. (3.4)
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(iv) For anA-valued mould Z define the mould

Zγ := Z� × 
Z,

i.e. explicitly we have

Zγ (X1, . . . , Xr) =
r∑

j=0
γ Z
j Z(X1 + · · · + Xr−j , . . . , X1 + X2, X1) .

Moreover, we define its coefficients zγ (k1, . . . , kr) ∈ A by

Zγ (X1, . . . , Xr) =:
∑

k1 ,...,kr�1
zγ (k1, . . . , kr)Xk1−1

1 . . .Xkr−1
r .

Conversely, the mould Z can also be written in terms of Zγ

Z(X1, . . . , Xr ) =
r∑

j=0
γ̃ Z
j Zγ (Xr, Xr−1 − Xr, . . . , Xj+1 − Xj+2) , (3.5)

where (by using [23, (32)] for the last equation) we have

∞∑

k=0
γ̃ Z
k Tk :=

∞∑

k=0
z(1, . . . , 1︸ ︷︷ ︸

k

)Tk = exp
( ∞∑

n=2

(−1)n+1

n
z(n)Tn

)
. (3.6)

Definition 3.5 Let A be a unital Q-algebra and Z an A-valued mould. We say that the
mould Z satisfies the extended double shuffle equations if the mould Z is symmetril and
the mould Zγ is symmetral.

Example 3.6 For a mould Z, the extended double shuffle equations in depth two are

Z(X1)Z(X2) = Z(X1, X2) + Z(X2, X1) + Z(X1) − Z(X2)
X1 − X2

,

Zγ (X1)Zγ (X2) = Zγ (X1, X2) + Zγ (X2, X1)

= Z(X1 + X2, X1) + Z(X1 + X2, X2) + γ Z
2 .

(3.7)

Themotivating example for these equations is themould of (stuffle regularized)multiple
zeta values z, whose depth r part is defined by

z(X1, . . . , Xr) =
∑

k1 ,...,kr�1
ζ ∗(k1, . . . , kr)Xk1−1

1 . . .Xkr−1
r .

Themould z satisfies the extended double shuffle equations ( [17,24]) and the correspond-
ing relations obtained for multiple zeta values are exactly the extended double shuffle
relations mentioned in the introduction.

Definition 3.7 Let A be a unital Q-algebra. A bimould with values in A is a family
B = (B(r))r�0 with B(0) ∈ A and B(r) ∈ A�X1, . . . , Xr , Y1, . . . , Yr� for r � 1.
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As is the case of moulds, we call B(r) the depth r part of B and since the depth is clear
from the number of variables and we just write B

(X1 ,...,Xr
Y1 ,...,Yr

)
instead of B(r)(X1 ,...,Xr

Y1 ,...,Yr
)
in the

following. Moreover, all appearing bimoulds also satisfy B(0) = 1, hence we often restrict
to the case r � 1 when defining bimoulds.
For bimoulds, we consider the alphabet

Lbiz = {zkd | k � 1, d � 0},
which can be seen as a generalization of Lz . For a commutative and associative product �
on QLbiz we obtain a quasi-shuffle algebra (Q〈Lbiz 〉, ∗�).

Definition 3.8 LetA be a unitalQ-algebra, B aA-valued bimould, and � a commutative
and associative product on QLbiz .

(i) If the coefficients b
(k1 ,...,kr
d1 ,...,dr

) ∈ A of B in depth r are given by

B
(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

k1 ,...,kr�1
d1 ,...,dr�0

b
(
k1, . . . , kr
d1, . . . , dr

)
Xk1−1
1 · · ·Xkr−1

r
Y d1
1
d1!

· · · Y
dr
r
dr !

,

then we define the coefficient map of B as the Q-linear map ϕB : Q〈Lbiz 〉 → A on the
generators by ϕ(1) = 1 and

zk1d1 . . . zkrdr �→ b
(
k1, . . . , kr
d1, . . . , dr

)
.

(ii) The mould B is called �-symmetril if the coefficient map is a Q-algebra homomor-
phism

ϕB : (Q〈Lbiz 〉, ∗�) → A.

(iii) If � is given by zk1d1 � zk2d2 = zk1+k2
d1+d2 , then we call a �-symmetril bimould symmetril.

(iv) If the product � is given by zk1d1 � zk2d2 = 0, then we call a �-symmetril bimould
symmetral.

If B is symmetril, then in depth two we have as an analogue of the first equation in (3.7)

B
(
X1
Y1

)
B
(
X2
Y2

)
= B

(
X1, X2
Y1, Y2

)
+ B

(
X2, X1
Y2, Y1

)
+ B

( X1
Y1+Y2

) − B
( X2
Y1+Y2

)

X1 − X2
.

Similar as for moulds, we define the product of two bimoulds B and C as the bimould
B × C given by

(B × C)
(
X1, . . . , Xr
Y1, . . . , Yr

)
=

r∑

j=0
B
(
X1, . . . , Xj
Y1, . . . , Yj

)
C

(
Xj+1, . . . , Xr
Yj+1, . . . , Yr

)
.

Proposition 3.9 If B and C are �-symmetril (bi)moulds then B × C is �-symmetril.
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Proof LetϕB,ϕC be the coefficientmaps of the (bi)mouldsB andC andwritem : A⊗A →
A for the multiplication onA. Then we see by definition that the coefficient map of B×C
is the convolution product of ϕB and ϕC , i.e.

ϕB×C = m ◦ (ϕB ⊗ ϕC ) ◦ 
 ,

where 
 is the coproduct (3.2) on (Q〈L〉, ∗�) for L = Lz or L = Lbiz . This shows that
ϕB×C : (Q〈L〉, ∗�) → A is an algebra homomorphism if ϕB and ϕC are and therefore B×C
is �-symmetril. ��

There is another important property of bimoulds, which is closely related to the conju-
gation of partitions (see [1,3,4] and [12]).

Definition 3.10 A bimould B is called swap invariant if for all r � 1

B
(
X1, . . . , Xr
Y1, . . . , Yr

)
= B

(
Y1 + · · · + Yr, Y1 + · · · + Yr−1, . . . , Y1 + Y2, Y1

Xr, Xr−1 − Xr, . . . , X2 − X3, X1 − X2

)
. (3.8)

An explicit formula for the coefficients on the right-hand side of (3.8) can be found in
[5, Remark 3.14], where the swap is denoted by the involution ι and the coefficients b are
denoted by Ps.

4 Frommoulds to bimoulds and the bimould b

Let b be a Q-valued mould, which satisfies the extended double shuffle equations and is
in depth one given by

b(X) = −
∑

k�2

Bk
2k !

Xk−1 =
∑

m�1

ζ (2m)
(2π i)2m

X2m−1 = 1
2

(
1
X

− 1
eX − 1

− 1
2

)
. (4.1)

In particular, the coefficients β of b (as defined in (3.3)) are a Q-valued solution to the
extended double shuffle equations.

Remark 4.1 Such a mould b satisfying the extended double shuffle equations exists by
the work by Racinet [27] or by combining the work of Drinfeld [16] and Furusho [18].
We give a short explanation how to obtain such an element. In [27, section IV], the
space DMλ(Q) ⊂ Q〈〈Lx〉〉 is introduced, where Lx = {x0, x1}. It is then shown that the
space DMλ(Q) is non-empty, so we can choose an element for λ = β(2) = − 1

24 , i.e.
b ∈ DM− 1

24
(Q). There is a canonical projection πz : Q〈〈Lx〉〉 → Q〈〈Lz〉〉, which is given

on the generators by xk−1
0 x1 �→ zk and maps each word ending in x0 to 0. So applying the

map zk1 . . . zkr �→ Xk1−1
1 . . .Xkr−1

r to the depth r component of the element

b∗ = exp

⎛

⎝
∑

n�2

(−1)n−1

n
(πz(b) | zn)zn1

⎞

⎠πz(b)

yields a family of generating series b(X1, . . . , Xr) ∈ Q[X1, . . . , Xr], which defines a mould
b satisfying the extended double shuffle equations.
In [16, §5], the space Mμ(Q) of associators is defined for each μ ∈ Q. It is shown that

the space Mμ(Q) is non-empty, thus we choose an element b ∈ M1(Q). By [18, Cor 0.4],
there is an embedding M1(Q) ↪→ DM− 1

24
(Q) (the definition of DMλ(Q) in [18] slightly
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differs from the original one given in [27], thus one has to be careful with the signs). So
take the image of b under the embedding and proceed as before to obtain a mould b with
values in Q satisfying the extended double shuffle equations.
Neither of the above approaches provides an explicit construction of such a solution,

this is an open problem so far. In low depths, there exist explicit rational solutions (
[13,17,20]), which then give possible candidates for b(X1, . . . , Xr) in the case r � 3. See
also [3, Section 3] for an explicit expression of the bimould b in depth two coming from
the solution presented in [20] or see [8] on how to construct directly such a bimould in
depth two out of a power series satisfying the Fay-identity (e.g. a variant of coth).

The mould b is not unique, there are different choices starting in weight 8. In the
following, we fix a mould b with values in Q, which satisfies the extended double shuffle
equations and which is given by (4.1) in depth one. In particular, everything we define in
the following depends on this choice.
The following gives natural constructions to obtain bimoulds out of moulds.

Definition 4.2 (i) For a mould Z we define the two bimoulds XZ and YZ by

XZ
(
X1, . . . , Xr
Y1, . . . , Yr

)
:= Z(X1, . . . , Xr ), Y Z

(
X1, . . . , Xr
Y1, . . . , Yr

)
:= Z(Y1, . . . , Yr)

(ii) For a mould Z we define the bimould BZ by

BZ = YZγ × XZ , (4.2)

so explicitly we have

BZ
(
X1, . . . , Xr
Y1, . . . , Yr

)
=

r∑

j=0
Zγ (Y1, . . . , Yj)Z(Xj+1, . . . , Xr )

=
∑

0�i�j�r
γ Z
i Z(Y1 + · · · + Yj−i , . . . , Y1 + Y2, Y1)Z(Xj+1, . . . , Xr ) ,

(4.3)

where the coefficients γ Z
i are given by (3.4).

This construction will be used to obtain a bimould version of b in Definition 4.6. We
show that BZ is always a swap invariant bimould and, if Z satisfies the extended double
shuffle relations, then BZ is additionally symmetril.

Proposition 4.3 For any mould Z the bimould BZ is swap invariant.

Proof The swap of BZ is given by

BZ
(
Y1 + · · · + Yr, Y1 + · · · + Yr−1, . . . , Y1 + Y2, Y1

Xr, Xr−1 − Xr, . . . , X2 − X3, X1 − X2

)

=
∑

0�i�j�r
γiZ(Xr−j+i+1, Xr−j+i+2, . . . , Xr)Z(Y1 + · · · + Yr−j , . . . , Y1) .

Making the change of variables j′ = r − j + i, we see that above sum equals

∑

0�i�j′�r
γiZ(Xj′+1, Xj′+2, . . . , Xr)Z(Y1 + · · · + Yj′−i, . . . , Y1) = BZ

(
X1, . . . , Xr
Y1, . . . , Yr

)
.

��
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Proposition 4.4 If a mould Z satisfies the extended double shuffle equations, then the
bimould BZ is symmetril.

Proof Let Z satisfy the extended double shuffle equations, so Z is a symmetril mould and
Zγ is a symmetralmould.We immediately obtain thatXZ is a symmetril bimould and YZγ

is a symmetral bimould. If a bimould does not depend on the variables Xi, symmetrility is
equivalent to symmetrality. In particular, the bimould YZγ is also symmetril. In (4.2) we
see that BZ = YZγ × XZ , so by Proposition 3.9 also BZ is symmetril. ��

Remark 4.5 In [5], the relationship between the classical extended double shuffle equa-
tions and the relations of the coefficients of swap invariant and symmetril bimoulds will
be explained in detail. In particular, the authors show that in the special case of moulds
our Definition 3.5 coincides with the classical notion of extended double shuffle equations
used in [24] and [27].

Definition 4.6 For the fixed Q-valued mould b we define its corresponding bimould by
b = Bb. By abuse of notation we denote the mould and the bimould by b, since it becomes
clear from the the set of variables which one is meant. Explicitly, we have

b

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

0�i�j�r
γib(Y1 + · · · + Yj−i, . . . , Y1 + Y2, Y1)b(Xj+1, . . . , Xr ) ,

where γk = γ b
k with the notation in (3.4), i.e. with (4.1) we have

∞∑

k=0
γkXk = exp

( ∞∑

n=2

(−1)n

n
β(n)Xn

)
= exp

( ∞∑

n=2

(−1)n+1

n
Bn
2n!

Xn
)

.

Corollary 4.7 The bimould b is swap invariant and symmetril.

Proof This is just a special case of Propositions 4.3 and 4.4. ��

5 The bimould g

Form � 1, we define the following power series in Q�q��X, Y �

Lm
(
X
Y

)
= eX+mY qm

1 − eXqm
, (5.1)

which will be used in the construction of combinatorial multiple Eisenstein series and
which is the building block of the following bimould.

Definition 5.1 We define the bimould g with values in Q�q� by

g

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

m1>···>mr>0
Lm1

(
X1
Y1

)
. . . Lmr

(
Xr
Yr

)
.

Proposition 5.2 ( [1, Theorem 2.3]) The bimould g is swap invariant.
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The coefficients g of g as defined in Definition 3.8 (i) are explicitly given by

g
(
k1, . . . , kr
d1, . . . , dr

)
=

∑

m1>···>mr>0
n1 ,...,nr>0

nk1−1
1 md1

1
(k1 − 1)!

· · · n
kr−1
r mdr

r
(kr − 1)!

qm1n1+···+mrnr . (5.2)

These coefficients are generalizations of the q-series defined in (2.3). The coefficient of qn

is given by the sumover allm1n1+· · ·+mrnr = nwithm1 > · · · > mr > 0, n1, . . . , nr > 0,
i.e. all partitions of n with r different parts m1, . . . , mr and multiplicities n1, . . . , nr . This
sum is invariant under the conjugation of partitions, which on the level of the generating
series g corresponds exactly to the swap invariance (3.8). This describes a combinatorial
proof of Proposition 5.2. Moreover, see [3] for the interpretation of the coefficients of the
bimould g as a generalization of the generating series of classical divisor-sums and their
derivatives.
The bimould g is not symmetril, but we can define a product �̂ such that it becomes

�̂-symmetril. For this, we need the following property of the series Lm defined in (5.1).

Lemma 5.3 For all m � 1 we have

Lm
(
X1
Y1

)
Lm

(
X2
Y2

)
=Lm

( X1
Y1+Y2

) − Lm
( X2
Y1+Y2

)

X1 − X2

+
(
2b(X2 − X1) − 1

2

)
Lm

(
X1

Y1 + Y2

)
+

(
2b(X1 − X2) − 1

2

)
Lm

(
X2

Y1 + Y2

)
,

(5.3)

where b(X) = −∑
k�2

Bk
2k !X

k−1 is the depth one part of the mould b defined in (4.1).

Proof By direct calculation one checks that Lm
(X
Y
) = eX+mY qm

1−eXqm satisfies

Lm
(
X1
Y1

)
Lm

(
X2
Y2

)
= 1

eX1−X2 − 1
Lm

(
X1

Y1 + Y2

)
+ 1

eX2−X1 − 1
Lm

(
X2

Y1 + Y2

)
,

which gives the above formula by using
∑∞

n=0 Bn
Xn

n! = X
eX−1 and the parity of b. ��

From this lemma, one can deduce the quasi-shuffle product satisfied by the coefficients
g of g. Explicitly, define for k1, k2, j � 1 the rational numbers

λ
k1 ,k2
j = −

(
(−1)k1

(
k1 + k2 − 1 − j

k2 − j

)
+ (−1)k2

(
k1 + k2 − 1 − j

k1 − j

)) Bk1+k2−j

(k1 + k2 − j)!

and define the commutative and associative product �̂ on QLbiz by

zk1d1 �̂z
k2
d2 = zk1+k2

d1+d2 +
k1+k2−1∑

j=1
λ
k1 ,k2
j zjd1+d2 . (5.4)

Proposition 5.4 The bimould g is �̂-symmetril.
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Proof This follows from [1, Theorem 3.6] and is a consequence of Lemma 5.3. For exam-
ple, in lowest depth we have

g

(
X1
Y1

)
g

(
X2
Y2

)
=

⎛

⎝
∑

m1>m2>0
+

∑

m2>m1>0
+

∑

m1=m2>0

⎞

⎠ Lm1

(
X1
Y1

)
Lm2

(
X2
Y2

)

(5.3)= g

(
X1, X2
Y1, Y2

)
+ g

(
X2, X1
Y2, Y1

)
+ g

( X1
Y1+Y1

) − g
( X2
Y1+Y1

)

X1 − X2

+
(
2b(X2 − X1) − 1

2

)
g

(
X1

Y1 + Y1

)
+

(
2b(X1 − X2) − 1

2

)
g

(
X2

Y1 + Y1

)
.

(5.5)

Considering the coefficients of (5.5) one sees that �̂ in (5.4) gives ϕg(zk1d1 ∗�̂ zk2d2 ) =
ϕg(zk1d1 )ϕg(zk2d2 ). The general case can be proven by induction over the depth. ��

Proposition 5.4 shows the relationship between the bimould g and the depth one part of
the mould b. This will play a crucial role in the construction of the combinatorial multiple
Eisenstein series.

6 Combinatorial multiple Eisenstein series
In this section, we introduce combinatorial (bi-)multiple Eisenstein series, which are the
coefficients of the bimouldG. Before we can give the definition ofGwe need to introduce
three other bimoulds b̃, Lm, and g∗, which all depend on a fixed choice of a symmetril and
swap-invariant bimould b given in Definition 4.6.

6.1 The bimoulds b̃, Lm, and g∗

Similar as in Definition 3.4 (ii) we can view the power series exp
( − T

2
) ∈ Q�T� as a

constant bimould. Moreover, define for any mould Z the mould Z− for each r � 1 by

Z−(X1, . . . , Xr) = Z(−X1, . . . ,−Xr ).

With this we define the following analogue of b = Bb = Y bγ × Xb.

Definition 6.1 Define the bimould b̃ as a product of bimoulds

b̃ = Y b−
γ × exp

(
−T

2

)
× Xb, (6.1)

i.e. for each r � 1 we have

b̃

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

r∑

i=0

(−1)i

2ii!
b

(
Xi+1, . . . , Xr

−Y1, . . . ,−Yr−i

)
.

Form � 1, let Lm be the bimould given in depth r � 1 by

Lm

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

r∑

j=1
b

(
X1 − Xj, . . . , Xj−1 − Xj

Y1, . . . , Yj−1

)
Lm

(
Xj

Y1 + · · · + Yr

)
b̃

(
Xr − Xj, . . . , Xj+1 − Xj

Yr , . . . , Yj+1

)
.

Observe that the depth one part of Lm is exactly given by the series Lm defined in (5.1).
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Remark 6.2 (i) The bimould Lm can be also defined by using the flexion markers intro-
duced in [17] (cf. [10, Section 7.5.3]).
(ii)ThedefinitionofLm is inspiredby the calculationof theFourier expansionofmultiple

Eisenstein series. First observe that the power seriesLm can be seen as the generating series
of the monotangent functions for Y = 0. Namely, define the ‘combinatorial version’ of
the monotangent function �comb

k (τ ) = 1
(k−1)!

∑
d>0 dk−1qd for k � 1 by using simply the

right hand side of the Lipschitz formula (2.2). Then we see that

∑

k�1
�comb

k (mτ )Xk−1 =
∑

k�1

1
(k − 1)!

∑

d>0
dk−1qmdXk−1 =

∑

d>0
edXqmd

= eXqm

1 − eXqm
= Lm

(
X
0

)
.

So in analogy to Theorem 2.2, the Lm can be seen as the generating series of the com-
binatorial version of the multitangent functions. In particular, the trifactorization of the
mould of monotangent functions (used to prove Theorem 2.2) in [10, Theorem 5 & 6 ] is
similar to our definition of Lm. The mould consisting of multiple zeta values in [10] is in
the definition of Lm replaced by the mould b. Moreover, we omit the constant term for
�1(τ ), this is necessary for our construction of combinatorial multiple Eisenstein series
for arbitrary indices (see the discussion before Remark 6.14 in [1]).

Definition 6.3 We define the bimould g∗ in depth r � 1 by

g∗
(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

1�j�r
0=r0<r1<···<rj−1<rj=r

m1>···>mj>0

j∏

i=1
Lmi

(
Xri−1+1, . . . , Xri
Yri−1+1, . . . , Yri

)
.

The definition of the bimould g∗ is inspired by the definition of the classical g∗ in (2.8).
In particular, we show that the bimould g∗ is symmetril (Proposition 6.22).

6.2 The bimouldG and combinatorial (bi-)multiple Eisenstein series

In analogy to (2.7) we define the bimouldG as the product of g∗ and b.

Definition 6.4 (i) We define the bimouldG by

G = g∗ × b .

(ii) For k1, . . . , kr � 1 and d1, . . . , dr � 0 we define the combinatorial bi-multiple Eisen-
stein series G

(k1 ,...,kr
d1 ,...,dr

) ∈ Q�q� as the coefficients of the bimouldG,

∑

k1 ,...,kr�1
d1 ,...,dr�0

G
(
k1, . . . , kr
d1, . . . , dr

)
Xk1−1
1 · · ·Xkr−1

r
Y d1
1
d1!

· · · Y
drr

dr !
:= G

(
X1, . . . , Xr
Y1, . . . , Yr

)
.

The number k1 + · · · + kr + d1 + · · · + dr is called its weight and r its depth.
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(iii) In the special case d1 = · · · = dr = 0we define the combinatorialmultiple Eisenstein
series for k1, . . . , kr � 1 by

G(k1, . . . , kr) := G
(
k1, . . . , kr
0, . . . , 0

)
.

The mould given by their generating series is also denoted byG, i.e.

G(X1, . . . , Xr ) := G

(
X1, . . . , Xr
0, . . . , 0

)
.

The main result of this work is the following.

Theorem 6.5 The bimouldG is symmetril and swap invariant.

Proof We will show that g∗ is symmetril (Proposition 6.22). Since b is also symmetril,
we deduce by Proposition 3.9 that G = g∗ × b is symmetril. For swap invariance we will
show that G can be written as a sum of swap invariant bimoulds Gj (Proposition 6.27,
Theorem 6.26) and thereforeG is itself swap invariant. ��
Before presenting the necessary results for the proof of Theorem 6.5, we give some

examples and consequences.

Example 6.6 (i) In depth r = 1 we have g∗(X
Y
) = g

(X
Y
)
and therefore

G

(
X
Y

)
= b

(
X
Y

)
+ g

(
X
Y

)
.

So the coefficients are for k � 1, d � 0 given by

G
(
k
d

)
= −δd,0

Bk
2k !

− δk,1
Bd+1

2(d + 1)
+ 1

(k − 1)!
∑

m,n�1
mdnk−1qmn. (6.2)

We see that for k > d � 0 the combinatorial bi-multiple Eisenstein series G
(k
d
)
is

essentially the d-th derivative of the Eisenstein series G(k − d), since

G
(
k
d

)
= (k − d − 1)!

(k − 1)!

(
q
d
dq

)d
G(k − d) .

The swap invariance indepthone just statesG
(X
Y
) = G

(Y
X
)
.On the level of coefficients

this gives G
(k
d
) = d!

(k−1)!G
(d+1
k−1

)
, which can also be obtained from (6.2).

(ii) In depth r = 2 the bimouldG is given by

G

(
X1, X2
Y1, Y2

)
= g∗

(
X1, X2
Y1, Y2

)
+ g∗

(
X1
Y1

)
b

(
X2
Y2

)
+ b

(
X1, X2
Y1, Y2

)

and from the definition of g∗ and Lm we get

g∗
(
X1, X2
Y1, Y2

)
=

∑

m1>m2>0
Lm1

(
X1
Y1

)
Lm2

(
X2
Y2

)
+

∑

m>0
Lm

(
X1, X2
Y1, Y2

)

= g

(
X1, X2
Y1, Y2

)
+ b

(
X1 − X2

Y1

)
g

(
X2

Y1 + Y2

)
+ g

(
X1

Y1 + Y2

)
b̃

(
X2 − X1

Y2

)
.

This gives an explicit expression of G
(k1 ,k2
d1 ,d2

)
in terms of the β and the q-series g ,

which we omit here.
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(iii) In depth r = 2 the swap invariance reads G
(X1 ,X2
Y1 ,Y2

) = G
(Y1+Y2 ,Y1
X2 ,X1−X2

)
, which gives for

k1, k2 � 1, d1, d2 � 0

G
(
k1, k2
d1, d2

)
=

∑

0�a�d1
0�b�k2−1

(−1)b

a! b!
d1!

(k1 − 1)!
(d2 + a)!

(k2 − 1 − b)!
G

(
d2 + 1 + a, d1 + 1 − a
k2 − 1 − b, k1 − 1 + b

)
.

(6.3)

In Proposition 6.7 this formula is used to give an analogue of the shuffle product
formula for combinatorial multiple Eisenstein series.

(iv) We saw in Example 2.3 that G3,2 is given by

G3,2(τ ) = ζ (3, 2) + 3ζ (3)ĝ(2) + 2ζ (2)ĝ(3) + ĝ(3, 2) .

In comparison, we get

G(3, 2) = β(3, 2) + 2β(2)g(3) + g(3, 2) = g(3, 2) − 1
12

g(3) .

Notice that β(3) = 0 and therefore this is exactly the same expression after replacing
ζ by the rational numbers β and ĝ by g .

(v) The combinatorial multiple Eisenstein series G(2, 1, 1) is given by

G(2, 1, 1) = β(2, 1, 1) + 1
6
g(2) − g(2, 1) + g(2, 1, 1) .

By duality β(4) = β(2, 1, 1), but one can check that G(4) �= G(2, 1, 1), i.e. the com-
binatorial multiple Eisenstein series do not satisfy the duality relations. Another
example for this is G(3) �= G(2, 1), since

∑

n>0

nqn

(1 − qn)2
= q

d
dq

G(1) = G(3) − G(2, 1) .

As an analogue of the double shuffle equations ofmultiple zeta values in depth two (1.3),
the combinatorial bi-multiple Eisenstein series satisfy the following.

Proposition 6.7 For k1, k2 � 1, d1, d2 � 0 we have

G
(
k1
d1

)
G

(
k2
d2

)
= G

(
k1, k2
d1, d2

)
+ G

(
k2, k1
d2, d1

)
+ G

(
k1 + k2
d1 + d2

)

=
∑

l1+l2=k1+k2
e1+e2=d1+d2
l1 ,l2�1,e1 ,e2�0

((
l1 − 1
k1 − 1

)(
d1
e1

)
(−1)d1−e1 +

(
l1 − 1
k2 − 1

)(
d2
e1

)
(−1)d2−e1

)
G

(
l1, l2
e1, e2

)

+ d1!d2!
(d1 + d2 + 1)!

(
k1 + k2 − 2

k1 − 1

)
G

(
k1 + k2 − 1
d1 + d2 + 1

)
.

Proof The first equality is just a direct consequence of the symmetrility. To show the sec-
ondequality, first use the swap invariance togetG

(k1
d1

)
G

(k2
d2

) = d1!d2!
(k1−1)!(k2−1)!G

(d1+1
k1−1

)
G

(d2+1
k2−1

)

and then evaluate this product by the first equality. Using then again the swap invariance
in depth one and depth two (6.3) yields the result. ��
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Remark 6.8 Proposition 6.7 shows that the combinatorial bi-multiple Eisenstein series in
depth � 2 give a realization of the formal double Eisenstein space introduced in [8]. This
space is exactly defined by formal symbols satisfying the relation in Proposition 6.7.

One can obtain an analogue for the double shuffle relations in arbitrary depths with
the same argument as in the proof of Proposition 6.7. For example, the equation (1.9) is
obtained in this way.

Example 6.9 EvaluatingG(2)G(2, 1) in the two differentways described above andwriting
out the Fourier expansion yields:

0 = G(2, 2, 1) + 6G(3, 1, 1) − G(2, 3) − G(4, 1) + 2G
(
3, 1
1, 0

)
+ G

(
2, 2
0, 1

)

= β(2, 2, 1) + 6β(3, 1, 1) − β(2, 3) − β(4, 1)

+
(
2β(2) − β(2)2 + 12β(1, 1) + 4β(1, 3) + 6β(2, 2) + 12β(3, 1) − 1

6

)
q

+ (
6β(2) − 2β(2)2 + 60β(1, 1) + 8β(1, 3) + 12β(2, 2) + 24β(3, 1) − 1

)
q2

+
(
4β(2) − 2β(2)2 + 120β(1, 1) + 8β(1, 3) + 12β(2, 2) + 24β(3, 1) − 7

3

)
q3

+ O(q4) .

From this equation we can obtain relations among the coefficients β in lower weight
without using their explicit expression. We get β(2) = − 1

24 , β(1, 1) = 1
48 and 2β(1, 3) +

3β(2, 2) + 6β(3, 1) = 1
1152 = 1

2β(2)
2. It might be interesting to understand in general,

which relations among the β can be obtained from the relations among the G.

Definition 6.10 TheQ-vector space spanned by all combinatorial bi-multiple Eisenstein
series is defined by

Gbi = Q + 〈
G

(
k1, . . . , kr
d1, . . . , dr

)
| r � 1, k1, . . . , kr � 1, d1, . . . , dr � 0

〉
Q
,

and the homogeneous subspace of weight k � 0 is given by Gbi
0 = Q and for k � 1 by

Gbi
k = 〈

G
(
k1, . . . , kr
d1, . . . , dr

)
∈ Gbi | k1 + · · · + kr + d1 + · · · + dr = k

〉
Q
.

The subspace spanned by all combinatorial multiple Eisenstein series is denoted by

G = Q + 〈
G(k1, . . . , kr) | r � 1, k1, . . . , kr � 1

〉
Q
,

and we set Gk = G ∩ Gbi
k .

Remark 6.11 We expect that all relations among the combinatorial multiple Eisenstein
series come from the swap invariance and symmetrility. In particular, this would imply
that the combinatorial bi-multiple Eisenstein series are graded by weight, i.e. we expect
Gbi ?= ⊕

k�0 Gbi
k .

Proposition 6.12 Both Gbi and G areQ-algebras containing the algebra of (quasi-) mod-
ular forms with rational coefficients, given by Q[G(2), G(4), G(6)].



H. Bachmann, A. Burmester Res Math Sci (2023) 10:35 Page 23 of 32 35

Proof This follows immediately from the symmetrility of G and (6.2). It can be also
obtained from Proposition 6.15 (i) below. ��
Proposition 6.13 For k � 1, d � 0 with k + d even, G

(k,...,k
d,...,d

)
is a quasi-modular form.

Proof By a classical result for quasi-shuffle algebras ( [23, (32)]),the generating series of
G

(k,...,k
d,...,d

)
can be written as

1 +
∞∑

r=1
G

(
r︷ ︸︸ ︷

k, . . . , k
d, . . . , d

)
Tr = exp

( ∞∑

r=1
(−1)r−1G

(
rk
rd

)
Tr

r

)
. (6.4)

By (6.2), the G
(rk
rd

)
are quasi-modular for k + d even. Therefore by (6.4), the G

(k,...,k
d,...,d

)
are

also quasi-modular forms of weight r(k + d) and depth (in the sense of quasi-modular
forms) at most r · min(d, k − 1). ��
Example 6.14 We give one explicit example for k = d = 1 and n = 2:

G
(
1, 1
1, 1

)
= β(2, 2) + 2β(3, 1) + β(2)g

(
1
1

)
− 1

2
g
(
1
2

)
+ g

(
1, 1
1, 1

)

= 1
1152

− 1
24

g(2) − g(3) + g(2, 2) + 2g(3, 1) = 1
2
G

(
1
1

)2
− 1

2
G

(
2
2

)

= 1
2
G(2)2 − 1

2
q
d
dq

G(2) .

Here the first equality comes from the definition of G
(1,1
1,1

)
, the second equality follows

from using explicit values for β ,which are unique up to weight 7, and the swap invariance
of g . The third equality comes from (6.4), but could also be obtained from Proposition 5.4.
For the last equation we used the swap invariance of G and (6.2).

For some indices one can also give an explicit formula for the G in terms of the q-series
g , e.g. in the case k = 2, d = 0 one can show that

∑

r�0
G(

r︷ ︸︸ ︷
2, . . . , 2)T 2r+1 =

∑

r�0
g(

r︷ ︸︸ ︷
2, . . . , 2)

(
2 sin

(
T
2

))2r+1
.

To obtain this formula one shows that the generating series over all r � 1 of the coef-
ficients of X1 . . .Xr in Lm

(X1 ,...,Xr
0,...,0

)
has a product expression in terms of the Lm. Using

the Weierstrass product expression of sin together with our construction then yields the
claim after some calculations. It would be interesting to know if in general there are simi-
lar expressions for G(2k, . . . , 2k) in analogy to the explicit evaluations of ζ (2k, . . . , 2k) for
k � 1.
By construction the combinatorial bi-multiple Eisenstein series G can be written as

rational linear combinations of the q-series g defined in (5.2). The following Proposition
shows that also the converse is true.

Proposition 6.15 For all k1, . . . , kr � 1 and d1, . . . , dr � 0 we have

g
(
k1, . . . , kr
d1, . . . , dr

)
∈ Gbi .
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In particular, the combinatorial bi-multiple Eisenstein series span the space Zq of q-
analogues of multiple zeta values defined in [7].

Proof In depth one we have by definition G
(k
d
) = g

(k
d
) + μ for some μ ∈ Q (see (6.2)),

thus it is g
(k
d
) ∈ Gbi for all k � 1, d � 0. Moreover, we obtain immediately from the

construction ofG that for all k1, . . . , kr � 1 and d1, . . . , dr � 0

G
(
k1, . . . , kr
d1, . . . , dr

)
= g

(
k1, . . . , kr
d1, . . . , dr

)
+ (terms only involving g of smaller depths and weights).

So induction on the depth shows that each q-series g is a Q-linear combination of com-
binatorial bi-multiple Eisenstein series. The last statement follows from [7, Theorem 1],
where it is shown that the q-series g span the space Zq , i.e. we get Gbi = Zq . ��
Remark 6.16 (i) The similar argument as in Proposition 6.15 also shows g(k1, . . . , kr) ∈

G for all k1, . . . , kr � 1. Also the converse holds, i.e. every combinatorial multiple
Eisenstein series is also a Q-linear combination of the single indexed g (this follows
from equation (6.15)). This is in contrast to the shuffle ( [9]) and stuffle ( [1]) regular-
ized multiple Eisenstein series, where double indexed g are needed when kj = 1 for
some j. In particular, we have G = Z◦

q where Z◦
q is defined in [7]. As a consequence

of this, one would expect G ?= Gbi. This was first conjectured in [1] (see also [7,
Conjecture 5]).

(ii) As explained in Remark 6.11, we expect that Gbi is graded by weight. By Proposi-
tion 6.15, the dimensions of the homogeneous spaces Gbi

k should coincide with the
conjectured dimensions of the weight-graded parts of Zq given in [7, Conjecture 3]
(and similarly for the associated depth graded parts).

We explain now why the combinatorial multiple Eisenstein series interpolate between
the rational solution β and multiple zeta values. In the case k1 � 2, k2, . . . , kr � 1 we get
as a direct consequence of the proof of Proposition 6.15 and (2.4) that

lim
q→1

(1 − q)k1+···+krG(k1, . . . , kr) = ζ (k1, . . . , kr) . (6.5)

The limit is independent of the choice of the rational solution to the double shuffle
equations b, since the limit q → 1 considers just the highest depth term of the q-series g
in G. In the case k1 = 1 this limit does not exist, but we can consider a regularized limit,
whichwe describe now.Using the notation as in Sect. 3 we can, as in the introduction, view
the combinatorial multiple Eisenstein series as a Q-linear map defined on the generators
by

G : H1 −→ G
w = zk1 . . . zkr �−→ G(w) := G(k1, . . . , kr) .

(6.6)

Since G is symmetril, G gives an algebra homomorphism from (H1, ∗) to G. Due to H1 =
H0[z1] (cf. [24, Proposition 1]) we can write w = zk1 . . . zkr ∈ H1 for any k1, . . . , kr � 1
uniquely as w = ∑r

j=0 wj ∗ z∗j
1 with wj ∈ H0. Then we define the regularized version of

the limit (6.5) as

lim
q→1

∗(1 − q)k1+···+krG(k1, . . . , kr) := lim
q→1

(1 − q)k1+···+krG(w0) = ζ (w0) . (6.7)
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Notice that if k1 � 2, then w = w0 and thus (6.7) is equal to (6.5).

Proposition 6.17 For any k1, . . . , kr � 1 we have

lim
q→0

G(k1, . . . , kr) = β(k1, . . . , kr),

lim
q→1

∗(1 − q)k1+···+krG(k1, . . . , kr) = ζ ∗(k1, . . . , kr) .

Proof First notice that the constant terms of the combinatorial multiple Eisenstein series
are by construction the coefficients in b

(X1 ,...,Xr
0,...,0

)
. The bimould bwas defined by themould

b (Definition 4.6), which satisfies the extended double shuffle equations. Since the mould
bγ is symmetral and bγ (0) = 0 (as β(1) = 0), we inductively get bγ (0, . . . , 0) = 0. We
deduce b

(X1 ,...,Xr
0,...,0

) = b(X1, . . . , Xr) which shows the first equation. For the second equation
observe that the stuffle regularized multiple zeta values ζ ∗ are essentially defined in the
same way as we constructed the regularized limit (6.7). Then since G and ζ ∗ are algebra
homomorphisms, we obtain the claim from (6.5). ��
Remark 6.18 In general onecanmake senseof the limit of (1−q)k1+···+kr+d1+···+drG

(k1 ,...,kr
d1 ,...,kr

)

as q → 1. In [5] the authors introduce bi-multiple zeta values ζ
(k1 ,...,kr
d1 ,...,kr

) ∈ Z ( [5, Defi-
nition 4.18] after setting T = 0), which are essentially given by the regularized limit of
(1−q)k1+···+kr+d1+···+dr g

(k1 ,...,kr
d1 ,...,kr

)
asq → 1 (similar to (6.7)).Using thenotionof degree and

weight limit introduced in [5], one can check (by Proposition 6.15) that all the other terms
inG

(k1 ,...,kr
d1 ,...,kr

)
have lower degree than g

(k1 ,...,kr
d1 ,...,kr

)
, so they do not contribute to theweight limit

( [5, Definition 4.3]). Therefore the regularized limit of (1− q)k1+···+kr+d1+···+drG
(k1 ,...,kr
d1 ,...,kr

)

as q → 1 is exactly given by ζ
(k1 ,...,kr
d1 ,...,kr

)
. Assuming that Gbi = ⊕

k�0 Gbi
k (Remark 6.11) one

then would get that the map G
(k1 ,...,kr
d1 ,...,kr

) �→ ζ
(k1 ,...,kr
d1 ,...,kr

)
gives an Q-algebra homomorphism

from Gbi to Z .

Proposition 6.19 If for some εk1 ,...,kr ∈ Q with r � 1 and k1 + · · · + kr = k � 4 the
q-series

∑

1�r�k
k1+···+kr=k

εk1 ,...,krG(k1, . . . , kr)

is a modular form of weight k (after setting q = e2π iτ ), then we have
∑

1�r�k
k1+···+kr=k

εk1 ,...,kr ζ (k1, . . . , kr) = (2π i)k
∑

1�r�k
k1+···+kr=k

εk1 ,...,krβ(k1, . . . , kr) .

Proof If f (τ ) = a0 + ∑
n�1 anqn is modular of weight k then f (− 1

τ
) = τ k f (τ ), i.e.

lim
q→1

(1 − q)k f (q) = lim
τ→0

((2π iτ )k + O(τ k+1))f (τ ) = lim
τ→0

(2π i)k f
(

−1
τ

)

= lim
τ→i∞(2π i)k f (τ ) = (2π i)ka0 .

The statement then follows from Proposition 6.17. ��
Notice that the converse of Proposition 6.19 is not true, since ζ (2, 1, 1) = (2π i)4β(2, 1, 1),

but, as seen in Example 6.6, G(2, 1, 1) is not a multiple of G(4).
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6.3 Symmetrility of Lm, g∗ andG

In this subsection, we give the proofs for the symmetrility of previously mentioned
bimoulds.

Lemma 6.20 For all m � 1 the bimould Lm is symmetril.

Proof By replacing qm = e−T in Lm
(X
0
) = eXqm

1−eXqm , we obtain a new series

LT (X) = eX−T

1 − eX−T = 2b(X − T ) − 1
X − T

− 1
2
.

For each r � 1, we define a multiple bi-version of LT as

LT

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

r∑

j=1
b

(
X1 − Xj, . . . , Xj−1 − Xj

Y1, . . . , Yj−1

)
LT (Xj)b̃

(
Xr − Xj, . . . , Xj+1 − Xj

−Yr , . . . ,−Yj+1

)
.

Thenafter the changeof variablesqm = e−T andmultiplicationwith exp(m(Y1+· · ·+Yr)),
we obtain precisely the bimould Lm. Moreover, let bT , b̃T andMT be the bimoulds given
in depth r � 1 by

bT

(
X1, . . . , Xr
Y1, . . . , Yr

)
= b

(
X1 − T, . . . , Xr − T

Y1, . . . , Yr

)
, b̃T

(
X1, . . . , Xr
Y1, . . . , Yr

)
= b̃

(
Xr − T, . . . , X1 − T

Yr , . . . , Y1

)
,

MT

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

{
1

T−X1
, if r = 1

0, else
.

We show that the bimould LT has the following product representation

LT = bT × MT × b̃T . (6.8)

Since all bimoulds on the right hand side of the equation are symmetril, by Proposi-
tion 3.9 also LT is a symmetril bimould. Substituting back e−T = qm and multiplying by
exp(m(Y1+· · ·+Yr)) gives the symmetrility of the bimouldLm. In depth one, we compute

bT

(
X
0

)
+ MT

(
X
0

)
+ b̃T

(
X
0

)
= 2b(X − T ) − 1

2
+ 1

T − X
= LT (X). (6.9)

Substituting (6.9) in the left hand side of (6.8), we have to show in some given depth r � 1

r∑

j=1
b

(
X1 − Xj, . . . , Xj−1 − Xj

Y1, . . . , Yj−1

)
bT

(
Xj
0

)
b̃

(
Xr − Xj, . . . , Xj+1 − Xj

−Yr, . . . ,−Yj+1

)

+
r∑

j=1
b

(
X1 − Xj, . . . , Xj−1 − Xj

Y1, . . . , Yj−1

)
b̃T

(
Xj
0

)
b̃

(
Xr − Xj, . . . , Xj+1 − Xj

−Yr, . . . ,−Yj+1

)

+
r∑

j=1

1
T − Xj

b

(
X1 − Xj, . . . , Xj−1 − Xj

Y1, . . . , Yj−1

)
b̃

(
Xr − Xj, . . . , Xj+1 − Xj

−Yr, . . . ,−Yj+1

)

−
r∑

j=0
bT

(
X1, . . . , Xj
Y1, . . . , Yj

)
b̃T

(
Xj+1, . . . , Xr
Yj+1, . . . , Yr

)

−
r∑

j=1

1
T − Xj

bT

(
X1, . . . , Xj−1
Y1, . . . , Yj−1

)
b̃T

(
Xj+1, . . . , Xr
Yj+1, . . . , Yr

)

= 0.

(6.10)
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Rewrite this equation in terms of the mould b by inserting the Definitions 4.6 and 6.1.
Then apply symmetrility to the terms b(Xa − Xj, . . . , Xj−1 − Xj) and −b(T − Xj) for
a ∈ {1, . . . , j} in the first row and to the terms−b(T −Xj) and b(Xr−b −Xj, . . . , Xj+1 −Xj)
for b ∈ {0, . . . , r − j} in the second row (after making use of the identity b(X) = −b(−X)).
Finally, rewrite the equation in terms of the mould bγ by using (3.5). Since the mould bγ

is symmetral, it satisfies by Lemma 3.1

r−b∑

j=a−1
(−1)jbγ (Xj, Xj−1, . . . , Xa)bγ (Xj+1, Xj+2, . . . , Xr−b) = 0 (6.11)

for all 1 � a � r − b � r. Frequently applying the relation (6.11) proves the above
equation except for the terms, where no mould b depending on some of the variables
X1, . . . , Xr appears. To show that these terms also vanish, we use an explicit expression
for the generating series of γ̃k = γ̃ b

k defined in (3.6)

γ̃ (X) =
∞∑

k=0
γ̃ b
k X

k :=
∞∑

k=0
β(1, . . . , 1︸ ︷︷ ︸

k

)Xk = exp
( ∞∑

n=2

(−1)n+1

n
β(n)Xn

)
.

The following expression of the Gamma function (c.f. [24, (2.1)])

eγX
(1 + X) = exp
( ∞∑

n=2

(−1)n

n
ζ (n)Xn

)

together with the equality β(n) = ζ (n)
(2π i)n for n even, gives

γ̃ (X)2 = 1

(1 + X

2π i )
(1 − X
2π i )

= 2
X

sinh
(
X
2

)
= e

X
2 − e− X

2

X
. (6.12)

Using the definition of b̃ as a product of three moulds given in (6.1) one can write the
remaining terms in (6.10) as products of moulds for which one can show that they cancel
out by using the explicit formula (6.12) together with some straightforward calculation. ��

Lemma 6.21 Let Bm be a family of bimoulds which are �-symmetril for all m � 1. Then
the bimould CM defined by

CM

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

1�j�r
0=r0<r1<···<rj−1<rj=r

M>m1>···>mj>0

j∏

i=1
Bmi

(
Xri−1+1, . . . , Xri
Yri−1+1, . . . , Yri

)

is �-symmetril for all M � 1.

Proof It is C1
(X1 ,...,Xr
Y1 ,...,Yr

) = 0 for r � 1 and C (0)
1 = 1, thus C1 is a �-symmetril bimould.

Moreover, one obtains from direct calculations CM+1 = BM × CM . Therefore, induction
onM and Proposition 3.9 yields the �-symmetrility of the bimould CM for allM � 1. ��

Proposition 6.22 The bimould g∗ is symmetril.
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Proof Choosing Bm = Lm in Lemma 6.21 and taking the limitM → ∞ gives the bimould
g∗. By Lemma 6.20 the bimoulds Lm are symmetril for all m � 1, thus we obtain that g∗

is symmetril. ��
Remark 6.23 The bimould g∗ can be seen as variant of the bimould g which is symmetril
instead of �̃-symmetril. It should be remarked that this correction is a completely different
to the one obtained by using the maps log and exp from [22] and [23], which enables one
to switch between different quasi-shuffle products over the same alphabet. This other
approach is illustrated in [1, Remark 6.6].

6.4 Swap invariance

Lemma 6.24 The bimould b̃ satisfies

b̃

(
X1, . . . , Xr
Y1, . . . , Yr

)
= b̃

(−Y1 − · · · − Yr, Y1 − · · · − Yr−1, . . . ,−Y1 − Y2,−Y1
−Xr,−Xr−1 + Xr, . . . ,−X2 + X3,−X1 + X2

)
,

i.e. it is nearly swap invariant up to some additional signs.

Proof Using the swap invariance of b (Corollary 4.7) we get

b̃

(
Y1 + · · · + Yr, . . . , Y1 + Y2, Y1
Xr, Xr−1 − Xr, . . . , X1 − X2

)
=

r∑

i=0

(−1)i

2ii!
b

(
Y1 + · · · + Yr−i, . . . , Y1
−Xr, . . . ,−Xi+1 + Xi+2

)

=
r∑

i=0

(−1)i

2ii!
b

(−Xi+1, . . . ,−Xr
Y1, . . . , Yr−i

)
= b̃

(−X1, . . . ,−Xr
−Y1, . . . ,−Yr

)
.

��
Definition 6.25 For j � 0 we define the bimould Gj = (G(r)

j )r�0 as follows. In the case
j = 0 we set G0 = b and in general G(r)

j = 0 for j > r. If 1 � j � r we define

Gj

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

0=r0<r1<···<rj�r
m1>···>mj>0

j∏

i=1
Lmi

(
Xri−1+1, . . . , Xri
Yri−1+1, . . . , Yri

)
b

(
Xrj+1, . . . , Xr
Yrj+1, . . . , Yr

)
.

Notice that we haveG(r)
r = g(r) for any r � 1, i.e. theGj can be seen as an interpolation

between the swap invariant bimoulds b and g. Using the swap invariance of b and g we
get the following more general result.

Theorem 6.26 The bimouldGj is swap invariant for any j � 0.

Proof SinceG0 = b we can assume 1 � j � r in the following. For 1 � a � b � r we use
the notation Xb

a := Xa − Xb and Y b
a := Ya + · · · + Yb. The Lmi can then be written as

Lmi

(
Xri−1+1, . . . , Xri
Yri−1+1, . . . , Yri

)
=

∑

ri−1<ni�ri

b

(Xni
ri−1+1, . . . , X

ni
ni−1

Yri−1+1, . . . , Yni−1

)
Lmi

(
Xni

Y ri
ri−1+1

)
b̃

(
Xniri , . . . , X

ni
ni+1

Yri , . . . , Yni+1

)
.

By the definition of the bimould g in 5.1 as a sum over the Lm, we therefore obtain

Gj

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

0=r0<n1�r1<···<nj�rj�r
Cr1 ,...,rj
n1 ,...,nj

(
X1, . . . , Xr
Y1, . . . , Yr

)
g

( Xn1 , . . . , Xnj

Y r1
1 , . . . , Y rj

rj−1+1

)
,

(6.13)
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where

Cr1 ,...,rj
n1 ,...,nj

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

j∏

i=1
b

(Xni
ri−1+1, . . . , X

ni
ni−1

Yri−1+1, . . . , Yni−1

)
b̃

(
Xniri , . . . , X

ni
ni+1

Yri , . . . , Yni+1

)
b

(
Xrj+1, . . . , Xr
Yrj+1, . . . , Yr

)
.

(6.14)

We want to check that Gj satisfies (3.8), i.e. that it is invariant under the simultaneous
change of variablesXj → Y1+· · ·+Yr−j+1 = Y r−j+1

1 andYj → Xr−j+1−Xr−j+2 = Xr−j+2
r−j+1

for j = 1, . . . , r (hereXr+1 := 0), which implyXb
a → Y r−a+1

r−b+2 and Y b
a → Xr−a+2

r−b+1 . Applying
this change of variables we get

Gj

( Y r
1 , . . . , Y

2
1 , Y

1
1

Xr+1
r , Xr

r−1 , . . . , X
2
1

)
=

∑

0=r0<n1�r1<···<nj�rj�r
Cr1 ,...,rj
n1 ,...,nj

( Y r
1 , . . . , Y

2
1 , Y

1
1

Xr+1
r , Xr

r−1 , . . . , X
2
1

)
g

( Y r−n1+1
1 , . . . , Y r−nj+1

1

Xr+1
r−r1+1 , . . . , X

r−rj−1+1
r−rj+1

)
.

(6.15)

Using the swap invariance of g together with the change of summation variables n′
i :=

r − rj−i+1 + 1, r′
i := r − nj−i+1 + 1 we see, after noticing that the sum over 0 < n1 � r1 <

· · · < nj � rj � r is the same as the sum over 0 < n′
1 � r′

1 < · · · < n′
j � r′

j � r, that

Gj

( Y r
1 , . . . , Y

2
1 , Y

1
1

Xr+1
r , Xr

r−1, . . . , X
2
1

)
=

∑

0=r′0<n′
1�r′1<···<n′

j�r′j�r

Cr1 ,...,rj
n1 ,...,nj

( Y r
1 , . . . , Y

2
1 , Y

1
1

Xr+1
r , Xr

r−1, . . . , X
2
1

)
g

( Xn′
1
, . . . , Xn′

j

Y r′1
1 , . . . , Y

r′j
r′j−1+1

)
.

It remains to show that

Cr1 ,...,rj
n1 ,...,nj

( Y r
1 , . . . , Y

2
1 , Y

1
1

Xr+1
r , Xr

r−1, . . . , X
2
1

)
= C

r′1 ,...,r′j
n′
1 ,...,n

′
j

(
X1, . . . , Xr
Y1, . . . , Yr

)
,

but this follows by using the swap invariance of b (Corollary 4.7) and the negative swap
invariance for b̃ (Lemma 6.24) in (6.14) together with reversing the product, i.e. changing
i → j − i. The factor outside the product then becomes the first factor in the product and
the former first factor gives the factor outside the product. ��

Proposition 6.27 For r � 1 we have

G

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

r∑

j=0
Gj

(
X1, . . . , Xr
Y1, . . . , Yr

)
.

Proof This follows directly from the definitions of g∗,G, andGj (Definitions 6.3, 6.4, 6.25).
��

Remark 6.28 In [9] it was shown that the Fourier expansion of the multiple Eisenstein
seriesG can be described by using the Goncharov coproduct ( [21]). The explicit calcula-
tion of this coproduct has strong similarities with (6.13). Also Example 6.6 (iv) shows that
theremight be connection of our construction to the Goncharov coproduct. In particular,
onemight expect, in accordancewith the results in [9], thatG(k1, . . . , kr) for k1, . . . , kr � 2
is given by the corresponding convolution product of the coefficient maps ϕb and ϕg. A
natural question then is, if the formula (6.13) can be interpreted as the depth j part of
some convolution product with respect to some coproduct in this ‘bi-setup’, which might
be a natural generalization of the Goncharov coproduct.
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6.5 Derivatives

Taking the derivative in (6.2) gives q d
dqG

(k
d
) = kG

(k+1
d+1

)
, which is a special case of the

following formula in arbitrary depths.

Proposition 6.29 For k1, . . . , kr � 1 and d1, . . . , dr � 0 we have

q
d
dq

G
(
k1, . . . , kr
d1, . . . , dr

)
=

r∑

i=1
kiG

(
k1, . . . , ki + 1, . . . , kr
d1, . . . , di + 1, . . . , dr

)
. (6.16)

Proof First notice that (6.16) is equivalent to

q
d
dq

G

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

r∑

i=1

∂

∂Xi

∂

∂Yi
G

(
X1, . . . , Xr
Y1, . . . , Yr

)
. (6.17)

Since q d
dq Lm

(X
Y
) = ∂

∂X
∂

∂Y Lm
(X
Y
)
(6.17) is also satisfied by g (see [1, Proposition 4.2]). By

(6.13) we then see that (6.17) is already satisfied by theGj for all j, since

q
d
dq

Gj

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

∑

0=r0<n1�r1<···<nj�rj�r
Cr1 ,...,rj
n1 ,...,nj

(
X1, . . . , Xr
Y1, . . . , Yr

)
q
d
dq

g

( Xn1 , . . . , Xnj

Y r1
1 , . . . , Y rj

rj−1+1

)

=
∑

0=r0<n1�r1<···<nj�rj�r
Cr1 ,...,rj
n1 ,...,nj

(
X1, . . . , Xr
Y1, . . . , Yr

) j∑

i=1

∂

∂Xni

∂

∂Yni
g

( Xn1 , . . . , Xnj

Y r1
1 , . . . , Y rj

rj−1+1

)

=
r∑

i=1

∂

∂Xi

∂

∂Yi

∑

0=r0<n1�r1<···<nj�rj�r
Cr1 ,...,rj
n1 ,...,nj

(
X1, . . . , Xr
Y1, . . . , Yr

)
g

( Xn1 , . . . , Xnj

Y r1
1 , . . . , Y rj

rj−1+1

)
.

In the last equality we used that (by Definition 4.6) both b and b̃, and therefore Cr1 ,...,rj
n1 ,...,nj ,

vanish under any ∂
∂Xi

∂
∂Yi and that the g terms are independent of Xi if i /∈ {n1, . . . , nj}, so

they vanish under ∂
∂Xi

∂
∂Yi in these cases. Since G is the sum of the Gj (Proposition 6.27),

we obtain the formula (6.17). ��

Proposition 6.30 For k1, . . . , kr � 1 we have

q
d
dq

G(k1, . . . , kr ) =G(2)G(k1, . . . , kr ) −
∑

1�j�r
a+b=kj+2

(a − 1)G(k1, . . . , kj−1, a, b, kj+1, . . . , kr )

−
∑

1�i<j�r
a+b=kj+1

kiG(k1, . . . , ki + 1, . . . , kj−1, a, b, kj+1, . . . , kr )

−
∑

1�i�r
kiG(k1, . . . , ki + 1, . . . , kr , 1) − G(k1, . . . , kr , 2) .

(6.18)

In particular, the space G is closed under q d
dq .

Proof SinceG is symmetril, we have

G

(
X
Y

)
G

(
X1, . . . , Xr
Y1, . . . , Yr

)
=

r∑

j=0
G

(
X1, . . . , Xj , X, Xj+1, Xr
Y1, . . . , Yj , Y, Yj+1, Yr

)

+
r∑

j=1

1
X − Xj

(
G

(
X1, . . . , X, . . . , Xr

Y1, . . . , Y + Yj, . . . , Yr

)
− G

(
X1, . . . , Xj , . . . , Xr

Y1, . . . , Y + Yj, . . . , Yr

))
.
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Sending all Xj → X , taking the derivative with respect to Y and setting Y = 0 gives by
Proposition 6.29

q
d
dq

G

(
X, . . . , X
Y1, . . . , Yr

)
= ∂

∂Y

⎛

⎝G

(
X
Y

)
G

(
X, . . . , X
Y1, . . . , Yr

)
−

r∑

j=0
G

(
X, . . . , X

Y1, . . . , Yj , Y, Yj+1, . . . , Yr

)⎞

⎠

|Y=0

.

Using the swap invariance and renaming the variables we obtain

q
d
dq

G

(
X1, . . . , Xr
Y, 0, . . . , 0

)
= ∂

∂X

(
G

(
X
Y

)
G

(
X1, . . . , Xr
Y, 0, . . . , 0

))

|X=0

− ∂

∂X

⎛

⎝
r+1∑

j=1
G

(
X1 + X, . . . , Xj + X, Xj, Xj+1, . . . , Xr

Y, 0, . . . , 0

)⎞

⎠

|X=0

,

where in the last sum we set Xr+1 := 0. The case Y = 0 yields the result by calculating
the coefficients of the right-hand side. ��
With the interpretation of G as an algebra homomorphism from (H1, ∗) to G in (6.6),

we can give the following reinterpretation and consequence of Proposition 6.30.

Corollary 6.31 (i) For w ∈ H1 the derivative of G(w) is given by

q
d
dq

G(w) = G(z2 ∗ w − z2 � w) .

(ii) Let h : H1 → H1 be the linear map defined on the generators by

h : w �−→ z2 ∗ w − z2 � w .

Then for any v, w ∈ H1 we have

h(w ∗ v) − h(w) ∗ v − w ∗ h(v) ∈ kerG .

Proof The equation in (i) is a direct consequence of Proposition6.30 since the sums on the
right-hand side of (6.18) correspond exactly to those indices which appear in the shuffle
product of z2 = xy with zk1 . . . zkr = xk1−1y . . . xkr−1y. For (ii) we use that G is an algebra
homomorphism and q d

dq is a derivation onQ�q�. By (i) we have q d
dqG(w) = G(h(w)) and

therefore get G(h(w ∗ v) − h(w) ∗ v − w ∗ h(v)) = 0. ��
Notice that the map h is not a derivation on (H1, ∗), i.e. the relations we obtain among

the combinatorial multiple Eisenstein series from Corollary 6.31 (ii) are non-trivial. For
example, for v = w = z1 we get G(4) = 2G(2, 2)− 2G(3, 1). This is the first relation, and
the only in weight 4, among combinatorial multiple Eisenstein series, since the q-series
g(k1, . . . , kr) do not satisfy relations in lower weight (see [6, (1.9)]). It would be interesting
to see if one can describe G(v ∗ w − v � w) for arbitrary w, v ∈ H1 explicitly and if this
can be used to obtain relations among combinatorial multiple Eisenstein series similar to
Corollary 6.31 (ii).

Remark 6.32 In [19] the Alekseev-Torossian associator, whose coefficients satisfy the
extended double shuffle equations, is computed. It turns out that in depth 1, it satisfies
also the additional conditions given in (4.1) (compare to [19, Example 4.1]). In general,
the coefficients of the AT associator are not rational. But replacing the rational solution
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b to the extended double shuffle equations by the AT associator gives another family of
q-series whose generating series are symmetril and swap invariant.
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