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Abstract

We use Macaulay2 for several enriched counts in GW(k). First, we compute the count of
lines on a general cubic surface using Macaulay2 over Fp in GW(Fp) for p a prime
number and overQ in GW(Q). This gives a new proof for the fact that the A1-Euler
number of Sym3 S∗ → Gr(2, 4) is 15〈1〉 + 12〈−1〉. Then, we compute the count of lines
in P

3 meeting 4 general lines, the count of lines on a quadratic surface meeting one
general line and the count of singular elements in a pencil of degree d-surfaces. Finally,
we provide code to compute the EKL-form and compute several A1-Milnor numbers.

1 Introduction
In [8] Kass and Wickelgren count the lines on a smooth cubic surface as an element of
the Grothendieck-Witt ring GW(k) of a field k by computing theA1-Euler number of the
vector bundle E := Sym3 S∗ → Gr(2, 4) which is by definition the sumof the local indices,
that is the local A1-degrees, at the zeros of a general section. Here, Gr(2, 4) denotes the
Grassmannian of lines in P

3 and S → Gr(2, 4) its tautological bundle.
For a field L, denote by EL the base change of E to L. Let F ∈ Fp[X0, X1, X2, X3]3 be a

random homogeneous degree 3 polynomial in 4 variables. Then F defines a general cubic
surface X = {F = 0} ⊂ P

3
Fp

and a section σF of EFp by restriction. The zeros of σF are the
lines on X .
Let A4

Fp
= Spec(Fp[x1, x2, x3, x4]) ⊂ Gr(2, 4) be the open affine subset of the Grass-

mannian consisting of the lines spanned by x1e1 + x3e2 + e3 and x2e1 + x4e2 + e4 where
(e1, e2, e3, e4) is the standard basis for F4

p. For the general cubic surface X , all lines on
X are elements of this open affine subset of Gr(2, 4) and hence the A

1-Euler number
eA1 (EFp ) ∈ GW(Fp) (or the count of lines on the cubic surface X) can be computed as the
sum of local A1-degrees of the zeros of σf |A4 = (f1, f2, f3, f4) : A4 → A

4 by [9].
The Fp-algebra

Fp[x1,x2 ,x3 ,x4]
(f1,f2 ,f3 ,f4) is 0 dimensional and thus there are finitely many lines

on X . Call these lines l1, . . . , ln. By [8, Corollary 51] the lines on a general and thus
smooth cubic surface are simple. This means that the lines l1, . . . , ln are simple zeros of
(f1, f2, f3, f4) : A4

Fp
→ A

4
Fp
. It follows that Fp[x1, x2, x3, x4]/I is isomorphic to the product

of fields L1 × · · · × Ln where Lj = Fp[x1, x2, x3, x4]/mj is the field of definition of lj (that
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is residue field of the point in Gr(2, 4) corresponding to lj) for j = 1, . . . , n. By [9, Lemma
9] the local index of lj is equal 〈JLj 〉 ∈ GW(Lj) where JLj is the image of the jacobian
element J := det ∂fi

∂xl in Lj = Fp[x1, x2, x3, x4]/mj and it follows that the A1-Euler number
of Sym3 S∗ → Gr(2, 4) is given by

eA
1
(EFp ) =

n∑

j=1
TrLj/Fp (〈JLj 〉) ∈ GW(Fp). (1)

We use Macaulay2 to compute the rank and discriminant of (1) when p = 32003.
The computation gives an element in GW(F32003) of rank 27 and discriminant 1 ∈
F

∗
32003/(F

∗
32003)2. Two elements in GW(F32003) are equal if and only if they have the

same rank and discriminant, so this determines the count of lines on a cubic surface in
GW(F32003) completely.
Similarly, we useMacaulay2 to get the Grammatrix of the form eA1 (EQ) ∈ GW(Q) over

the rational numbersQ. We view eA1 (EQ) as a bilinear form over the real numbers R and
compute its signature which is equal to 3.
By Theorem 5.8 in [1] eA1 (E) = eA1 (Sym3 S∗) is equal to either

nC + nR
2

〈1〉 + nC − nR
2

〈−1〉 ∈ GW(k) (2)

or
nC + nR

2
〈1〉 + nC − nR

2
〈−1〉 + 〈2〉 − 〈1〉 ∈ GW(k) (3)

for nC, nR ∈ Z and a field k . By [1, Remark 5.7] nC and nR are the Euler numbers of the real
and complex bundle, respectively. The complex count nC is equal to the rank of our form
which is nC = 27, and the real count is equal to the signature, so nR = 3. In [12, �8] and
[1, Corollary] it is shown that the A1-Euler number of direct sums of symmetric power
of the dual tautological bundle on a Grassmannian is always of form (2) when defined,
using the theory of Witt-valued characteristic classes. The proof here is independent of
this theory and we may also apply it to bundles which are not of this form.
Since 2 is not a square for our chosen prime 32003, we can rule out (3) for the count of

lines on a cubic surface and hence we have a new proof of the fact that

eA
1
(Sym3 S∗) = 15〈1〉 + 12〈−1〉 ∈ GW(k) (4)

which is the main result in [8]. The complex count nC is the classical result by Cayley and
Salmon that there are 27 lines on a smooth cubic surface [3]. Segre studied the real lines
on a smooth cubic surface in [16]. See also [7,14] for the real count.
Similarly, we get an enriched count of lines meeting 4 general lines in P

3 (this has
already been computed in [17]) and of lines on a quadratic surface meeting one general
line by computing the A

1-Euler numbers eA1 (
⊕4

i=1 ∧2S∗ → Gr(2, 4)) and eA1 (∧2S∗ ⊕
Sym2 S∗ → Gr(2, 4)), respectively. Note, that neither of these vector bundles is a direct
sum of symmetric powers of the dual tautological bundle and we cannot use [12, �8] and
[1, Corollary] to rule out (3). However, we already know that theA1-Euler number of both
of these bundles will be a multiple of the hyperbolic formH = 〈1〉 + 〈−1〉 since they have
direct summands of odd rank [17, Proposition 12].
Furthermore,we count singular elements on apencil of degreed surfaces as theA1-Euler

number of ⊕4
i=1π

∗
1OP3 (d − 1) ⊗ π∗

2OP1 (1) → P
3 × P

1.
Finally, we provide code for computing the EKL-form (see [9]) which computes the local

A
1-degree for non-simple zeros.



S. Pauli Res Math Sci (2023) 10:26 Page 3 of 14 26

In the appendix we compute the A1-Milnor numbers of several Fuchsian singularities
and provide one explicit example of the Gram matrix of a form representing eA1 (EF11 ) ∈
GW(F11).

2 A
1-Euler numbers

2.1 Definition of theA1-Euler number

Let k be a field and let π : E → X be a vector bundle of rank r over a smooth and proper
scheme X of dimension r. Assume further that for each closed point x ∈ X there is a
Zariski neiborhood U of x which is isomorphic to affine space Ar .

Remark 1 In our examples, X is either a Grassmannian of lines or projective space which
both have standard coverings by open affine subsets U ∼= A

r . All definitions also work
when X does not admit a Zariski covering by affine spaces. Then one needs Nisnevich
coordinates [8, Definition 17 and Lemma 18].

We recall the definition of the A1-Euler number of π : E → X from [8, �4]. Recall that
a (weak) orientation of E is an isomorphism φ : det E ∼= L⊗2 where L → X is a line bundle.

Definition 1 A relative orientation of E is a orientation of the line bundle Hom(detTX,
det E), that is, an isomorphism φ : Hom(detTX, det E)

∼=−→ L⊗2 where TX → X denotes
the tangent bundle of X and L → X is a line bundle.

Remark 2 If both the tangent bundle of X and E are orientable, then E is relatively ori-
entable since Hom(detTX, det E) ∼= (detTX)−1 ⊗ det E. However, π : E → X can still be
relatively orientable even though E and TX are not.

Assume that π : E → X is equipped with a relative orientation φ. An open affine subset
ψ : U ∼= A

r of X defines a trivialization of TX |U .

Definition 2 A trivialization of E|U with ψ : U ∼= A
r is compatible with the relative

orientation φ and ψ if the element of Hom(detTX |U , det E|U ) sending the distinguished
basis element of detTX |U to the distinguished element of det E|U is sent to a square by φ.

Let σ : X → E be a section of E with an isolated zero x ∈ X . We now define the local
index indx σ of σ at x, that is the local contribution of the zero x to the A1-Euler number.
Choose a neighborhood x ∈ U of x which is isomorphic to affine space ψ : U ∼= A

r and
a trivialization E|U ∼= A

r × A
r compatible with the chosen relative orientation φ. Locally

the following composition

U
ψ∼= A

r σ |U−−→ E|U ∼= A
r × A

r π2−→ A
r

where the second map is the projection onto the second factor, is given by r regular
functions (f1, . . . , fr) : Ar → A

r .
The local index indx σ of σ at x is the local A1-degree degA

1
x (f1, . . . , fr) of (f1, . . . , fr) :

A
r → A

r at x. For the definition of the local A1-degree we refer to [9, �2].
We define theA1-Euler number eA1 (E, σ ) with respect to a section σ : X → E with only

isolated zeros to be sum of indices of the zeros of σ . It turns out that eA1 (E, σ ) does not
depend on the chosen section [1, Theorem 1.1] and we can define the A1-Euler number
independently of σ .
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Definition 3 Let π : E → X be a vector bundle of rank r equal to the dimension of the
smooth, proper scheme X over a field k equipped with a relative orientation, then the
A
1-Euler number is defined by eA1 (E) := eA1 (E, σ ) for a section σ with only isolated zeros.

2.1.1 Computation of the local indices

Next we recall from [9] how the local A1-degree can be computed. This also yields a
formula for the local indices. Let L/k be a finite separable field extension and let β :
V × V → L be a non-degenerate symmetric bilinear form over L. Then the trace form
TrL/k (β) is the form

V × V β−→ L
TrL/k−−−→ k (5)

where TrL/k denotes the field trace. Assume x ∈ X is simple zero, that is the jacobian
element ∂fi

∂xj (x) at x is non-zero. If x is a rational point, its local degree is equal to 〈J (x)〉 ∈
GW(k). When x is not rational, its local A1-degree can be computed as the trace form
Trk(x)/k (〈J (x)〉) ∈ GW(k) of 〈J (x)〉 ∈ GW(k(x)) for finite separable field extensions k(x)/k
by [2].

Remark 3 When x ∈ X is a non-simple zero, its local A1-degree can be computed with
the EKL-form (see Sect. 3).

2.2 Cubic surfaces

We compute the rank and discriminant of the A
1-Euler number of E = Sym3 S∗ →

Gr(2, 4) over F32003.

i1 : P = 32003;

i2 : FF = ZZ/P;

We generate a random homogeneous degree 3 polynomial F in 4 variables X0, X1, X2 and
X3.

i3 : R = FF[X0,X1,X2,X3];

i4 : F = random(3,R);

We replace X0, X1, X2 and X3 by x1s + x2, x3s + x4, s and 1, respectively, and define I
to be the ideal in C = F32003[x1, x2, x3, x4] generated by the coefficients s3, s2, s and 1
of F (x1s + x2, x3s + x4 , s, 1). That means, we let SpecC = Spec(F32003[x1, x2, x3, x4]) ⊂
Gr(2, 4) be the open affine subset consiting of the lines spanned by x1e1 + x3e2 + e3 and
x2e1 + x4e2 + e4 for the standard basis (e1, e2, e3, e4) of F4

32003 and we let I be the ideal
generated by f1, f2, f3, f4 where (f1, f2, f3, f4) is equal to

(f1, f2, f3, f4) : A4 σ |
A4=(id,(f1 ,f2 ,f3 ,f4))−−−−−−−−−−−−→ A

4 × A
4 π2−→ A

4 ,

the restriction of the section σF of E defined by F to the chosen open affine set
Spec(F32003[x1, x2, x3, x4]).

Remark 4 By [8, Corollary 45] the vector bundle E is relatively orientable and the open
affine subset SpecC ⊂ Gr(2, 4) is compatible with this relative orientation.

i5 : C = FF[x1,x2,x3,x4];

i6 : S = C[s];
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i7 : g = {x1*s+x2,x3*s+x4,s,1};

i8 : m = map(S,R,g);

i9 : I = sub(ideal flatten entries last coefficients m F, C);

WeuseMacaulay2 to compute the dimension and degree ofC/I = F32003[x1, x2, x3, x4]/I .

i10 : dim I

o10 = 0

i11 : degree I

o11 = 27

Since there are in general finitely many lines on a cubic surface, the expected dimension
of C/I is 0. The degree is the dimension of C/I as a F32003-vector space, that is the rank
of the non-degenerate symmetric bilinear form (1) which turns out to be 27 as expected.
Since Q = C/I is zero-dimensional Noetherian and hence Artinian, it is isomorphic to

its product of localizations at its maximal ideals

Q ∼= Qm1 × · · · × Qmn .

By [8, Corollary 53] (f1, f2, f3, f4) : A4 → A
4 only has simple zeros, that means that Qmi is

a finite field extensions of F32003 equal to the residue fields of the mi for i = 1, . . . , n.
The maximal idealsmi correspond to the finitely many lines l1, . . . , ln on {F = 0} ⊂ P

3.
This implies that C/I is isomorphic to the product of fields

F32003[x1, x2, x3, x3]/m1 × · · · × F32003[x1, x2, x3, x4]/mn = L1 × · · · × Ln (6)

wheremi is maximal ideal defining li as point in Gr(2, 4) and Li is the field of definition of
li, i.e., the residue field of li in Gr(2, 4), for i = 1, . . . , n.

Remark 5 When we pass to the algebraic closure of F32003 we know that Spec(C/I) has
27 closed points. However, in (6) the number of lines n is not necessarily equal to 27 since
in general not all lines will be defined over F32003.

We use a primary decomposition of I to find the mi.

i12 : L = primaryDecomposition I;

i13 : n = length L;

Remark 6 Since the idealsmi are actually primes, theprimary ideals in theprimarydecom-
position are the minimal primes and in particular unique, and we can let Macaulay2 com-
pute the minimal primes instead of the the primary decomposition of I . This is much
more time efficient. However, if the one of the zeros were not simple, one would need the
primary decomposition and then apply the EKL-form (see Sect. 3).

The contribution of the line li to (1) is TrLi/F32003(〈JLi〉) where JLi is the image of the
jacobian element J = det ∂fm

∂xj of I in Li = C/mi. The discriminant of (1) is the product
of the discriminants of the forms TrLi/F32003 (〈JLi 〉). By [8, Lemma 58] the discriminant of
TrLi/F32003 (〈JLi〉) is a square in F32003 if JLi is a square in Li = F32003[x1, x2, x3, x4]/mi when
the degree [Li : F32003] is odd and if JLi is a non-square in Li = F32003[x1, x2, x3, x4]/mi
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when [Li : F32003] is even. Since the units F∗
q of a finite field Fq with q form the cyclic

group of order q−1, F∗
q/(F∗

q)2 is isomorphic toZ/2Z. By Fermat’s little theorem bq−1 ≡ 1
mod q for b ∈ F

∗
q and b is a square if and only if b

q−1
2 ≡ 1 mod q. So to find the

discriminant of (1) we compute the product

disc((1)) =
n∏

i=1
εiJ

p[Li :F32003]−1
2

Li

where ε = −1 when [Li : F32003] is even and ε = 1 when [Li : F32003] is odd.

i14 : J = determinant jacobian I;

i15 : disc = 1_FF;

i16 : i=0;

i17 : while i<n do

(if even degree L_i

then

disc=disc*lift(J_(C/L_i)ˆ((Pˆ(degree L_i)-1)//2),FF)*(-1)_FF

else

disc=disc*lift(J_(C/L_i)ˆ((Pˆ(degree L_i)-1)//2),FF); i=i+1);

The discriminant of (1) is a square.

i18 : disc

o18 = 1

2.3 The trace form

The trace form (5) can also be defined when L is a finite étale k-algebra like C/I =
F32003[x1,x2 ,x3 ,x4]

(f1 ,f2 ,f3 ,f4) . In particular, the trace form Tr(C/I)/F32003 (〈JC/I 〉) is a bilinear form over
F32003 representing eA1 (EF32003 ) ∈ GW(F32003) where JC/I is the image of the jacobian
element in C/I .
The following code computes the trace form TrL/k (〈J 〉) for FF a field and I an ideal in

polynomial ring C over FF such that C/I is a finite étale algebra over FF .

i19: traceForm = (C,I,J,FF) -> (

B:=basis(C/I);

r:=degree I;

Q:=(J_(C/I))*(transpose B)*B;

toVector := q -> last coefficients(q,Monomials=>B);

fieldTrace := q -> (M:=toVector(q*B_(0,0));i=1;while i<r do

(M=M|(toVector (q*B_(0,i))) ; i=i+1); trace M);

matrix applyTable(entries Q, q->lift(fieldTrace q,FF)))

2.3.1 Linesmeeting four general lines inP3

As an examplewe compute the count of linesmeeting 4 general lines inP3, i.e., we compute
the A1-Euler number of the bundle E2 := ∧2S∗ ⊕ ∧2S∗ ⊕ ∧2S∗ ⊕ ∧2S∗ → Gr(2, 4). We
know from [17] that this equal to the hyperbolic form H := 〈1〉 + 〈−1〉.
Clearly, det(∧2S∗ ⊕ ∧2S∗ ⊕ ∧2S∗ ⊕ ∧2S∗) ∼= (∧2S∗)⊗4 and thus the vector bundle

E2 is orientable. The Grassmannian Gr(2, 4) is orientable as well (i.e., its tangent bundle
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T Gr(2, 5) ∼= S∗ ⊗Q is orientable). Those two orientations yield a relative orientation φ :
Hom(T Gr(2, 4), E2) ∼= L⊗2 of E2. Over the open affine subset Spec(F32003[x1, x2, x3, x4]) ⊂
Gr(2, 4) from subsection 2.2 the dual tautological bundle S∗ → Gr(2, 4) has basis the
two monomial s and 1 (where again s is the variable on the line). This basis induces
a trivialization of the restriction of E2 to SpecF32003[x1, . . . , x4]. By [17, Lemma 4] the
relative orientation φ is compatible with this trivialization over SpecF32003[x1, . . . , x4].
Let l1, . . . , l4 be 4 general lines in P

3 and let ai, bi be two independent linear forms
cutting out li for i = 1, . . . , 4.

i20 : a1 = random(1,R);

i21 : b1 = random(1,R);

i22 : a2 = random(1,R);

i23 : b2 = random(1,R);

i24 : a3 = random(1,R);

i25 : b3 = random(1,R);

i26 : a4 = random(1,R);

i27 : b4 = random(1,R);

The linear forms ai and bi define a section si := ai ∧ bi of ∧2S∗. A line l in P
3 meets the

line li if and only if si(l) = 0 by [17, Lemma5].

i28 : s1 = lift((last coefficients m a1)_(0,0)*(last coefficients m b1)_(1,0)
-(last coefficients m a1)_(1,0)*(last coefficients m b1)_(0,0),C);
i29 : s2 = lift((last coefficients m a2)_(0,0)*(last coefficients m b2)_(1,0)
-(last coefficients m a2)_(1,0)*(last coefficients m b2)_(0,0),C);
i30 : s3 = lift((last coefficients m a3)_(0,0)*(last coefficients m b3)_(1,0)
-(last coefficients m a3)_(1,0)*(last coefficients m b3)_(0,0),C);
i31 : s4 = lift((last coefficients m a4)_(0,0)*(last coefficients m b4)_(1,0)
-(last coefficients m a4)_(1,0)*(last coefficients m b4)_(0,0),C);
i32 : I2 = ideal(s1,s2,s3,s4);
i33 : J2 = determinant jacobian I2;
i34 : traceForm(C,I2,J2,FF)

Let I2 be the ideal generated by the sections s1, . . . , s4 and J2 := det ∂si
∂xj . We compute the

trace form Tr(C/I2)/FF (〈J2〉) (where C is still F32003[x1, x2, x3, x4]) and get a form of rank 2
and discriminant −1 ∈ F

∗
32003/(F

∗
32003)2 as expected.

2.3.2 Lines on a degree 2 hypersurface inP3 meeting 1 general line

We compute the count of lines on a quadratic surface meeting a general line as the A1-
Euler number of E2 := Sym2 S∗ ⊕ ∧2S∗ → Gr(2, 4).
We have det(Sym2 S∗ ⊕ ∧2S∗) ∼= p∗OP5 (4) where p : Gr(2, 4) ↪→ P

5 is the Plücker
embedding. So E3 is orientable. Since Gr(2, 4) is orientable, too, we get a relative orienta-
tion on E3. Over the open affine subset F32003[x1, . . . , x4] ⊂ Gr(2, 4) from 2.2 we get a triv-
ialization of E3 coming from trivialization of the dual tautological bundle S∗ → Gr(2, 4).

Lemma 1 The trivialization of E3|F32003[x1,...,x4] is compatible with the relative orientation
of E3 described above.

Proof As in [8, Definition 39] we define a basis ẽ1 = e1, ẽ2 = e2, ẽ3 = x1e1 + x3e2 + e3
and ẽ4 = x2e1 + x4e2 + e4 of F32003[x1, x2, x3, x4]4, and let φ̃1, φ̃2, φ̃3 and φ̃4 be its dual
basis. Here e1, e2, e3, e4 is a basis of F4

32003. Then the open affine subset of lines spanned
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by x1e1 + x3e2 + e3 and x2e1 + x4e2 + e4,U = SpecF32003[x1, x2, x3, x4] ⊂ Gr(2, 4), yields
a basis

φ̃3 ⊗ ẽ1, φ̃4 ⊗ ẽ1, φ̃3 ⊗ ẽ2, φ̃4 ⊗ ẽ2

of T Gr(2, 4)|U and a basis

(φ̃2
3 , 0), (φ̃3φ̃4 , 0), (φ̃2

4 , 0), (0, φ̃3 ∧ φ̃4)

of E2|U . Let e′1, e′2, e′3, e′4 be a different basis of F4
32003 such that e3 and e4 span the same

2-plane as e′3 and e′4. We define ẽ′i and φ̃′
i for i = 1, 2, 3, 4 as before.

We want to show that the determinants det1 and det2 of the two base change matri-
ces relating φ̃3 ⊗ ẽ1, φ̃4 ⊗ ẽ1, φ̃3 ⊗ ẽ2, φ̃4 ⊗ ẽ2 to φ̃′

3 ⊗ ẽ′1, φ̃′
4 ⊗ ẽ′1, φ̃′

3 ⊗ ẽ′2, φ̃′
4 ⊗ ẽ′2 and

(φ̃2
3 , 0), (φ̃3φ̃4 , 0), (φ̃2

4 , 0), (0, φ̃3 ∧ φ̃4) to (φ̃′2
3 , 0), (φ̃

′
3φ̃

′
4 , 0), (φ̃

′2
4 , 0), (0, φ̃

′
3 ∧ φ̃′

4), respectively,
are both squares, because then the determinant relating the bases of

T Gr(2, 4)∗|U ⊗ E2|U ∼= Hom(T Gr(2, 4)|U , E2|U )
is a square.
By the proof [8, Lemma 42] det1 is a square. As in [8, Lemma 42] we write ẽ′3 = aẽ3+bẽ4

and ẽ′4 = cẽ3 + dẽ4. Then

φ̃′
3 = Aφ̃3 + Cφ̃4 + an element in the span of φ̃1, φ̃2

and

φ̃′
4 = Bφ̃3 + Dφ̃4 + an element in the span of φ̃1, φ̃2

where
(
A B
C D

)
is the inverse of

(
a b
c d

)
. The determinant relating φ̃2

3 , φ̃3φ̃4 , φ̃2
4 to

φ̃′2
3 , φ̃

′
3φ̃

′
4 , φ̃

′2
4 is (AD − BC)3 and the determinant relating φ̃3 ∧ φ̃4 to φ̃′

3 ∧ φ̃′
4 is AD − BC .

Their product det2 = (AD − BC)4 is a square. ��
We compute eA1 (E3).
i35 : F2 = random(2,R);

i36 : a5 = random(1,R);

i37 : b5 = random(1,R);

i38 : s5 = lift((last coefficients m a5)_(0,0)*

(last coefficients m b5)_(1,0)

-(last coefficients m a5)_(1,0)*

(last coefficients m b5)_(0,0),C);

i39 : Q = sub(ideal flatten entries last coefficients m F2, C);

i40 : I3 = Q+ideal(s5);

i41 : J3 = determinant jacobian I3;

i42 : traceForm(C,I3,J3,FF)

It is a rank 4 form of discriminant 1 ∈ F
∗
32003/(F

∗
32003)2. When we compute the form over

the real numbersR (this can be done similarly as in subsubsection 2.3.3), we get a form of
signature 0. Hence, we can use [1, Theorem 5.8] to conclude that eA1 (E3) = 2H.

Remark 7 Let E be a vector bundle that splits up as a direct sum of vector bundles, i.e.
E = E′ ⊕ E′′. It follows from [17, Proposition 12] that the A

1-Euler number of E is a
multiple of H = 〈1〉 + 〈−1〉 if the rank of E′ or E′′ is odd. Hence, it is no surprise that we
get a multiple of H in the calculation above.
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2.3.3 Signature of eA
1
(E) = eA

1
(Sym3 S∗

Q
)

Let G be a degree 3 homogeneous polynomial in 4 variables with coefficients in Q. For
a general G the corresponding section σG of E will have finitely many zeros. We use the
random function in Macaulay2 to generate a general degree 3 homogeneous polynomial.

i43 : R2 = QQ[Y0,Y1,Y2,Y3];

i44 : G = random(3,R2);

We compute eA1 (EQ, σG) ∈ GW(Q). Base change yields a form over R of which we com-
pute the signature as the number of positive eigenvalues minus the negative eigenvalues.
Exactly as before, we restrict σG : Gr(2, 4) → Sym3 S∗ to
SpecC2 := Spec(Q[y1, y2, y3, y4]) ⊂ Gr(2, 4) and get (g1, g2, g3, g4) : A4

Q
→ A

4
Q
and let

I4 = (g1, g2, g3, g4).
i45 : C2 = QQ[y1,y2,y3,y4];
i46 : S2 = C2[r];
i47 : g2 = {y1*r+y2,y3*r+y4,r,1};
i48 : m2 = map(S2,R2,g2);
i49 : I4 = sub(ideal flatten entries last coefficients m2 G, C2);
i50 : J4 = determinant jacobian I4;

We compute the trace formTr(C2/I4)/Q(〈(J4)C2/I4 〉) where J4 is the jacobian element of I4 which is
a 27×27-matrix with values inQ. Viewing it as a form overR, its signature is equal to the number
of positive eigenvalues minus the number of negative eigenvalues because any real symmetric
matrix can be diagonalized orthogonally.
i51 : Sol = traceForm(C2,I4,J4,QQ);
i52 : E = eigenvalues Sol;
i53 : sgn=0;
i54 : i=0;
i55 : while i<rk do(if E_i<0 then sgn=sgn-1 else sgn=sgn+1; i=i+1)

The signature is 3.

i56 : sgn

o56 = 3

So we know that the signature of eA1 (E) is nR = 3 and its rank nC = 27. Since the discriminant
of eA1 (EF32003 ) ∈ GW(F32003) is a square (and 2 is not a square in F32003), we can conclude that
eA1 (E) = eA1 (Sym3 S∗) is of form (2) and not (3), that is

eA
1
(E) = 15〈1〉 + 12〈−1〉.

2.3.4 Singular elements on a pencil of degree d hypersurfaces in P3

Let {Ft = t0F0 + t1F1 = 0} ⊂ P
3 × P

1 be a pencil of degree d surfaces in P
3. A surface in

the pencil is singular if there is a point on the surface on which all 4 partial derivatives vanish
simultaneously. Consider the vector bundleF := ⊕4

i=1 π∗
1 (OP3 (d−1))⊗π∗

2 (OP1 (1)) → P
3×P

1

whereπ1 : P3×P
1 → P

3 andπ2 : P3×P
1 → P

1 are the projections to the first and second factor,
respectively. A pencilXt = {Ft = t0F0+t1F1 = 0} ⊂ P

3×P
1 defines a section σ = ( ∂Ft

∂X0
, . . . , ∂Ft

∂X3
)

of this bundle where X0, . . . , X3 are the coordinates on P
3. A general singular hypersurface of

degree d has a unique singularity which is an ordinary double point by [5, Proposition 7.1 (b)]
and, whence, the zeros of σ are simple and count the singular elements on the pencil Xt . The
bundleF is relatively orientable sinceF and P3 ×P

1 are orientable, and we can enrich the count
of singular elements on the pencil over GW(k).
Let A3 ∼= U0 ⊂ P

3 and A
1 ∼= V0 ⊂ P

1 be the open affine subsets where X0 and t0 not vanish
and let A4 ∼= U := U0 × V0 ⊂ P

3 × P
1. One can show that U is compatible with the relative

orientation of F in the same manner as in [13, Lemma 3.10].

Example 1 We provide the code for d = 2 over the field F32003.
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i57 : F0 = random(2,R);
i58 : F1 = random(2,R);
i59 : T = R[t];
i60 : Ft = F0+t*F1;
i61 : D0 = diff(X0, Ft);
i62 : D1 = diff(X1, Ft);
i63 : D2 = diff(X2, Ft);
i64 : D3 = diff(X3, Ft);
i65 : C3 = FF[x1,x2,x3,t];
i66 : m3 = map(C3,T,{t,1,x1,x2,x3});
i67 : I5 = ideal(m3 D0,m3 D1,m3 D2,m3 D3);
i68 : J5 = determinant jacobian I5;
i69 : traceForm(C3,I5,J5,FF)

For the enriched count of singular elements on a pencil of degree 2 surfaces in P3 we get a form
of rank 4, discriminant 1 ∈ F

∗
32003/(F

∗
32003)2 and signature 0, that is the form 2H. For d = 3, i.e.,

the enriched count of singular elements on a pencil of cubic surfaces, we get 16H and for d = 4,
54H.

Remark 8 Again we know by [17, Proposition 12] that we get a multiple of the hyperbolic form
H = 〈1〉 + 〈−1〉.
Remark 9 Proposition 7.4 in [5] computes the number of singular elements on a pencil of degree
d hypersurfaces in P

n to be (n + 1)(d − 1)n. Whenever n is odd this count can be enriched in
GW(k) to the form (n+1)(d−1)n

2 H by [17, Proposition 12]. One checks that this coincides with our
count for n = 3 and d = 2, 3, 4.

Remark 10 Levine finds a formula [11, Corollary 10.4] that counts singular elements in a family
as the sum the of A1-Milnor numbers of the singularities (see subsection 3.2 for the definition
of A1-Minor numbers). It would be interesting to find a geometric interpretation for the local
indices in our count and compare our result to Levine’s count.

3 EKL-class
EKL is short for Eisenbud-Khimshiashvili-Levine who computed the local degree of non-simple,
isolated zeros as the signature of a certain non-degenerate symmetric bilinear form (a represen-
tative of the EKL-class) over R in [6] and [10]. Eisenbud asked whether the class represented by
the EKL-form which is defined in purely algebraic terms, had a meaningful interpretation over
an arbitrary field k . His question was answered affirmatively in [9] where it is shown that the
EKL-class is equal to the local A1-degree.
We recall the definition of the EKL-class from [9]. Let k be a field. Assume that f = (f1, . . . , fn) :

A
n
k → A

n
k has an isolated zero at the origin and let Q := k[x1 ,...,xn](x1 ,...,xn)

(f1 ,...,fn) . Define E := det aij
where the aij ∈ k[x1, . . . , xn] are chosen such that

fi = fi(0) +
n∑

i=1
aijxj

fi(0)=0=
n∑

i=1
aijxj .

We call E the distinguished socle element since it generates the socle ofQ (that is the sum of the
minimal nonzero ideals) when f has an isolated zero at the origin [9, Lemma 4].

Remark 11 Let J = det ∂fi
∂xj be the jacobian element. By [15, Korollar 4.7] J = rankk Q · E.

Let φ : Q → k be a k-linear functional which sends E to 1.

Definition 4 The EKL-class of f is the class of βφ : Q × Q → k defined by βφ(a, b) = φ(ab) in
GW(k).

Remark 12 By [9, Lemma 6] the EKL-class is well-defined, i.e., it does not depend on the choice
of φ and βφ is non-degenerate. One can for example choose a k-basis b1, . . . , bn−1, E for Q and
choose φ(bi) = 0 and φ(E) = 1.
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Table 1 Du Val singularities

Singularity Equation f μA
1
(f ) = EKL-class of grad(f ) ∈ GW(Q)

An , n odd x2 + y2 + zn+1 n−1
2 H + 〈n + 1〉

An , n even x2 + y2 + zn+1 n
2H

Dn , n > 1 odd x2 + y2z + zn−1 n−1
2 H + 〈−1〉

Dn , n even x2 + y2z + zn−1 n−2
2 H + 〈−1〉 + 〈n − 1〉

E6 x2 + y3 + z4 3H

E7 x2 + y3 + yz3 3H + 〈−6〉
E8 x2 + y3 + z5 4H

3.1 EKL-code
The following code computes the EKL-form of f : An → A

n with one isolated zero at the origin
when the characteristic of k does not divide rankk Q. The input is a triple (C, I, FF ) where the
ideal I = (f1, . . . , fn) ⊂ C = FF [x1, . . . , xn] which is a complete intersection and the output is the
EKL-form.
i70: EKL=(C,I,FF)->(r=degree I;
B=basis(C/I);
B2=mutableMatrix B;
J=determinant jacobian I;
toVector = q -> last coefficients(q, Monomials=>B);
E=J_(C/I)/r;
p=0;j=0; while j<r do (if (toVector E)_(j,0)!=0 then p=j;j=j+1);
B2_(0,p):=E;
B2=matrix(B2);
Q=transpose B2 * B2;
T=mutableIdentity(C/I,r);
i=0;while i<r do (T_(i,p)=(toVector E)_(i,0) ; i=i+1);
T=matrix T;
T1=Tˆ(-1);
linear = v -> v_(p,0);
M=matrix applyTable(entries Q,q->lift(linear(T1*(toVector q)),FF));
M)

3.2 A
1-Milnor numbers

Kass and Wickelgren define and compute several A1-Milnor numbers as an application of the
EKL-form in [9]. Let 0 ∈ X = {f = 0} ⊂ A

n be a hypersurface with an isolated singularity at the
origin. Then the A1-Milnor number of X is

μA
1
(f ) := degA

1
0 (grad(f )).

Kass and Wickelgren show that the A1-Milnor number is an invariant of the singularity. When
n is even μA

1 (f ) counts the nodes to which X bifurcates (see [9] for more details). They compute
the A1-Milnor numbers of ADE singularities.

3.2.1 Du Val singularities
We compute the EKL class of Du Val singularities, that is simple singularities in 3 variables, in
Table 1.

Example 2 As an example we give the computation for E6.

i71 : C4 = QQ[x,y,z];
i72 : f = xˆ2+yˆ3+zˆ3*y;
i73 : I6 = ideal(diff(x,f),diff(y,f),diff(z,f));

We get the following EKL-form.

i74 : EKL(C4,I6,QQ)
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o74 = | 0 0 0 1 0 0 0 |
| 0 0 0 0 1/18 0 0 |
| 0 0 0 0 0 1/18 0 |
| 1 0 0 0 0 0 0 |
| 0 1/18 0 0 0 0 0 |
| 0 0 1/18 0 0 0 0 |
| 0 0 0 0 0 0 -1/6 |

7 7
o74 : Matrix QQ <--- QQ

It is easy to see that this is 3H + 〈−6〉.
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AMoreA1-Milnor numbers
We provide A1-Milnor numbers of some Fuchsian singularities (see [4]) in Table 2.

Table 2 Fuchsian singularities

Singularity Equation f μA
1
(f ) = EKL-class of grad(f ) ∈ GW(Q)

E12 x7 + y3 + z2 6H

Z11 x5 + xy3 + z2 5H + 〈−6〉
Q10 x4 + y3 + xz2 5H

E13 x5y + y3 + z2 6H + 〈−10〉
Z12 x4y + xy3 + z2 5H + 〈−22〉 + 〈−66〉
Q11 x3y + y3 + xz2 5H + 〈2〉
W12 x5 + y4 + z2 6H

S11 x4 + y2z + xz2 5H + 〈−2〉
E14 x8 + y3 + z2 7H

Z13 x6 + xy3 + z2 6H + 〈−6〉
Q12 x5 + y3 + xz2 6H

W13 x4y + y4 + z2 6H + 〈−2〉
S12 x3y + y2z + xz2 6H

U12 x4 + y3 + z3 6H

J0,3 x9 + y3 + z2 8H

Z1,0 x7 + xy3 + z2 7H + 〈−6〉
Q2,0 x6 + y3 + xz2 7H

W1,0 x6 + y4 + z2 7H + 〈3〉
S1,0 x5 + zy2 + xz2 7H

U1,0 x3y + y3 + z3 7H

W12 x5 + y4 + z2 6H

NA10,0 x5 + y5 + z2 8H

VNA10,0 x4 + y4 + yz2 7H + 〈−2〉
J4,0 x12 + y3 + z2 11H

Z2,0 x10 + xy3 + z2 10H + 〈−6〉
Q3,0 x9 + y3 + xz2 10H

X2,0 x8 + y4 + z2 10H + 〈1〉
S∗
2,0 x7 + y2z + xz2 10H



S. Pauli Res Math Sci (2023) 10:26 Page 13 of 14 26

Table 2 continued

U∗
2,0 x6 + y3 + z3 10H

x6 + y6 + z2 12H + 〈2〉
x5 + y5 + xz2 12H

x4 + y4 + z4 10H + 〈1〉

B An example of lines on a cubic
As an example, we provide the Gram matrix of eA1 (EF11 , σH ) for

H = Z3
0 − Z02Z1 − Z2

1Z2 + Z0Z2
2 − 2Z1Z2

2 − 2Z2
0Z3 − Z0Z1Z3

−X2
1X3 + X1X2X3 + X1X2

3 + 2X2X2
3 ,

that is, the count of lines on the cubic surface {H = 0} ⊂ P
3
F11

.

i75: P2 = 11;
i76 : FF2 = ZZ/P2;
i77 : R3 = FF2[Z0,Z1,Z2,Z3];
i78 : H = Z0ˆ3-Z0ˆ2*Z1-Z1ˆ2*Z2+Z0*Z2ˆ2-2*Z1*Z2ˆ2-

2*Z0ˆ2*Z3-Z0*Z1*Z3-Z1ˆ2*Z3+Z1*Z2*Z3+Z1*Z3ˆ2+2*Z2*Z3ˆ2;
i79 : C5 = FF2[z1,z2,z3,z4];
i80 : S3 = C5[u];
i81 : g3 = {z1*u+z2,z3*u+z4,u,1};
i82 : m4 = map(S3,R3,g3);
i83 : I7 = sub(ideal flatten entries last coefficients m4 H, C5);
i84 : L2=minimalPrimes I7;
i85 : n2=length L2;
i86 : J7=determinant jacobian I7;

There are 5 lines on X .

i87 : n2=length L2

o87 = 5

LetL1, . . . , L5 be the fields of definitions of the 5 lines.We compute the trace forms ofTrLj/F11〈JLj 〉
for j = 1, . . . , 5 and sum them up to get eA1 (EF11 , σF ) ∈ GW(F11).

i88 : Sol2 = traceForm(C5,L2_0,J7,FF2);
i89 : j=1;
i90 : while j<n2 do (Sol2=Sol2++traceForm(C5,L2_j,J7,FF2);j=j+1);
i91 = Sol2

o91 = | -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 2 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 -3 -4 2 0 0 0 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 -4 5 -5 -3 3 -5 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 2 -5 -5 -4 -4 -5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 -3 -4 5 -5 -5 5 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 3 -4 -5 -5 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 -5 -5 -5 4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 2 2 0 5 0 1 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 -2 3 5 -2 1 0 2 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 -3 -3 2 -4 4 -1 4 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 -3 2 -5 -1 2 0 0 4 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 2 -5 4 -3 1 5 -4 1 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 -4 -1 -3 -2 5 5 1 1 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 4 2 1 5 -4 -1 -1 -2 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 -1 0 5 5 -1 -1 -2 -2 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 4 0 -4 1 -1 -2 0 2 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 4 1 1 -2 -2 2 -5 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 -3 0 -2 -4 4 3 |
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| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 4 -4 2 2 -4 -3 2 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 -4 3 3 -4 -3 2 -5 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 -1 -5 -2 -3 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 2 -4 -1 -4 -2 -4 -4 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 -3 -5 -2 3 -4 1 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 -3 2 -2 -4 -4 3 -2 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 -5 -3 -4 1 -2 -2 |

27 27
o90 : Matrix FF <--- FF

The sizes of the blocks are the degrees [Lj : F11] of the field extension Lj/F11 for j = 1, . . . , 5. So there is one rational line on
X , one defined over a field extension of degree 2 and 3 lines defined over a field extension of degree 8 on X .
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