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AHA:fnh”eC?a:;f::mfv“etr‘ijfr We use Macaulay2 for several enriched counts in GW(k). First, we compute the count of
Diisseldorf, Diisseldorf, Germany lines on a general cubic surface using Macaulay2 over I, in GW(IFp) for p a prime
number and over Q in GW(Q). This gives a new proof for the fact that the A'-Fuler
number of Sym? 8* — Gr(2,4) is 15(1) + 12(—1). Then, we compute the count of lines
in P3 meeting 4 general lines, the count of lines on a quadratic surface meeting one
general line and the count of singular elements in a pencil of degree d-surfaces. Finally,
we provide code to compute the EKL-form and compute several A'-Milnor numbers.

1 Introduction

In [8] Kass and Wickelgren count the lines on a smooth cubic surface as an element of
the Grothendieck-Witt ring GW (k) of a field k by computing the A!-Euler number of the
vector bundle £ := Sym3 S§* — Gr(2, 4) which is by definition the sum of the local indices,
that is the local Al-degrees, at the zeros of a general section. Here, Gr(2, 4) denotes the
Grassmannian of lines in P2 and S — Gr(2, 4) its tautological bundle.

For a field L, denote by &; the base change of £ to L. Let F € [F,[Xp, X1, X3, X3]3 be a
random homogeneous degree 3 polynomial in 4 variables. Then F defines a general cubic
surface X = {F =0} C ]P’]?l;p and a section of of ng by restriction. The zeros of o are the
lines on X.

Let A%p = Spec(Fp[x1, X2, x3,%4]) C Gr(2,4) be the open affine subset of the Grass-
mannian consisting of the lines spanned by x1e1 + x3e2 + e3 and xae; + x4€2 + e4 where
(e1, ey, e3, e4) is the standard basis for IF;;, For the general cubic surface X, all lines on
X are elements of this open affine subset of Gr(2, 4) and hence the A!-Euler number
et (&r,) € GW(Fp) (or the count of lines on the cubic surface X) can be computed as the
sum of local A!-degrees of the zeros of orlps = (fufo f3. fa) A* — A% by [9].

The IF,-algebra % is 0 dimensional and thus there are finitely many lines
on X. Call these lines [y, ..., [,. By [8, Corollary 51] the lines on a general and thus
smooth cubic surface are simple. This means that the lines /y, . . ., /,, are simple zeros of
(fforfar fa) : A%p — A%p. It follows that I, [x1, %, x3, x4] /I is isomorphic to the product
of fields L1 x -+ x L, where L;j = Fy[x1, 2, x3, x4]/m; is the field of definition of /; (that
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is residue field of the point in Gr(2, 4) corresponding to /;) forj =1, ..., n. By [9, Lemma
9] the local index of /; is equal Ur) € GW/(L;) where Ji; is the image of the jacobian
element J := det g—fl in Lj = I [x1, x2, 3, x4] /m; and it follows that the Al-Euler number
of Sym3 §* — Gr(2, 4) is given by

n
e (Er,) = Y Triym, (U1,) € GW(F,). (1)
j=1

We use Macaulay2 to compute the rank and discriminant of (1) when p = 32003.
The computation gives an element in GW ([F33003) of rank 27 and discriminant 1 €
Fio00s/ (F§2003)2' Two elements in GW (F32003) are equal if and only if they have the
same rank and discriminant, so this determines the count of lines on a cubic surface in
GW (F32003) completely.

Similarly, we use Macaulay?2 to get the Gram matrix of the form Al (Eg) € GW(Q) over
the rational numbers Q. We view Al (€p) as a bilinear form over the real numbers R and
compute its signature which is equal to 3.

By Theorem 5.8 in [1] e &) = A (Sym3 S*) is equal to either

nc + nr nc — NR

o (D + = — (1) € GW(K) @
or
= er 1y + < > ")+ 2) - (1) e GW(R) ®

for nc, nr € Zand afield k. By [1, Remark 5.7] nc and #R are the Euler numbers of the real
and complex bundle, respectively. The complex count nc is equal to the rank of our form
which is nc = 27, and the real count is equal to the signature, so ng = 3. In [12, &8] and
(1, Corollary] it is shown that the Al-Euler number of direct sums of symmetric power
of the dual tautological bundle on a Grassmannian is always of form (2) when defined,
using the theory of Witt-valued characteristic classes. The proof here is independent of
this theory and we may also apply it to bundles which are not of this form.

Since 2 is not a square for our chosen prime 32003, we can rule out (3) for the count of
lines on a cubic surface and hence we have a new proof of the fact that

A (Sym? 8*) = 15(1) + 12(—1) € GW (k) (4)

which is the main result in [8]. The complex count xc is the classical result by Cayley and
Salmon that there are 27 lines on a smooth cubic surface [3]. Segre studied the real lines
on a smooth cubic surface in [16]. See also [7,14] for the real count.

Similarly, we get an enriched count of lines meeting 4 general lines in P3 (this has
already been computed in [17]) and of lines on a quadratic surface meeting one general
line by computing the A!-Euler numbers A (@?:1 AZS* = Gr(2,4)) and eAl(/\zS* @
Sym? S* — Gr(2, 4)), respectively. Note, that neither of these vector bundles is a direct
sum of symmetric powers of the dual tautological bundle and we cannot use [12, &8] and
[1, Corollary] to rule out (3). However, we already know that the A!-Euler number of both
of these bundles will be a multiple of the hyperbolic form H = (1) 4+ (—1) since they have
direct summands of odd rank [17, Proposition 12].

Furthermore, we count singular elements on a pencil of degree d surfaces as the A!-Euler
number of @lenfOps(d - 1) ® 7y Op(l) — P3 x PL.

Finally, we provide code for computing the EKL-form (see [9]) which computes the local
Al-degree for non-simple zeros.
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In the appendix we compute the A'-Milnor numbers of several Fuchsian singularities
and provide one explicit example of the Gram matrix of a form representing eAl(&'FH) €
GW(F11).

2 A'-Euler numbers

2.1 Definition of the A'-Euler number

Let k be a field and let 7 : E — X be a vector bundle of rank r over a smooth and proper
scheme X of dimension r. Assume further that for each closed point x € X there is a
Zariski neiborhood U of x which is isomorphic to affine space A”.

Remark 1 In our examples, X is either a Grassmannian of lines or projective space which
both have standard coverings by open affine subsets &/ = A’. All definitions also work
when X does not admit a Zariski covering by affine spaces. Then one needs Nisnevich
coordinates [8, Definition 17 and Lemma 18].

We recall the definition of the Al-Euler number of 7 : E — X from [8, &4]. Recall that
a (weak) orientation of E is an isomorphism ¢ : det E = L®2? where L — X is a line bundle.

Definition 1 A relative orientation of E is a orientation of the line bundle Hom(det TX,
det E), that is, an isomorphism ¢ : Hom(det TX, det E) = L®? where TX — X denotes
the tangent bundle of X and L — X is a line bundle.

Remark 2 1f both the tangent bundle of X and E are orientable, then E is relatively ori-
entable since Hom(det TX, det E) = (det TX) ™! @ det E. However, 7 : E — X can still be
relatively orientable even though E and 7X are not.

Assume that 7 : E — X is equipped with a relative orientation ¢. An open affine subset
¥ U = A" of X defines a trivialization of TX|;.

Definition 2 A trivialization of E|;; with ¢ : U = A" is compatible with the relative
orientation ¢ and v if the element of Hom(det TX |, det E|;;) sending the distinguished
basis element of det 7X|;; to the distinguished element of det E|;; is sent to a square by ¢.

Let 0 : X — E be a section of E with an isolated zero x € X. We now define the local
index ind, o of o at x, that is the local contribution of the zero x to the A!-Euler number.
Choose a neighborhood x € U of x which is isomorphic to affine space ¥ : U = A" and
a trivialization E|;; = A” x A" compatible with the chosen relative orientation ¢. Locally
the following composition

UL ar 78 ply = AT x AT T A7

where the second map is the projection onto the second factor, is given by r regular
functions (fi, ..., f;) : A" — A",

The local index ind, o of o at x is the local Al-degree degﬁ?1 (.- fe)of (.., fr)
AT — A" at x. For the definition of the local A!-degree we refer to [9, &2].

We define the Al-Euler number e (E, o) with respect to a section o : X — E with only
isolated zeros to be sum of indices of the zeros of o. It turns out that e*' (E, o) does not
depend on the chosen section [1, Theorem 1.1] and we can define the A!-Euler number

independently of o.



26 Page4ofi14 S. Pauli Res Math Sci (2023) 10:26

Definition 3 Let 7 : E — X be a vector bundle of rank r equal to the dimension of the
smooth, proper scheme X over a field k equipped with a relative orientation, then the
Al-Euler number is defined by Al (E) == Al (E, o) for a section o with only isolated zeros.

2.1.1 Computation of the local indices

Next we recall from [9] how the local Al-degree can be computed. This also yields a
formula for the local indices. Let L/k be a finite separable field extension and let 8 :
V x V — L be a non-degenerate symmetric bilinear form over L. Then the trace form
Trzk(B) is the form

TrL/k

vxvEhp K (5)

where Try ; denotes the field trace. Assume x € X is simple zero, that is the jacobian
element g—g(x) at x is non-zero. If x is a rational point, its local degree is equal to (J(x)) €
GW (k). When x is not rational, its local A!-degree can be computed as the trace form
Tri) (U (x))) € GW (k) of (J(x)) € GW (k(x)) for finite separable field extensions k(x)/k
by [2].

Remark 3 When x € X is a non-simple zero, its local A!-degree can be computed with
the EKL-form (see Sect. 3).

2.2 Cubic surfaces
We compute the rank and discriminant of the Al-Euler number of £ = Sym3S* —
Gr(2, 4) over F35003.

il : P = 32003;
i2 : FF = 727Z/P;

We generate a random homogeneous degree 3 polynomial F in 4 variables X, X7, X5 and
X3.

i3 : R = FF[X0,X1,X2,X3];
i4 : F = random(3,R);

We replace Xy, X1, X2 and X3 by x15 + %2, x35 + x4, s and 1, respectively, and define /
to be the ideal in C = F3y003[x1, X2, X3, x4] generated by the coefficients s3, s, s and 1
of F(x1s + x2, x35 + x4, s, 1). That means, we let Spec C = Spec(F32003[x1, %2, X3, x4]) C
Gr(2, 4) be the open affine subset consiting of the lines spanned by x1e; + x3e2 + e3 and
xe1 + xqey + e4 for the standard basis (e, ey, e3, e4) of ngo% and we let I be the ideal
generated by f1, f2, f3, fa where (f1, f2, f3, fa) is equal to

(fl,f,z’fé’ﬂ) :A4 J|A4=(id)(ﬁ’f27ﬁ’nﬁ¥)) A4

the restriction of the section or of £ defined by F to the chosen open affine set

Spec(F32003[%1, %2, X3, X4]).

T
x A* 25 A%

Remark 4 By [8, Corollary 45] the vector bundle £ is relatively orientable and the open
affine subset Spec C C Gr(2, 4) is compatible with this relative orientation.

i5 : C
i6 : S

FF[x1l,x2,x3,x4];
Clsl;
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i7 : g = {x1*s+x2,x3*s+x4,s,1};
i8 : m = map(S,R,qg);
19 : I = sub(ideal flatten entries last coefficients m F, C);

We use Macaulay2 to compute the dimension and degree of C/I = F3p003[x1, X2, x3, x4] /1.

i10 : dim I

1l
o

010
i1l : degree I

oll = 27

Since there are in general finitely many lines on a cubic surface, the expected dimension
of C/I is 0. The degree is the dimension of C/I as a Fa3ppo3-vector space, that is the rank
of the non-degenerate symmetric bilinear form (1) which turns out to be 27 as expected.

Since Q = C/I is zero-dimensional Noetherian and hence Artinian, it is isomorphic to
its product of localizations at its maximal ideals

Q= Qm; X -+ X Qm,.

By [8, Corollary 53] (fi, f2, f3, fa) : A* — A% only has simple zeros, that means that Qu, is
a finite field extensions of F3y003 equal to the residue fields of the m; fori =1, ..., n.

The maximal ideals m; correspond to the finitely many lines [, ..., [, on {F = 0} C P3.
This implies that C/I is isomorphic to the product of fields

F32003[%1, %2, %3, 3] /m1 X - - - x F32003[%1, %2, X3, ¥4]/m,, = L1 x -+ x L, (6)

where m; is maximal ideal defining /; as point in Gr(2, 4) and L; is the field of definition of
l;, i.e., the residue field of /; in Gr(2,4), fori =1, ..., n.

Remark 5 When we pass to the algebraic closure of F3003 we know that Spec(C/I) has
27 closed points. However, in (6) the number of lines # is not necessarily equal to 27 since
in general not all lines will be defined over Fao3.

We use a primary decomposition of I to find the m;.

i1l2 : L = primaryDecomposition I;
113 : n length L;

Remark 6 Since the ideals m; are actually primes, the primary ideals in the primary decom-
position are the minimal primes and in particular unique, and we can let Macaulay2 com-
pute the minimal primes instead of the the primary decomposition of I. This is much
more time efficient. However, if the one of the zeros were not simple, one would need the
primary decomposition and then apply the EKL-form (see Sect. 3).

The contribution of the line /; to (1) is Trr,/r;2003({J1;)) where J;, is the image of the
jacobian element / = det ?,fT’j of I in L; = C/m;. The discriminant of (1) is the product
of the discriminants of the forms Trz, /F;,005 ((/1;)). By [8, Lemma 58] the discriminant of
TrLi/F32003(ULi>) is a square in [F3p003 if /7, is a square in L; = F32003[%1, %2, 3, ¥4]/m; when
the degree [L; : F32003] is odd and if J;, is a non-square in L; = F3003[x1, %2, %3, x4]/m;
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when [L; : F3003] is even. Since the units IF;"I of a finite field F; with g form the cyclic
group of orderg — 1,7/ (IF:;)Z is isomorphic to Z/27Z. By Fermat’s little theorem b9~! = 1
mod g for b € Iy and b is a square if and only if b7 =1 mod q. So to find the
discriminant of (1) we compute the product

n plLiF32003] 1
disc((1)) = [ T e,

i=1

where € = —1 when [L; : F35003] is even and € = 1 when [L; : F32003] is odd.

il4 : J = determinant jacobian I;

115 : disc = 1_FF;

il16 : 1=0;

i1l7 : while i<n do

(1f even degree L_1i

then

disc=disc*1lift(J_(C/L_1i) " ((P" (degree L_1i)-1)//2),FF)*(-1)_FF
else

disc=disc*1lift(J_(C/L_1i) " ((P" (degree L_1i)-1)//2),FF); i=i+1l);

The discriminant of (1) is a square.

118 : disc
0l8 =1

2.3 The trace form
The trace form (5) can also be defined when L is a finite étale k-algebra like C/I =

F [ 2V 2N 3y ] 1 . o1
W. In particular, the trace form Tr(c/1)/Fy005 ((/c/1)) is a bilinear form over

F32003 representing Al (EFs003) € GW (F32003) where Jc s is the image of the jacobian
element in C/I.

The following code computes the trace form Try . ({/)) for FF a field and I an ideal in
polynomial ring C over FF such that C/I is a finite étale algebra over FF.

i19: traceForm = (C,I,J,FF) -> (

B:=basis(C/I);

r:=degree I;

Q:=(J_(C/I))*(transpose B) *B;

toVector := g -> last coefficients(g,Monomials=>B) ;
fieldTrace := g -> (M:=toVector(g*B_(0,0));i=1;while i<r do
(M:M|(toVector (g*B_(0,1))) ; i=i+1l); trace M);

matrix applyTable(entries Q, g->1lift(fieldTrace g,FF)))

2.3.1 Lines meeting four general lines in P>
Asan example we compute the count of lines meeting 4 general lines in P3, i.e., we compute
the A'-Euler number of the bundle & := A2S* @ A2S* @ A2S* @ A2S* — Gr(2, 4). We
know from [17] that this equal to the hyperbolic form H := (1) + (—1).

Clearly, det(A2S* @ A2S* @ A2S* @ A2S*) = (A2S%)®* and thus the vector bundle
&, is orientable. The Grassmannian Gr(2, 4) is orientable as well (i.e., its tangent bundle
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T Gr(2,5) = §* ® Q is orientable). Those two orientations yield a relative orientation ¢ :
Hom(T Gr(2, 4), &) = L®? of &. Over the open affine subset Spec(F32003 [*1, X2, X3, %4]) C
Gr(2,4) from subsection 2.2 the dual tautological bundle S* — Gr(2, 4) has basis the
two monomial s and 1 (where again s is the variable on the line). This basis induces

a trivialization of the restriction of & to SpecF3a003[%1, . . ., ¥4]. By [17, Lemma 4] the

relative orientation ¢ is compatible with this trivialization over Spec F3a03[x1, . . ., X4].
Let [, ..., 14 be 4 general lines in P3 and let a;, b; be two independent linear forms

cuttingout/; fori =1,...,4.

i20 al = random(1l,R);

i21 bl = random(1l,6R);

i22 a2 = random(1l,R);

i23 b2 = random(1,R);

i24 a3 = random(1l,R);

i25 b3 = random(1l,R);

i26 a4 = random(1l,R);

127 b4 = random(1,R);

The linear forms a; and b; define a section s; := a; A b; of A2S*. A line [ in P3 meets the
line /; if and only if s;(/) = 0 by [17, Lemma5].

i28 : sl = lift((last coefficients m al)_(0,0)*(last coefficients m bl)_(1,0)
-(last coefficients m al)_(1,0)*(last coefficients m bl)_(0,0),C);
129 : s2 = lift((last coefficients m a2)_(0,0)*(last coefficients m b2)_(1,0)
-(last coefficients m a2)_(1,0)* (last coefficients m b2)_(0,0),C);
i30 : s3 = lift((last coefficients m a3)_(0,0)*(last coefficients m b3)_(1,0)
-(last coefficients m a3)_(1,0)* (last coefficients m b3)_(0,0),C);
i31 : s4 = lift((last coefficients m a4)_(0,0)*(last coefficients m b4)_(1,0)
-(last coefficients m a4)_(1,0)*(last coefficients m b4)_(0,0),C);

i32 : I2 = ideal(sl,s2,s3,s4);
133 : J2 = determinant jacobian I2;
i34 : traceForm(C,I2,J2,FF)

., 8¢ and Jp := det
trace form Tr(c/p,)/rr({/2)) (where C is still F32003[x1, %2, x3, ¥4]) and get a form of rank 2

Let I5 be the ideal generated by the sections sy, . . .. We compute the

and discriminant —1 € F§, 5/ (ngoos)z as expected.

2.3.2 Lines on a degree 2 hypersurface in P> meeting 1 general line

We compute the count of lines on a quadratic surface meeting a general line as the Al-
Euler number of & := Sym2 S* @ A2S8* — Gr(2,4).

We have det(Sym? S* @ A2S*) = p*Ops(4) where p : Gr(2,4) — P is the Pliicker
embedding. So &3 is orientable. Since Gr(2, 4) is orientable, too, we get a relative orienta-
tion on &3. Over the open affine subset F3p003[x1, - - ., x4] C Gr(2, 4) from 2.2 we get a triv-
ialization of &3 coming from trivialization of the dual tautological bundle S* — Gr(2, 4).

Lemma 1 The trivialization of £3|Fa3(x1,...,x4] i cOmpatible with the relative orientation
of &; described above.

Proof As in [8, Definition 39] we define a basis &; = e;, & = ey, &3 = x1e1 + x3€2 + €3
and &5 = xe1 + x4ep + es of Fapgoz[x1, %2, x3, x4]%, and let ¢1, Po, P3 and ¢4 be its dual
basis. Here ey, e, e3, e4 is a basis of F3L2003' Then the open affine subset of lines spanned

Page70of14 26
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by x1e1 + x3e2 + e3 and xpeq + xaex + es, U = Spec Fagp3[x1, %2, %3, x4] C Gr(2, 4), yields
a basis

b3 ® &1, P ® &1, P3 R &y, s ® &3
of T Gr(2, 4)|;; and a basis
(&%’ 0)1 ((ﬁ?)&ﬁb O)) (&72; 0)7 (0) (}3 N &4)

of &u. Let €], €}, e3, €} be a different basis of IF%ZOOS such that e3 and e4 span the same
2-plane as €} and ¢}. We define & and ¢/ for i = 1,2, 3, 4 as before.

We want to show that the determinants det; and dety of the two base change matri-
ces relating ¢3 ® &1, ¢a ® &1, ¢3 ® &, Pa ® & to Py @ &), P}, ® &, P ® &), ¢, ® &, and
(#3,0), (¢3¢4, 0), (83, 0), (0, @3 A $a) to (B, 0), (P58}, 0), (P, 0), (0, 5 A @), respectively,
are both squares, because then the determinant relating the bases of

T Gr(2,4)" |y ® E|uy = Hom(T Gr(2,4) |1, E21u)

is a square.
By the proof [8, Lemma 42] det; is a square. As in [8, Lemma 42] we write &; = aé3 + bé,
and &) = cé3 + dé,. Then

$% = Ags + C¢y + an element in the span of ¢1, ¢»
and

@} = Bds + Dda + an element in the span of ¢y, ¢

A B b o e~
where (C D) is the inverse of <a d). The determinant relating ¢32, ¢3da, §; to
c

P2, $ydl, 2 is (AD — BC)? and the determinant relating @3 A ¢4 to ¢4 A ¢ is AD — BC.
Their product dety = (AD — BC)* is a square. O

We compute A (&3).

i35 : F2 = random(2,R);

i36 : a5 = random(1l,R);

i37 : b5 = random(1l,R);

i38 : s5 = 1lift((last coefficients m a5)_(0,0)*
(last coefficients m b5)_(1,0)

-(last coefficients m a5)_(1,0)*

(last coefficients m b5)_(0,0),C);

139 : Q = sub(ideal flatten entries last coefficients m F2, C);
140 : I3 = Q+ideal(sb);

i41 : J3 = determinant jacobian I3;

i42 : traceForm(C,I3,J3,FF)

It is a rank 4 form of discriminant 1 € 3,/ (]14“;2003)2. When we compute the form over
the real numbers R (this can be done similarly as in subsubsection 2.3.3), we get a form of
signature 0. Hence, we can use [1, Theorem 5.8] to conclude that Al (&3) = 2HL

Remark 7 Let E be a vector bundle that splits up as a direct sum of vector bundles, i.e.
E = E' @ E". It follows from [17, Proposition 12] that the A!-Euler number of E is a
multiple of H = (1) + (—1) if the rank of E’ or E” is odd. Hence, it is no surprise that we
get a multiple of H in the calculation above.
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2.3.3 Signature ofe®' (€) = 2 (Sym3 S¢)

Let G be a degree 3 homogeneous polynomial in 4 variables with coefficients in Q. For
a general G the corresponding section o of £ will have finitely many zeros. We use the
random function in Macaulay2 to generate a general degree 3 homogeneous polynomial.

i43 : R2 = QQ[YO0,Y1l,Y2,Y3];
i44 : G = random(3,R2);

We compute Al (€@, 06) € GW(Q). Base change yields a form over R of which we com-
pute the signature as the number of positive eigenvalues minus the negative eigenvalues.
Exactly as before, we restrict og : Gr(2,4) — S.ym3 S* to
Spec Cy := Spec(Q[y1, y2, ¥3, y4]) C Gr(2,4) and get (g1, g2, g3, &a) : A?L@ — Aa and let
14 = (gb £ 83 g4)

Qlyl,vy2,y3,v4]1;
146 : S2 = C2[r],
147 : g2 = {yl*r+y2,y3*r+yd,r,1};
148 : m2 = map(S2,R2,92);
149 : I4 = sub(ideal flatten entries last coefficients m2 G, C2);
i50 : J4 = determinant jacobian I4;

We compute the trace form Tr(c,1,),0({((Ja)c,/1,)) where J4 is the jacobian element of /5 which is
a27 x 27-matrix with values in Q. Viewing it as a form over R, its signature is equal to the number
of positive eigenvalues minus the number of negative eigenvalues because any real symmetric

matrlx can be dlagonallzed orthogonally.
i51 : Sol = traceForm(C2,I4,J4,Q0);

i52 : E = eigenvalues Sol;
i53 : sgn=0;
i54 : 1=0;

i55 : while i<rk do(if E_i<0 then sgn=sgn-1 else sgn=sgn+l; i=i+1)
The signature is 3.

156 : sgn

o056 = 3

So we know that the signature of Al (&) is ng = 3 and its rank nc = 27. Since the discriminant
of &' (EFzn003) € GW (F'32003) is a square (and 2 is not a square in F3003), we can conclude that
A &)= A (Sym3 S*) is of form (2) and not (3), that is

AN (E) = 15(1) + 12(—1).

2.3.4 Singular elements on a pencil of degree d hypersurfaces in P3
Let {F, = toFo + t1F1 = 0} C P3 x P! be a pencil of degree d surfaces in P3. A surface in
the pencil is singular if there is a point on the surface on which all 4 partial derivatives vanish
simultaneously. Consider the vector bundle F := @l 1777 (Ops(d —1)) @ (Op1 (1)) — P3 x P!
where; : P2 x P! — P3andmy : P32 x P! — Plarethe projections to the first and second factor,
respectively. A pencil X; = {F; = tyFo+t1F1 = 0} C P x P! definesasectiono = (%, ey g—g)
of this bundle where Xy, ..., X3 are the coordinates on P2, A general singular hypersurface of
degree d has a unique singularity which is an ordinary double point by [5, Proposition 7.1 (b)]
and, whence, the zeros of o are simple and count the singular elements on the pencil X;. The
bundle F is relatively orientable since F and P3 x P! are orientable, and we can enrich the count
of singular elements on the pencil over GW (k).

Let A% = Uy ¢ P? and A! = Vj C P! be the open affine subsets where Xj and Z not vanish
and let A* = U := Uy x Vo C P3 x PL. One can show that I/ is compatible with the relative
orientation of F in the same manner as in [13, Lemma 3.10].

Example 1 We provide the code for d = 2 over the field F3yg03.
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i57 : FO0 = random(2,R);
i58 : Fl1 = random(2,R);
i59 : T = R[t];

160 : Ft = FO+t*F1;

i61 : DO = diff (X0, Ft)
162 : D1 = diff (X1, Ft)
i63 : D2 = diff (X2, Ft);
i64 : D3 = diff (X3, Ft)
i65 : C3 = FF[x1,x2,x3,t];

166 : m3 = map(C3,T,{t,1,x1,x2,x3});

167 : I5 = ideal (m3 DO,m3 D1,m3 D2,m3 D3);
168 : J5 = determinant jacobian I5;

i69 : traceForm(C3,I5,J5,FF)

For the enriched count of singular elements on a pencil of degree 2 surfaces in IP? we get a form
of rank 4, discriminant 1 € 5,/ (]F’?jm%)2 and signature 0, that is the form 2H. For d = 3, i.e,,
the enriched count of singular elements on a pencil of cubic surfaces, we get 16H and for d = 4,
54HL.

Remark 8 Again we know by [17, Proposition 12] that we get a multiple of the hyperbolic form
H=(1)+{-1).

Remark 9 Proposition 7.4 in [5] computes the number of singular elements on a pencil of degree
d hypersurfaces in P” to be (n + 1)(d — 1)”. Whenever # is odd this count can be enriched in
GW (k) to the form WH by [17, Proposition 12]. One checks that this coincides with our
count forn =3 and d = 2, 3, 4.

Remark 10 Levine finds a formula [11, Corollary 10.4] that counts singular elements in a family
as the sum the of A'-Milnor numbers of the singularities (see subsection 3.2 for the definition
of Al-Minor numbers). It would be interesting to find a geometric interpretation for the local
indices in our count and compare our result to Levine’s count.

3 EKL-class
EKL is short for Eisenbud-Khimshiashvili-Levine who computed the local degree of non-simple,
isolated zeros as the signature of a certain non-degenerate symmetric bilinear form (a represen-
tative of the EKL-class) over R in [6] and [10]. Eisenbud asked whether the class represented by
the EKL-form which is defined in purely algebraic terms, had a meaningful interpretation over
an arbitrary field k. His question was answered affirmatively in [9] where it is shown that the
EKL-class is equal to the local A!-degree.

We recall the definition of the EKL-class from [9]. Let k be a field. Assume thatf = (f},...,f,) :

k[x1,..0%n
A}Y — A} has an isolated zero at the origin and let Q := W Define E := deta;

where the a;; € k[x1, ..., x,] are chosen such that

n n
£i(0)=0
fi = £i(0) + E ajxi” = E aijx;.
i=1 i=1

We call E the distinguished socle element since it generates the socle of Q (that is the sum of the
minimal nonzero ideals) when f has an isolated zero at the origin [9, Lemma 4].

Remark 11 Let] = det % be the jacobian element. By [15, Korollar 4.7] J] = rank; Q - E.
Let ¢ : Q — k be a k-linear functional which sends E to 1.

Definition 4 The EKL-class of f is the class of By : @ x Q — k defined by B4(a, b) = ¢(ab) in
GW (k).

Remark 12 By [9, Lemma 6] the EKL-class is well-defined, i.e., it does not depend on the choice
of ¢ and By is non-degenerate. One can for example choose a k-basis by, . .., b,_1, E for Q and
choose ¢(b;) = 0 and ¢(E) = 1.
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Table 1 Du Val singularities

Singularity Equation f MAW (f) = EKL-class of grad(f) € GW(Q)
An, n odd X2 4 y? 42 SIH A+ (0 + 1)

An, N even X2 4 y? 21 OH

Dp,n > 10dd X2 +y’z 421 LH A4 (1)

Dp, neven X2 +y’z 421 D22 A (—1) + (0= 1)

Ee x4y 424 3H

E X2 +y3 4y 3H + (—6)

Es X2 +y3 2 4H

3.1 EKL-code

The following code computes the EKL-form of f : A” — A” with one isolated zero at the origin
when the characteristic of k does not divide rank; Q. The input is a triple (C, [, FF) where the
ideall = (fi,...,fu) C C = FF[xy, ..., x,] which is a complete intersection and the output is the
EKL-form.

i70: EKL=(C,I,FF)->(r=degree I;

B=basis (C/I);

B2=mutableMatrix B;

J=determinant jacobian I;

toVector = g -> last coefficients(qg, Monomials=>B) ;

E=J_(C/I)/r;

p=0;3=0; while j<r do (if (toVector E)_(3j,0)!=0 then p=3j;3j=3+1);
B2_(0,p) :=E;

B2=matrix (B2) ;

Q=transpose B2 * B2;

T=mutableIdentity(C/I,r);

1i=0;while i<r do (T_(i,p)=(toVector E)_(1i,0) ; 1i=i+1);

T=matrix T;

T1=T"(-1);

linear = v -> v_(p,0);

M=matrix applyTable(entries Q,g->1lift(linear (T1l* (toVector q)),FF));
M)

3.2 A'-Milnor numbers

Kass and Wickelgren define and compute several Al-Milnor numbers as an application of the
EKL-form in [9]. Let 0 € X = {f = 0} C A" be a hypersurface with an isolated singularity at the
origin. Then the Al-Milnor number of X is

1 (F) = deg? (grad(f)).

Kass and Wickelgren show that the A!-Milnor number is an invariant of the singularity. When

nis even /,LAI (f) counts the nodes to which X bifurcates (see [9] for more details). They compute
the Al-Milnor numbers of ADE singularities.

3.2.1 Du Val singularities
We compute the EKL class of Du Val singularities, that is simple singularities in 3 variables, in
Table 1.

Example 2 As an example we give the computation for Eg.

i71 : C4 = QQI[x,v,z];
172 : £ = x"2+y"3+z"3*y;
i73 : I6 = ideal(diff(x,f),diff(y,f),diff(z,£f));

We get the following EKL-form.
i74 : EKL(C4,I6,QQ)
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o074 =

o074

O OO Fr OO Oo

O OB OO oo

Matrix QQ

<——==

O OO O O o
O O O o Fr OO

It is easy to see that this is 3H + (—6).
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A More A'-Milnor numbers
We provide A!-Milnor numbers of some Fuchsian singularities (see [4]) in Table 2.

Table 2 Fuchsian singularities

S. Pauli Res Math Sci (2023) 10:26

Singularity Equation f }LAW (f) = EKL-class of grad(f) € GW(Q)
2P) x/ +y3 + 72 6H

n X 4 xy> + 2 S5H + (—6)
Q1o x4+ y3 4 xz? S5H

Ei3 Xy +y3 22 6H + (—10)
712 xty +xy3 22 SH + (—22) 4 (—66)
O Xy +y3 +x2? SH + (2)
Wio x> +y4 + 22 6H

Sn x4+ y2z + xz? S5H + (—2)
Eqa x8 +y3 + 22 7H

213 X0+ xy> + 22 6H + (—6)
Qn X° +y3 4 xz? 6H

Wis Xy +y*+ 72 6H + (—2)
S12 X3y +y2z + xz? 6H

U x4 +y3 + 73 6H

Jo3 x° +y3 + 22 8H

Zig x4+ xy® + 22 7H + (—6)
Q0 X0+ y3 4 xz? 7H

W o X0yt 22 7H + (3)
S10 x° + zy2 + xz2 7H

Uro By +y +2° 7H

Wio x° +y4 + 22 6H

/\IAQ)/0 X 4> + 22 8H

VNAS x4yt 4 yz? 7H + (—2)
Jao X12+y3+22 1MTH

220 X104 xy3 4 22 10H + (—6)
Q30 X2+ y3 4 xz? 10H

X20 x84yt 22 T0H + (1)
530 x4+ y2z + xz? 10H
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Table 2 continued
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%
UZO

S+y3+23 10H
X0 40 + 72 12H + (2)
x> + 5 + xz? 12H
AR T0H + (1)

B An example of lines on a cubic
As an example, we provide the Gram matrix of et (Eryy» on) for

H =273 —20°Z) — Z}Zy + ZoZ3 — 27,23 — 27373 — ZoZ17Z3

—X2X3 4+ X1X2X3 + X1 X2 + 2X2 X3,

that is, the count of lines on the cubic surface {H = 0} C IP’%H.

i75:

i76
i77
i78

i79
i80
igl
i82
i83
ig4
i85
i86

P2
FF
R3
H

2

11;

= ZZ/P2;

= FF2[2z0,21,22,23];
Z2073-20"2*21-21"2*Z2+Z0*Z2"2-2*Z1*Z2" 2~

2*7072*Z3-Z0*Z1*Z3-21"2*Z23+21*22*Z3+Z1*Z3"2+2*Z2*Z3"2;

C5
S3
a3
m4
17

FF2(zl,z2,23,2z47];

C5[ul;

{zl*u+z2,z3*u+z4d,u,1l};

map (S3,R3,93) ;

= sub(ideal flatten entries last coefficients m4 H,

L2=minimalPrimes I7;
n2=length L2;
J7=determinant jacobian I7;

There are 5 lines on X.

n2=length L2

forj=1,...,5and sum them up to get Al (&, 0F) € GW(F11).

So0l2 = traceForm(C5,L2_0,J7,FF2);

while j<n2 do (Sol2=Sol2++traceForm(C5,L2_3j,J7,FF2);j=j+1);

o 0 o0 0 o0 0 o0 00000 0 o0 00 0 0 0 0 0 00
2 0 0 0 0 0 0 0 0 0 0 0O 0 00 0 o0 0 o0 0 o0 00
-30 0 0 0 00 00 0 OO0 O0COO0OOO0OCOO0OOO0OTO0OO0
o -3-42 0 0 0 2 -20 0 0 0 0O 0 0O 0 O 0 0O 0 0 O
0O -45 -5-33 -52 3 0 0 0 0O O O0OOO0OO0OO0O OO0 O0OO0
0 2 -5-5-4-4-50 0o 0 o0 0 0o 0 0 0 0O 0 0 0 0 O
o 0 -3-45 -5-55 -20 0 0 0 O O O 0 O 0O O 0 0 O
o 0 3 -4-5-54 01 0 0 0 0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0
o o0 -5-5-54 3 1 0 0 0 0 00 0 0O O0O0OO0OO0OO0O0CO0
o 2 2 05 01 -22 0 0 0 0 0O 0 0O 0 O0O 0 O0O 0 0O
0o -23 5 -21 0 2 -50 0 0 0 0 0OO0O O 0 OO0 00O
o o0 o0 o o o o0 o0 o0 -3-32 -44 -14 0 0 0 0 0 0 O
o 0 o o0 o0 090 00 -32 -5-12 00 4 0 0 0 0 0O
o 0 o0 0 o0 0 0 0 0O 2 -54 -31 5 -41 0 0 0 0 0 O
o o0 o0 o o0 o0 o000 -4-1-3-25 51 1 0 0 0 0 0 O
o 0 o o0 o0 00 0 o0 4 2 1 5 -4-1-1-20 0 0 0 0 O
0 0 0 0 0o 0 0 0 O 1 5 -1-1-2-20 0 0 0 0 O
o o0 o0 o o o o0 o0 o0 4 0 -41 -1-20 2 0 0 0 0 0 O
o 0 o 0 o0 00 000 411 -2-22 -50 0 0 0 0 O
o 0 o0 0 o0 0 o0 0000000 090 00 -3-30 -2-4

187

087 =5

LetLy,..

i88

189 j=1;

i90

i91 = Sol2

091 = | -3 0
| 0o 1
| o 2
| 0o o
| 0o o
| o o0
| 0o o
| 0o o
| o o0
| 0o o
| 0o o
| o o
| 0o o
| 0o o
| o o0
| 0o o
| 0o o
| o o
| 0o o
| 0o o

C5) ;

N O OO O0OO0O0OO0OO0O0O OO0 OO0 OO O O O

WO OO0OO0O0O0O0O0O0O0O0 0000 O O O O

.» L5 be the fields of definitions of the 5 lines. We compute the trace forms of Try, /r,, (/1,;)
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o oo o0 o0 o0 0 O0O0OO0OO0OO0OOO0OO0OO0OO0O0O0 -34 -42 2 -4-32 |
o oo o o0 o0 O0OO0OWOT OU OU OO OO OOO O -3-43 3 -4-32 -5
o oo o0 o0 o0 0O O0OWOU OU OU OO OUOTOOO0O OO0 2 3 4 -1-5-2-3]
o oo o0 o0 o0 0 O0O0OO0OO0OO0OO0OO0OO0OO0O0 0 0 -22 -4-1-4-2-4-4|
o oo o o0 o0 0O O0OWOT OO OTU OO OO OO OO O O -4-4-3-5-23 -41 |
o oo o0 o0 o0 o0 0 O0O0OO0OO0OO0OO0OO0OO0OO0O0 0 4 -32 -2-4-43 -2
o oo o0 o0 o0 0 O0O0OOOOOOOOOO0OO0 3 2 -5-3-41 -2-2]
27 27
090 : Matrix FF <--- FF

The sizes of the blocks are the degrees [L; : F11] of the field extension L;/F1; for j = 1,..., 5. So there is one rational line on
X, one defined over a field extension of degree 2 and 3 lines defined over a field extension of degree 8 on X.
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