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Abstract

We consider a class of dissipative stochastic differential equations (SDE’s) with
time-periodic coefficients in finite dimension, and the response of time-asymptotic
probability measures induced by such SDE’s to sufficiently regular, small perturbations
of the underlying dynamics. Understanding such a response provides a systematic way
to study changes of statistical observables in response to perturbations, and it is often
very useful for sensitivity analysis, uncertainty quantification, and improving
probabilistic predictions of nonlinear dynamical systems, especially in high dimensions.
Here, we are concerned with the linear response to small perturbations in the case
when the time-asymptotic probability measures are time-periodic. First, we establish
sufficient conditions for the existence of stable random time-periodic orbits generated
by the underlying SDE. Ergodicity of time-periodic probability measures supported on
these random periodic orbits is subsequently discussed. Then, we derive the so-called
fluctuation–dissipation relations which allow to describe the linear response of
statistical observables to small perturbations away from the time-periodic ergodic
regime in a manner which only exploits the unperturbed dynamics. The results are
formulated in an abstract setting, but they apply to problems ranging from aspects of
climate modelling, to molecular dynamics, to the study of approximation capacity of
neural networks and robustness of their estimates.

1 Introduction
In many scientific applications, a systematic determination of the response of a complex
nonlinear dynamical system to time-dependent perturbations is of key importance; top-
ical examples in high-dimensional, non-autonomous and/or stochastic settings include
climate models (e.g. [1,16,34,36,59,62]), statistical physics and non-equilibrium thermo-
dynamics (e.g. [47,50,75,82,83]), and even neural networks (e.g. [18,22,76]). The sought
response is usually quantified in terms of a change in an ‘observable’ expressed as a sta-
tistical/ensemble average of some functional defined on the trajectories of the underlying
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dynamical system. The classical theory of linear response (e.g. [59,81]) is concerned with
capturing changes in observables to sufficiently small perturbations of the original dynam-
ics close to its statistical equilibrium. It turns out that in such a setting the response can
be expressed, with some caveats, through formulas linking the external perturbations to
spontaneous fluctuations and dissipation in the unperturbed time-asymptotic dynamics
(e.g. [56,82,83]). The classical fluctuation–dissipation theorem (FDT) is of fundamental
importance in statistical physics (e.g. [5,28,51]), and it roughly states that for systems of
identical particles in statistical equilibrium, the average response to small external pertur-
bations can be calculated through the knowledge of suitable correlation functions of the
unperturbed time-asymptotic dynamics; see, for example, [14,52] for some of the many
applications of the FDT in the statistical physics setting.
The validity of the linear response and fluctuation–dissipation relationships for more

general dynamical systems encountered, for example, in climate modelling (e.g. [59]) is an
important topic which is particularly relevant for uncertainty quantification in reduced-
order predictions and reduced model tuning (e.g. [16,34,61,63]). In an early influential
work, Leith [55] suggested that if the climate dynamics satisfied a suitable FDT, the climate
response to small external forcing could be calculated by estimating suitable statistics in
the unperturbed climate.1 Climate dynamics is modelled as a forced dissipative chaotic or
stochastic dynamical system which is arguably rather far from the statistical physics’ set-
ting for FDT.Nevertheless, Leith’s conjecture stimulated a lot of activity in generating new
theoretical formulations (e.g. [40,62]) and in designing approximate algorithms for FDT
to study the climate response (e.g. [1–3,34,36–39,59,62,64]). However, despite numer-
ous applications in autonomous and non-autonomous settings, there is little rigorous
evidence supporting the validity of the linear response and FDT in the non-autonomous
setting beyond the formal derivation of FDT for time-dependent stochastic systems [62].
The goal here is to provide amore rigorous justification of the linear response theory for

a class of forced dissipative stochastic differential equations (SDE’s) with time-periodic
coefficients which induce time-periodic probability measures. Our objective is twofold:

(i) Establish sufficient conditions for the existence and ergodicity (in an appropriate
sense) of time-periodic measures associated with time-asymptotic dynamics for a
class of ‘dissipative’ SDE’s (defined later in (4.13)) with time-periodic coefficients in
finite dimensions.

(ii) Analyse the linear response of suchSDE’s in the time-periodic regime to small pertur-
bations, and express the change in the statistical observables based on time-periodic
ergodic measures via fluctuation–dissipation-type relations.

The results derived in the sequel will concern SDE’s whose time-periodic measures are
supported on certain stable random periodic solutions. In principle, the results discussed
in the context of the linear response apply to awider class of dynamical systems generating
time-periodicmeasures; however, establishing conditions for the existence and ergodicity
of such measures in a more general setting (for SDE’s or otherwise) is not trivial and is
beyond the scope of this work.

1The meaning of the term ‘climate’ used in most theoretical work in atmosphere-ocean science is loosely related to
properties of the probability measure induced by the time-asymptotic dynamics.
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Time-periodic probability measures associated with the time-asymptotic dynamics are
arguably ubiquitous in many mathematical models. In particular, seasonal and diurnal
cycles in climate models due to time-periodic forcing or retarded self-interactions in
neural networks provide some of the obvious candidates and highlight the need for devel-
oping the linear response framework in the time-periodic setting. It is worth stressing
that the need for rigorous formulation of the linear response and FDT for dissipative
stochastic dynamical systems (in line with, for example, [59,60,64,77–79]) is justified
by contemporary approaches to the simulation and reduced-order modelling of high-
dimensional, multi-scale dynamical phenomena. For example, comprehensive models for
climate change prediction or molecular dynamics simulations involve stochastic com-
ponents (e.g. [4,30,58,60,77,78,90]) to mimic the effects of unresolved dynamics, while
reduced-ordermodels typically involve stochastic noise terms (e.g. [15,21,49,57,72].Here,
similar to [40,62], the presence of noise leads to improved regularity of the problemwhich
simplifies key aspects of the analysis compared to deterministic, dissipative nonlinear sys-
tems (e.g. [9–11,35,80]). As a consequence, we are able to focus on systems that have other
important features of realistic dynamics, namely a lack of ellipticity, non-compactness of
state space, and a lack of global Lipschitz continuity of the coefficients in the underly-
ing SDE. The results established below apply to a broad class of nonlinear functionals
which include common quantities of interest, such as the mean and covariance of subsets
of variables.

2 General set-up
Our framework relies on the theory of Markovian2 random dynamical systems (RDS),
which provides a geometric link between stochastic analysis and dynamical systems. This
relationship was established through the discovery (e.g. [8,54]) that for sufficiently regular
coefficients b, σ the stochastic differential equation (SDE)

dXt = b(t, Xt )dt + σ (t, Xt )dWt−s, Xs ∈ R
d, (2.1)

generates a stochastic flow {φ(t, s, · , · ) : s, t ∈ I ⊆ R, s � t} of homeomorphisms on R
d

such that

Xs,x
t (ω) = φ(t, s,ω, x), P - a.s.

for x = Xs(ω), ω ∈ � in the Wiener space (�,F ,P) withWt anm-dimensional Brownian
motion. For b = b(x), σ = σ (x), the SDE will be called autonomous, and non-autonomous
otherwise. It turns out (e.g. [7,8]) that, for an autonomous SDE (in the above sense)
with sufficiently regular coefficients there exists essentially a one-to-one correspondence
between the SDE and an RDS; a rough but convenient interpretation (skipping the filtra-
tion) is that in the autonomous case there exists an RDS generating the SDE, which in
turn generates the stochastic flow and vice versa.
One of the key concepts relevant for the analysis of the long-time behaviour of RDS is the

extension of the notion of ergodicity to the random setting (e.g. [8,12,13,24,44,68–70]).
These important results are established in the regime of (random) stationary measures
and (random) stationary processes, in the case when the source of time dependence is only

2Here, the notion of a ‘Markovian RDS’ means that there exists a version of the RDS which has the Markov property
w.r.t. the canonical filtration generated on the Wiener space by the Brownian motion discussed later.
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due to the noise process (i.e. b = b(x), σ = σ (x) in (2.1) and the SDE is autonomous in
the jargon established above). Over the last decade significant progress has been made in
the study of the long-time behaviour of SDE’s generated by time-dependent vector fields
(e.g. [20,31–33,86,87,89]). Based on the insight from the latter results, we shall study
the ergodicity of SDE’s with time-periodic coefficients in order to establish fluctuation–
dissipation formulas through the linear response in the random periodic regime. Our
strategy is to first prove the existence of a unique time-periodic measure under certain
‘dissipative’ assumptions on the SDE via a version of Lyapunov second method and cou-
pling. The standard Lyapunov second method is a well-known and powerful technique
for the investigation of stability of solutions of nonlinear dynamical systems in finite and
infinite dimensions. An extension of this method to an RDS generated by an autonomous
SDE is essentially due to Hasḿinskii (e.g. [44]); subsequent extensions include applica-
tions to SDE’s with random switching (e.g. [67]) and to the case of non-trivial random
stationary solutions and random attractors by Schmalfuss [84]. Importantly, this method
involves the study of random invariant sets (under the considered dynamics) without the
need for the explicit knowledge of solutions of the underlying SDE, and it is based solely
on the vector fields encoded in the coefficients of the SDE even when the drift term, i.e.
b in (2.1), is only locally Lipschitz continuous. However, in the present non-autonomous,
time-periodic set-up, the lack of stationarity and the unavoidable skew-product structure
of the underlying dynamics pose additional challenges when dealing with ergodicity of
time-asymptotic probability measures. The main issue which prevents one from using
the ‘classical’ methods (e.g. [27,44]) for proving ergodicity the random periodic regime
stems from the fact that these probability measures are defined on the skew-product
fibre bundle (e.g. [23]) in the space of measures on the time-extended state space and
that these measures are not mixing. Here, this complication is overcome by employing
an extension of the classical Krylov–Bogolyubov procedure (see, for example, [8, §1.5])
which allows for dealing with ergodicity of probability measures on appropriate Poincaré
sections in the narrow topology generated by the dual of an appropriate discrete-time
transition semigroup, and then ‘linking’ the results via the continuous-time transition
semigroup induced by the SDE dynamics on the space of skew-product probability mea-
sures. In the present case, the properties of the time-periodic measures established with
the help of the Lyapunov’s second method for dissipative SDE’s allow us to dispense with
explicit assumptions on the ergodicity in the Poincaré sections which would be otherwise
required.
The rest of the article is organised as follows. In the remainder of this section, we fix

the notation which is frequently used in the sequel. In Sect. 3, we recap some basic results
and definitions, including the notion of a Random Dynamical System (RDS) generated by
an SDE in finite dimensions, and we outline the notion of a random periodic process. In
Sect. 4, we first prove the existence of stable random time-periodic solutions for a class of
dissipative SDE’s with time-periodic coefficients, and the existence of the associated time-
periodic measures (Sect. 4.2); sufficient conditions for ergodicity of such measures (in an
appropriate sense) are established in Sect. 4.3. Section 5 deals with the linear response the-
ory in the above setting. The derivation of the linear response formula in the time-periodic
setting is followed by the derivation of two classes of fluctuation–dissipation relationships:
the first one applies to perturbations of dynamics with time-periodic ergodic probability
measures required only to exist in the unperturbed dynamics, the secondone involves sim-
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pler formulas but it requires persistence of time periodicity in the perturbed probability
measures.

2.1 Function spaces

Below, we outline function spaces which are used in the sequel.
Let (X , d) be a complete separable metric space. We consider either X = R

d or the
space X = R × R

d , or a flat cylinder X = [0, τ ) × R
d , 0 < τ < ∞, [0, τ ) � Rmod τ ,

which arises when ‘lifting’ the dynamics generated by a non-autonomous SDE; in this
section, we use X for all these spaces to unify the notation. Throughout the paper, we set
N0 := {0, 1, 2, . . . } and N1 := {1, 2, . . . }.
• (�,F ,P) denotes the Wiener probability space where � := C0(R;Rm), m ∈ N1; i.e.
the abstract sample space � is identified with a linear subspace of continuous functions
C(R;Rm) which vanish at zero. F is the BorelS-algebra on � generated by open subsets
in the compact-open topology defined via

�(ω, ω̂) =
∞∑

n=0

1
2n

‖ω − ω̂‖n
1 + ‖ω − ω̂‖n , ‖ω − ω̂‖n := sup

t∈[−n,n]
|ω(t) − ω̂(t)|, ω, ω̂ ∈ �,

with |·| the Euclidean norm. Finally, P is the Wiener measure on F . In such a set-up
the canonical Wiener process (with two-sided time) on (�,F ) with values in the Borel-
measurable space (Rm,B(Rm)) is defined as Wt (ω) = ω(t), t ∈ R, via the identification
of ω ∈ � with functions ω( · ) ∈ C0(R;Rm); see, for example, [8, Appendix A.2] and
references therein for details.
• Given the probability space (�,F ,P) and G ⊆ F , Lp(�,G,P), 1 � p < ∞
is the space of G-measurable random variables X : � → R

d such that
E|X |p := ∫

�
|X(ω)|p P(dω) < ∞, and equipped with the norm ‖X‖p := (E|X |p)1/p .

•Given the (Borel) measurable space
(X ,B(X )

)
, whereB(X ) denotes the BorelS-algebra

over X ,

– M(X ) is the space of measurable functions on X ,
– C(X ) is the space of continuous functions on X ,
– M∞(X ) is the space of bounded, measurable, real-valued, scalar functions on X , i.e.

M∞(X ) := {
f : X → R, f ∈ M(X ) : ‖ f ‖∞ < ∞}

, ‖ f ‖∞ := sup
x∈X

| f (x)|.

– C∞(X ) is the space of bounded, real-valued, scalar, continuous functions on X , i.e.

C∞(X ) := {
f : X → R, f ∈ C(X ) : ‖ f ‖∞ < ∞}

.

• The space Cl(X ) contains l-times continuously differentiable real-valued functions.
• The space Cl∞(X ) contains those functions in Cl(X ) which are bounded.
• The space Cl,k (X1 × X2) denotes the space of functions which are Cl on X1, and Ck on
X2. The space Cl,k∞ contains bounded functions in Cl,k .
• The space of bounded, real, Lipschitz continuous functions on (X , d) is denoted by
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Lip∞(X ) :=
{
f ∈ C∞(X ) : ‖f ‖BL < ∞

}
,

‖ f ‖BL := max
{
‖ f ‖∞,Lip( f )

}
, and Lip( f ) := sup

{
|f (y) − f (z)|

d(y, z)
: y �= z, y, z ∈ X

}
.

• C̃l,δ(X ), l ∈ N0, 0 < δ � 1, is the Fréchet space of functions f : X → X , whose l-th
derivatives are δ-Hölder continuous, and which is furnished with the countable family of
semi-norms

‖ f ‖l,0,N := sup
x∈X

|〈 f (x), x〉|
1 + |x|2 +

∑

1�|β|�l
sup
x∈BN

|Dβ f (x)|,

‖ f ‖l,δ;N := ‖ f ‖l,0;N +
∑

|β|=l
sup

x,y∈BN ,x �=y

|Dβ f (x) − Dβ f (y)|
|x − y|δ ,

where |·| is the Euclidean norm and 〈·, ·〉 the dot product onX , and BN = {x∈X : |x|�N },
N ∈ N1, is a closed ball in X with radius N , and

Dβ f (x) := ∂ |β|f
(∂x1)β1 · · · (∂xd)βn , |β| := β1 + · · · + βn , βi ∈ N0, D0 = I,

denotes the Fréchet derivative; f ∈ C̃l,δ(X ) if ‖f ‖l,δ;N < ∞ for all finite N ∈ N1.
• C̃l,δb (X ), l ∈ N0, 0 < δ � 1, is the space of functions f : X → X , whose l-th derivatives
are δ-Hölder continuous with the norm

‖ f ‖l,0 := sup
x∈X

| f (x)|
1 + |x| +

∑

1�|β|�l
sup
x∈X

|Dβ f (x)|,

‖ f ‖l,δ := ‖ f ‖l,0 +
∑

|β|=l
sup

x,y∈X ,x �=y

|Dβ f (x) − Dβ f (y)|
|x − y|δ .

Functions f ∈ C̃l,δb (X ) are such that ‖ f ‖l,δ < ∞.
• C̃l,δub(X ), l ∈ N0, 0 < δ � 1, is the space of functions f : X → X , whose l-th derivatives
are δ-Hölder continuous with the norm

‖ f ‖l,0 := sup
x∈X

| f (x)| +
∑

1�|β|�l
sup
x∈X

|Dβ f (x)|,

‖ f ‖l,δ := ‖ f ‖l,0 +
∑

|β|=l
sup

x,y∈X ,x �=y

|Dβ f (x) − Dβ f (y)|
|x − y|δ .

Functions f ∈ C̃l,δub(X ) are such that ‖ f ‖l,δ < ∞.

3 Random periodic processes
In order to facilitate subsequent derivations, we recall definitions of random dynamical
systems (RDS) generated by SDE’s (see, for example, [7,8,53,54]), random periodic pro-
cesses (see, for example, [20,31–33,86,87,89] and transition evolutions generatedbySDE’s
(see, for example, [8,25,26,54]). We also provide an intuitive example of a random peri-
odic solution arising in the stochastic dynamics of periodically forced FitzHugh–Nagumo
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model. All definitions below are restricted to R
d but a number of them are subsequently

extended (explicitly or otherwise) to the skew-product representation in [0, τ )×R
d which

is used to deal with the non-autonomous dynamics.

Definition 3.1 (Stochastic flow [53,54]) Let φ(t, s,ω, x) ∈ R
d , s, t ∈ I ⊆ R, x ∈ R

d , be
a random field on a probability space (�,F ,P). The two-parameter family {φ(t, s, · , · ) :
s, t ∈ I ⊆ R} is called a stochastic flow of homeomorphisms if there exists a null setN ⊂ �

such that for any ω /∈N , there exists a family of continuous maps {φ(t, s,ω, · ) : s, t ∈ I}
on R

d satisfying

(i) φ(t, s,ω, · ) = φ(t, u,ω,φ(u, s,ω, · )) holds for any s, t, u ∈ I ,
(ii) φ(s, s,ω, · ) = idX , for all s ∈ I ,
(iii) the map φ(t, s,ω, · ) : R

d → R
d is a homeomorphism for any t, s ∈ I .

Themapφ(t, s,ω, · ) is a stochastic flowofCl -diffeomorphisms, if it is a homeomorphismand
φ(t, s,ω, x) is l-times continuously differentiable with respect to x ∈ R

d for all s, t ∈ I ⊆ R

and the derivatives are continuous in (s, t, x) ∈ I ×I ×R
d. The stochastic flow is referred

to as ‘forward’ for s � t, and as ‘backward’ for t � s. In the sequel, we will confine the
discussion to (�,F ,P) being the Wiener space defined in Sect. 2.1.

Definition 3.2 (Filtration generated by a stochastic flow) Given a probability space
(�,F ,P), let F t

s ⊆ F be the smallestS-algebra on � generated by

∩ε>0S
(
φ(u, v, · , · ) : s − ε � u, v � t + ε

)
,

and containing all null sets ofF . The two-parameter filtration {F t
s : s � t} is the filtration

generated by the forward stochastic flow
{
φ(t, s, · , · ) : s, t ∈ I ⊆ R, s � t

}
and the

filtered probability space is denoted by
(
�,F , (F t

s )s�t ,P
)
.

Definition 3.3 (Transition kernel) Consider the stochastic flow
{
φ(t, s, · , · ) : s � t

}

induced by the SDE (2.1). Given the Borel-measurable space
(
R
d,B(Rd )

)
, the transition

probability kernel P(s, x; t, · ) induced by solutions of (2.1) is defined by

P(s, x; t, A) = P
({ω ∈ � : φ(t, s,ω, x) ∈ A}), ∀ s, t ∈ I , s � t, A ∈ B(Rd ). (3.1)

The transition kernel satisfies the Chapman–Kolmogorov equation

P(s, x; t, A) =
∫

Rd
P(u, y; t, A)P(s, x;u, dy), (3.2)

for any s, t, u∈ I , s � u � t, and for all x∈ R
d , A ∈ B(Rd).

Definition 3.4 (Transition evolution and its dual) Given the forward stochastic flow{
φ(t, s, · , · ) : s, t ∈ I ; s � t

}
and the transition kernel (3.1) induced by the solu-

tions of (2.1), the operator Ps,t : M∞(Rd) → M∞(Rd) called the transition evolution
is defined by

Ps,tϕ(x) =
∫

Rd
ϕ(y)P(s, x; t, dy) = E

[
ϕ(φ(t, s, x))

]
, ∀ s, t ∈ I , s � t, x ∈ R

d,

(3.3)
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where we use the shorthand notation E
[
ϕ(φ(t, s, x))

]
:= ∫

�
ϕ
(
φ(t, s,ω, x)

)
P(dω). The

action of transition evolutions to arbitrary measurable functions is extended in a stan-
dard way.
For any probability measure μs ∈ P(Rd), s ∈ I , on (Rd,B(Rd)

)
, the L2(μs) dual P∗

s,t of
the transition evolution Ps,t is defined by

(P∗
s,tμs)(A) =

∫

Rd
P(s, x; t, A)μs(dx), ∀ s, t ∈ I , s � t, A ∈ B(Rd). (3.4)

Consequently, with the help of (3.2), we have for any s, u, t ∈ I , s � u � t,

μt (A) = (P∗
s,tμs)(A) = (P∗

u,tP∗
s,uμs)(A) = (P∗

u,t μu)(A), ∀ A ∈ B(Rd). (3.5)

Theorem 3.5 (Stochastic flows generated by solutions of SDE’s) Suppose that the coef-
ficients of the SDE (2.1) are such that b( · , x), σ ( · , x) are continuous for all x ∈ R

d, and
for all t ∈ R, b(t, · ), σk (t, · ) ∈ C̃l,δ(Rd), l ∈ N0, 0 < δ � 1, where {σk}mk=1, denote the
columns of σ . If the initial condition Xs in (2.1) is independent of theS-algebra generated
by Wt−s( · ), t � s, and E

[|Xs|2
]

< ∞, there exist unique global solutions of (2.1) which
generate a forward stochastic flow of homeomorphisms (l = 0) or Cl -diffeomorphisms
(l � 1) on R

d,
{
φ(t, s, · , · ) : s, t ∈ R, s � t

}
such that

Xs,x
t (ω) = φ(t, s,ω, x), ∀ s, t ∈ R, s � t, x ∈ R

d, P - a.s., (3.6)

and which are adapted to the filtration (F t
s )s�t on (�,F ,P), see, for example, [54, Thm

3.4.6 and §4.7] with slight modifications. If, in addition, E|Xs|p < ∞, for some 2 � p < ∞,
thenE

[|Xt |p
]

< ∞, s � t < ∞. Stronger (e.g. dissipative) growth conditionsmay have to be
imposed on the coefficients (b, σ ) in the SDE (2.1) to guarantee the existence of the absolute
moments of the solutions for all time (see, for example, Remark 4.5 and “Appendix A”).

Definition 3.6 (Infinitesimal generators) Let f ∈ C1,2(R × R
d,R), and t �→ φ(t, s,ω, x),

s � t,ω ∈ �, be a solution of the SDE in (2.1). Considering the evolution of f
(
t,φ(t, s,ω, x)

)

allowsone to represent the infinitesimal generatorof solutionsof (2.1) through the second-
order operator3 (e.g.[54]);

Lt f (t, x) = ∂t f (t, x) +
d∑

i=1
bi(t, x)∂xi f (t, x) + 1

2

d∑

i,j=1

m∑

k=1
σik (t, x)σjk (t, x)∂2xixj f (t, x),

(3.7)

where (b, σ ) are sufficiently regular drift and diffusion coefficients in the SDE (2.1). Anal-
ogously, for g ∈ C1,2(R×R

d ×R
d,R), the infinitesimal generator of the two-point motion

[54, §4.2], t �→ (
φ(t, s,ω, x),φ(t, s,ω, y)

)
, of the flow

{
φ(t, s, · , · ) : s � t

}
can be repre-

sented through the second-order differential operator

3Strictly, Lt in (3.7) coincides with the generator of (2.1) on f ∈ C1,2
c (R × R

d ,R+), but it is well defined for
f ∈ C1,2(R × R

d ,R+) and we refer to Lt as the generator throughout; the same applies to L(2)
t in (3.8).
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L(2)
t g(t, x, y) = ∂t g(t, x, y) +

d∑

i=1

(
b(t, x)∂xi g(t, x, y) + b(t, y)∂yi g(t, x, y)

)

+ 1
2

d∑

i,j=1

m∑

k=1

(
σik (t, x)σjk (t, x)∂2xixj g(t, x, y)

+ σik (t, x)σjk (t, y)∂2xiyj g(t, x, y)

+ σik (t, y)σjk (t, x)∂2yixj g(t, x, y) + σik (t, y)σjk (t, y)∂2yiyj g(t, x, y)
)
. (3.8)

Definition 3.7 (Random dynamical system [7,8]) Given a probability space (�,F ,P), a
measurable randomdynamical system (RDS) on

(
R
d,B(Rd)

)
over ameasurable dynamical

system (DS), Θ := (
�,F ,P, (θt )t∈R

)
, satisfying4 θP = P, is a map � : I × � × R

d → R
d

such that the following hold

(a) (t,ω, x) �→ �(t,ω, x) is measurable for all t ∈ I ⊆ R,
(b) �(0,ω, · ) = id

Rd for all ω ∈ �,
(c) �(t + s,ω, · ) = �(t, θsω,�(s,ω, · )) for all s, t ∈ I , ω ∈ � (cocycle property),
(d) � is continuous if (t, x) �→ �(t,ω, x) is continuous for all t ∈ I , x ∈ R

d ,
(e) � is smooth of class Cl , if �(t,ω, x) is l-times differentiable w.r.t. x ∈ R

d , and the
derivatives are continuous w.r.t. (t, x) ∈ I × R

d .

The canonical filtration on (�,F ,P) for the RDS is generated by (θt )t∈R.

Definition 3.8 (Canonical DS for processes with stationary increments) Consider a prob-
ability space (�,F ,Pξ ) with the measure Pξ on (�,F ) induced by the law of a stochas-
tic process with continuous time ξ = (ξt )t∈R, ξt : � → R

d . A process ξ is said
to have stationary increments if for any t0 � · · · � tn, n ∈ N1, the distribution of
(ξt1+t − ξt0+t , . . . , ξtn+t − ξtn−1+t ) is independent of t ∈ R; i.e.

θ (t)Pξ = Pξ for all t ∈ R, (3.9)

where (θt )t∈R is a semigroup of time shifts. The corresponding measurable dynamical
system Θ := (�,F ,Pξ , (θt )t∈R) is called the canonical dynamical system for the process
with stationary increments; see, for example, [8, Appendix A.3] for details.

Proposition 3.9 (Canonical DS for Brownian motion/Wiener process) For the Wiener
probability space (�,F ,P) defined in Sect. 2.1, the canonical dynamical system
Θ = (

�,F ,P, (θt )t∈R
)
for a stochastic process with stationary increments is given by

θt : � → �, θsω(t) = ω(t + s) − ω(s), ∀ s, t ∈ R, (3.10)

so that the set � = C0(R,Rm) is invariant w.r.t. the shifts (θt )t∈R. The canonical stochastic
process Wt (ω) = ω(t), t ∈ R, with stationary independent increments is the Wiener
process/Brownian motion (with two-sided time) which satisfies identically

Wt (θsω) = Wt+s(ω) − Ws(ω), ∀ s, t ∈ R. (3.11)

4Here, the notation θP = P means that P({ω ∈ � : θtω ∈ A}) = P({ω ∈ � : ω ∈ A}), ∀A ∈ F , t ∈ I ; i.e. the
semigroup (θt )t∈I , θt : � → �, preserves the measure P; we restrict the definition of the RDS to I = R.



42 Page 10 of 62 M. Branicki, K. Uda ResMath Sci (2021) 8:42

Proof See [8, Appendix A.3] for an outline or, for example, [73]. ��
Remark 3.10 In the sequel, it will be more convenient to use (3.11) in the alternative
form

Wt (ω) = Wt+s(θ−sω) − Ws(θ−sω), ∀ s, t ∈ R. (3.12)

Assuming suitable regularity of the coefficients of autonomous SDE’s, such as those in
Theorem 3.5, together with appropriate adoption of two-sided stochastic calculus, the
solutions of autonomous SDE’s generate5 an RDS over Θ (e.g. [7,8,29,46,54]). We will
consider the non-autonomous dynamics of the SDE (2.1) with time-periodic coefficients
as an RDS on a suitably extended space.

3.1 Time-periodic setting

In the sequel, we consider non-autonomous SDE’s (2.1) on R
d with time-periodic coeffi-

cients; i.e. b(t+τ , · ) = b(t, · ), σ (t+τ , · ) = σ (t, · ), 0 < τ < ∞, satisfying the conditions
in Theorem 3.5 so that (2.1) has global solutions generating the forward stochastic flow{
φ(t + s, s, · , · ) : s ∈ R, t ∈ R

+} such that, for all s ∈ R, t ∈ R
+,

φ(t + s + τ , s + τ ,ω, · ) = φ(t + s, s, θτ ω, · ) P - a.s. (3.13)

Theaboveproperty follows fromthe timeperiodicity of the coefficients and theuniqueness
of solutions of (2.1). The relationship in (3.13) is essential for constructing an RDS on
[0, τ ) × R

d from solutions of (2.1) with time-periodic coefficients, which is important for
asserting the existence and ergodicity of time-periodic measures supported on random
time-periodic paths defined below.

Definition 3.11 (Random periodic path of a stochastic flow [31,32,89]) A random peri-
odic path of period 0 < τ < ∞ generated by a stochastic flow

{
φ(t + s, s, · , · ) : s ∈ R,

t ∈ R
+} is a measurable function S : R × � → R

d such that for any s ∈ R the following
holds

S(τ + s,ω) = S(s, θτ ω) and φ(t + s, s,ω, S(s,ω)) = S(t + s,ω) P - a.s. ∀ t ∈ R
+.

(3.14)

Definition 3.12 (Randomperiodic path of RDS [33,89])A randomperiodic pathof period
0 < τ < ∞ generated by an RDS, � : R

+ × � × R
d → R

d , is a measurable function
S : R × � → R

d such that for any s ∈ R and almost all ω ∈ � the following holds

S(τ + s,ω) = S(s, θτ ω) and �(t, θsω, S(s,ω)) = S(t + s,ω) ∀ t ∈ R
+. (3.15)

Example 3.13 Let b : R
d → R

d, d � 2, be a globally Lipschitz vector field, and consider
the deterministic flow {ψ(t, · ) : t ∈ R

+}, defined via ψ(t, · ) ≡ φ(t, 0, · ) and generated by
the autonomous ODE

dYt
dt

= b(Yt ), Y0 = y ∈ R
d, t ∈ R

+. (3.16)

5The generation of an RDS from an SDE requires a ‘perfection of the crude cocycle’ associated with the SDE (see, for
example, [8, Theorem 2.3.26]); here, this important technical nuance does not require an explicit discussion.
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Assume that there exists a periodic solution Y : R → R
d of the ODE (3.16) of period

0 < τ < ∞,

Y(τ + s) = Y(s) and ψ(t,Y(s)) = Y(t + s), s ∈ R, t ∈ R
+.

Consider the stochastic process Xt (ω) = Y(t)+Zt (ω),where Zt solves the following SDE

dZt = b̂(t, Zt )dt + σ̂ (t, Zt )dWt, Z0 = 0, t ∈ R
+, (3.17)

with time-periodic coefficients

b̂(t, z) := b(Y(t) + z) − b(Y(t)), σ̂ (t, z) := σ (Y(t) + z).

If Z(t,ω) is a random τ - periodic solution of (3.17), then S(t,ω) = Y(t) + Z(t,ω) is a
random τ - periodic solution of the autonomous SDE:

dXt = b(Xt )dt + σ (Xt )dWt, X0 = Y(0), t ∈ R
+.

Example 3.14 (Stochastic FitzHugh–Nagumo model with periodic current) Consider the
following SDE with nontrivial random periodic solutions (see [32]) which has less restric-
tive conditions on the drift than those considered in the sequel:

dXt = AXtdt + b(t, Xt )dt + σ (t)dWt−s, Xs = x ∈ R
2, s, t ∈ R, s � t, (3.18)

where

A=
(
1 −1
a −1

)
, b(t, x, y)=

(
−1
3x

3+B1 sin(τ t)
c

)
, σ (t)=

(√
2β−1+B2 cos(τ t) 0

0 0

)
,

with a < 1, β > 0, B1, B2, c ∈ R, 0 < τ < ∞, and Wt = (W 1
t , 0)T , where W 1

t is a
two-sided Wiener process on R. Let Xs,x

t (ω) = φ(t, s,ω, x), s � t, be the solution of (3.18)
represented via

φ(t, s,ω, x) = eA(t−s)x +
∫ t

s
eA(t−ζ )b

(
ζ ,φ(ζ , s,ω, x)

)
dζ +

∫ t

s
eA(t−ζ )σ (ζ )dWζ−s(ω),

where x �→ eA(t−s)x is the solution of the linear ODE

dYt
dt

= AYt , Ys = y ∈ R
2, s, t ∈ R, s � t.

Consider the projections P− : R
2 → E−, P+ : R

2 → E+, where the linear subspaces are

E− = span{ y ∈ R
2 : Ay = −λy}, E+ = span{ y ∈ R

2 : Ay = λy}, λ := √
1 − a.

The process S(t,ω) defined by

S(t,ω) =
∫ t

−∞
eA(t−ζ )P−b(ζ , S(ζ ,ω))dζ −

∫ ∞

t
eA(t−ζ )P+b(ζ , S(ζ ,ω))dζ

+
∫ t

−∞
eA(t−ζ )P−σ (ζ )dWζ−s(ω) −

∫ ∞

t
eA(t−ζ )P+σ (ζ )dWζ−s(ω),

is a random 2π/τ -periodic solution of the flow generated by the SDE (3.18); see, for
example, [31,32], for further details or [20] for a simpler one-dimensional example.
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4 Time-periodic ergodic measures for dissipative SDE’s
In this section, we consider a class of non-autonomous SDE’s (2.1) which generate stable
randomperiodic paths. First, in Sect. 4.2 we prove the existence of a unique stable random
periodic solution for a class of ‘dissipative’ 6 SDE’s with time-periodic coefficients, and we
assert the existence of time-periodic measures induced by such dynamics (Theorem 4.7).
Ergodicity (in an appropriate sense, and under typical regularity conditions) of these
time-periodic measures are established in Theorem 4.11 of Sect. 4.3. We conclude with
an example of a periodically forced stochastic Lorenz model, which is then used in Sect. 5
to illustrate the utility of fluctuation–dissipation formulas for time-periodic measures
when considering the linear response of the dynamics to small perturbations.

4.1 Preliminaries, definitions, and assumptions

First, we recall the notion of a time-periodic probability measure which will be needed
throughout the remainder of this paper.

Definition 4.1 (Time-periodic probability measure [33]) A measure-valued map given
by t �→ μs+t ∈ P(Rd) and induced by the family (P∗

s,s+t )t∈R+ , s ∈ R, defined in (3.4) is
referred to as a time-periodic probability measure of period 0 < τ < ∞, if the following
holds for any s ∈ R

μs+t = P∗
s, s+t μs and μs+τ = μs, ∀ t ∈ R

+. (4.1)

Furthermore, μs+t ∈ P(Rd), s ∈ R, t ∈ R
+, is called a time-periodic measure with the

minimal (or fundamental ) period τ , if τ is the smallest strictly positive number such that
(4.1) holds.7

Proposition 4.2 Let S : R × � → R
d be a random periodic path (3.14) of a stochastic

flow
{
φ(t + s, s, · , · ) : s ∈ R, t ∈ R

+} on
(
R
d,B(Rd)

)
and consider a family of probability

measures

μs+t (A) := P
({ω : S(s + t,ω) ∈ A}), ∀ s ∈ R, t ∈ R

+, A ∈ B(Rd).

Then, the family (μs+t )s∈R,t∈R+ consists of τ -periodic probability measures on R
d.

Proof This follows by a direct calculation combined with the properties of a random
periodic path (3.14), since for all s ∈ R, t ∈ R

+, A ∈ B(Rd), we have

μs+τ (A) = P
({ω : S(s + τ ,ω) ∈ A}) = P

({ω : S(s, θτ ω) ∈ A})

= P
({ω : S(s,ω) ∈ A}) = μs(A).

��

The above results will be generalised to the dynamics in the extended state space in
Sect. 4.1.1.

6See (4.13) for one such class which we focus on in this work.
7Sufficient conditions for the existence of the minimal period, which are satisfied here, are established in [33, §5].
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4.1.1 Dynamics on the extended state space

A useful way of examining ergodicity of time-periodic measures induced by non-
autonomous SDE’s with time-periodic coefficients of period τ is to lift the original dynam-
ics from R

d to the extended state space [0, τ )×R
d , [0, τ ) � Rmod τ , so that the resulting

‘lifted’ SDE is autonomous. Such a representation of the original dynamics does not neces-
sarily simplify the formulation of the problem but the flows of the lifted solutions generate
a cocycle8 in the skew-product variables on [0, τ ) × R

d ; we refer to this extended state
space as the ‘flat cylinder’. Then, the lifted random periodic paths (3.14) of the stochastic
flow induced by the non-autonomous SDE (2.1) can be associated with random periodic
paths (satisfying (3.15)) of an RDS (see Definition 3.7) generated by the lifted flow in the
skew-product representation on [0, τ ) × R

d ; this fact allows to prove ergodicity (in an
appropriate sense) of time-periodic measures supported on the random periodic paths on
the fibre bundle9 on P([0, τ ) × R

d).
To this end, consider the solutions of the SDE (2.1) satisfying the conditions of Theo-

rem 3.5 and assume that the coefficients of (2.1) are time-periodic with period 0 < τ < ∞;
we recast the solutions of (2.1) as an extended process X̃t (ω) = (

t, Xs,x
t (ω)

)T in the skew-
product representation on R × R

d satisfying

dX̃t = b̃
(
X̃t
)
dt + σ̃

(
X̃t
)
dW̃t−s, X̃s = (s, x) ∈ R × R

d, s � t, (4.2)

where W̃t−s(ω) = (
0,Wt−s(ω)

)
, ω ∈ �, and Wt−s is the m-dimensional Brown-

ian motion for the two-sided time (see Sect. 2.1 or [8]), and b̃ : R
d+1 → R

d+1,
σ̃ : R

d+1 → R
(d+1)×(m+1), so that

d
(

ζt
Xt

)
=
(

1
b
(
ζt , Xs,x

t
)
)
dt +

(
0 0
0 σ

(
ζt , Xs,x

t
)
)
dW̃t−s, s � t. (4.3)

The dynamics in (4.2) or (4.3) can be represented in a more convenient form for the
subsequent derivations by setting t → t + s, so that

dX̃t+s = b̃(X̃t+s)dt + σ̃ (X̃t+s)dW̃t+s, X̃s = (s, x) ∈ R × R
d, t ∈ R

+, (4.4)

where W̃t+s = W̃t+s(θ−sω) is the Brownian motion satisfying (3.12). Finally, given the
form of the coefficients b̃, σ̃ , it is convenient to consider the dynamics induced by (4.4) on
the flat cylinder [0, τ ) × R

d , where [0, τ ) � Rmod τ .
The RDS associated with the lifted dynamics (4.4) is generated in the skew-product

representation (see, for example, [8,23]) on [0, τ ) × R
d via

�̃
(
t,ω, x̃

)
:= (

t + smod τ , φ(t + s, s, θ−sω, x)
) ∀ x̃ := (s, x) ∈ [0, τ ) × R

d, t ∈ R
+.

(4.5)

The cocycle property10 of �̃ in (4.5), i.e. �̃(t + r,ω, · ) = �̃
(
t, θrω, �̃(r,ω, · )) for all

r, t ∈ R
+, and a.a. ω ∈ �, can be verified by recalling that t+ r mod τ = t+ r−kτ ,where

8See Definition 3.7.
9See, for example, [23] for a detailed description of such structures on spaces of probability measures.
10To be more accurate, the so-called crude cocycle property can be easily verified from the flow induced by the SDE,
and the crude cocycle needs to be ‘perfected’ in order to generate an RDS over the DS for the Brownian motion (see,
for example, [8, Theorem 2.3.26]); here, this important technical nuance does not require an explicit discussion.
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k = ⌊ t+r
τ

⌋
, and utilising (3.13). Note that, unless (2.1) is autonomous, {φ(t + s, s, θ−sω, · ) :

s ∈ R, t ∈ R
+} does not have the cocycle property, and hence, it does not generate an RDS

on R
d . The RDS representation of the non-autonomous dynamics of the SDE (2.1) will

be useful in Sect. 4.3 when considering the ergodicity of measures supported on random
periodic paths, and in the discussion of the linear response in Sect. 5.3.
The transition kernel and transition evolutions on [0, τ )×R

d are constructed as follows.
For any x̃ := (s, x) ∈ [0, τ )× R

d , t ∈ R
+, and Ã ∈ B([0, τ ))⊗B(Rd), the transition kernel

P̃(x̃; t, · ) associated with �̃ is given by (see Definition 3.3)

P̃
(
x̃; t, Ã

)
:= P

({ω : �̃(t,ω, x̃) ∈ Ã })

= P
({ω : (t + smod τ , φ(t + s, s, θ−sω, x)) ∈ J × A })

= δ(t+smod τ )(J ) ⊗ P
(
s, x; t + s, A

)
, (4.6)

for all Ã ≡ J × A ∈ B([0, τ ))⊗ B(Rd) and the transition kernel P defined in (3.1).
The transition evolution (P̃t )t∈R+ induced by �̃ and its dual (P̃∗

t )t∈R+ are given by
(cf. (3.3))

P̃tϕ(x̃) :=
∫

[0,τ )×Rd
ϕ(ỹ)P̃(x̃; t, dỹ), ∀ ϕ ∈ M∞

(
[0, τ ) × R

d), (4.7)

μ̃t+r(Ã) = (P̃∗
t μ̃r

)
(Ã) :=

∫

[0,τ )×Rd
P̃(x̃; t, Ã)μ̃r(dx̃), ∀ μ̃r ∈ P([0, τ ) × R

d), r ∈ R
+,

(4.8)

with the short-hand notation μ̃r(dx̃) = δ(rmod τ )(s)ds ⊗ μr(dx) for probability measures
in the skew-product fibre bundle on P([0, τ ) × R

d), where μ̃r ∈ P([0, τ ) × R
d) and

μr ∈ P(Rd); see, for example, [23] for more details concerning the structure of skew-
product fibre bundles on spaces of probability measures. Extension of (4.7) to functions
M
(
[0, τ ) × R

d) can be carried out in a standard way.

Lemma 4.3 The families of transition evolutions (P̃t )t∈R+ and (P̃∗
t )t∈R+ possess a semi-

group structure. In particular, for μ̃t = δ(tmod τ ) ⊗ μt in the skew-product fibre bundle on
P([0, τ ) × R

d) the following holds

μ̃t+r+u = P̃∗
t+r μ̃u = P̃∗

t
(P̃∗

r μ̃u
) = P̃∗

t μ̃r+u ∀ r, t, u ∈ R
+.

If the RDS
{
�̃(t, · , · ) : t ∈ R

+} on [0, τ ) × R
d has a random periodic path t → S̃(t,ω) of

period 0 < τ < ∞, where S̃(t,ω) = (
tmod τ , S(t,ω)

)
, t ∈ R, ω ∈ �, and t → S(t,ω) is a

random periodic path of
{
φ(t + s, s, · , · ) : t ∈ R

+} on R
d, then all probability measures

in the family (μ̃t )t∈R+ , μ̃t ∈ P([0, τ ) × R
d), supported on such a path are τ -periodic, i.e.

μ̃t+r = P̃∗
r μ̃t , μ̃t+τ = μ̃t ∀ t ∈ R

+,

and

μ̃t (Ã)=μt (At ), ∀ Ã ∈ B([0, τ ))⊗B(Rd), At =
{
x ∈ R

d : (tmod τ , x) ∈ Ã
}
.
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Moreover, every such τ -periodic measure is invariant under the action of the discrete
dynamics induced by (P̃∗

nτ )n∈N0 , i.e.

P̃∗
nτ μ̃t = μ̃t ∀ n ∈ N0, t ∈ R

+.

Proof The first claim is a direct consequence of (4.8), and the proof follows either by using
the cocycle property of �̃ in the first line of (4.6) or by utilising theChapman–Kolmogorov
equation (3.2) for P in the last line of (4.6).
Regarding the second claim, consider measures supported on the random peri-

odic path S̃

μ̃t+r(Ã) := P
({ω : S̃(t + r,ω) ∈ Ã }), Ã ∈ B([0, τ ))⊗ B(Rd). (4.9)

Since S̃ is a random periodic path of the RDS �̃, we have for all Ã ∈ B([0, τ )) ⊗ B(Rd)

that

μ̃t+r(Ã) = P
({ω : S̃(t + r,ω) ∈ Ã }) = P

({ω : �̃(r, θtω, S̃(t,ω)) ∈ Ã }) = P̃∗
r μ̃t (Ã),

for all r, t ∈ R
+ by the general properties the of the random periodic path (3.15); this

could also be obtained directly from (4.8) by using the invariance of S̃ under the action of
�̃. Moreover,

μ̃t+τ (Ã) = P
({ω : S̃(t + τ ,ω) ∈ Ã }) = P

({ω : S̃(t, θτ ω) ∈ Ã }) = μ̃t (Ã),

by the property (3.15). Thus, μ̃t is a τ -periodic measure for the RDS
{
�̃(t, · , · ) : t ∈ R

+}

on [0, τ ) × R
d which is supported on the random periodic path S̃.

The last two claims are simple consequences of the properties established above and the
skew-product structure of probability measures supported on random periodic paths. ��
In the following sections, after outlining some general assumptions, we will investigate

the existence and uniqueness of stable random periodic paths of the RDS
{
�̃(t, · , · ) :

t ∈ R
+}, and we will prove the ergodicity of probability measures associated with the

dynamics of the skew-product lift (4.4) of the dynamics in (2.1) under some standard
regularity assumptions.

4.1.2 Assumptions

Throughout, we assume that the SDE (2.1) with time-periodic coefficients of period
0 < τ < ∞ satisfies the conditions of Theorem 3.5, so that (2.1) has global solutions.
In order to establish the existence of stable random periodic paths in Sect. 4.2, we will

require the following assumption:

Assumption 4.4 Let V ∈ C1,2(R× R
d ;R+) s.t. V (t, 0) = 0 for all t ∈ R, satisfy the

following:

(i) There exist λ ∈ L1(R; dt), and a constant C � 1, such that for some 1 < p < ∞ and
all ξ , η ∈ Lp(�,F t−∞,P), we have

⎧
⎨

⎩
E|ξ |p � E

[
V (t, ξ )

]
� CE|ξ |p < ∞,

E
[L(2)V (t, ξ − η)

]
� λ(t)E

[
V (t, ξ − η)

]
,

(4.10)
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where L(2) is the two-point generator defined in (3.8) and associated with the
SDE (2.1).

(ii) There exists λ̄ > 0 such that

lim sup
(t−s)→∞

1
t − s

∫ t

s
λ(u)du < −λ̄ < 0. (4.11)

(iii) For the one-point motion t �→ φ(t, s,ω, ξ ) induced by (2.1) for ω ∈ �, ξ ∈ R
d ,

and s � t, there exists 0 < D < ∞ independent of s, t ∈ R such that11 for all
ξ ∈ Lp(�,F s−∞,P)

lim sup
(t−s)→∞

E
[
V
(
t,φ(t, s, ξ ) − ξ

)]
� D, (4.12)

where E
[
V (φ(t, s, ξ ))

]
:= ∫

�
V
(
φ(t, s,ω, ξ )

)
P(dω).

As pointed out later (Remark 4.12 in Sect. 4.3), this assumption is not strictly required
for proving ergodicity of τ -periodic probability measures. However, without showing
the existence of random periodic paths (in this case, stable random periodic paths), the
existence of τ -periodic measures μ̃t ∈ P([0, τ ) × R

d) would have to be assumed a priori
alongside the ergodicity of μ̃t for all fixed t ∈ [0, τ ) with respect to the discrete transition
evolution (P̃∗

nτ )n∈N0 , as done in [33].

Remark 4.5

(a) An important class of coefficients satisfying Assumption 4.4, which yield global
solutions of (2.1) are specified in “Appendix A”. In particular, we might take
b(t, · ) ∈ C̃1,δ(Rd) and σk (t, · ) ∈ C̃1,δb (Rd), 0 < δ � 1, k = 1, . . . , m, satisfying
the following ‘dissipative’ condition

〈b(t, x), x〉 � Lb1 (t) − Lb2 (t)|x|2, ‖σ (t, x)‖2HS � Lσ (t)
(
1 + |x|2), (4.13)

where Lb1 , Lb2 , Lσ ∈ C∞(R,R+). Here, 〈 ·, · 〉 denotes the dot product on R
d

and ‖ · ‖HS denotes the Hilbert–Schmidt norm (aka Frobenius norm) defined by
‖A‖2HS = trace(AAT ). Condition (4.12) is satisfied for (4.13) when (see Lemma A.1
in “Appendix A”)

inf
t∈R

(
Lb2 (t) − 2

p
2−1Lb1 (t) − 1

2 (2
p
2−1 + 1)Lσ (t)(p − 1)

)
> 0, (4.14)

and it also leads to the global existence of the p -th absolute moment of the law
of the associated SDE; tighter bounds can be obtained for p = 2, 3 as shown in
Proposition A.2 in “Appendix A”. Condition (4.12) is reminiscent of the Haśminskii-
type regularity condition [44] for the existence and uniqueness of global solutions
of SDE’s; sufficient conditions for verification of Haśminskii’s conditions require the
existence of real-valued functions Lb(·), Lσ (·) ∈ C∞

(
R;R+) such that

〈
b(t, x), x

〉
� Lb(t)

(
1 + |x|2), ‖σ (t, x)‖2HS � Lσ (t)

(
1 + |x|2). (4.15)

11This condition can be replaced by a stronger but a more concrete constraint on the global existence of the p-th
absolute moment of φ; see Lemma A.1 in “Appendix A”.
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Coefficients satisfying (4.13) also satisfy (4.15), since for some Lb ∈ C∞
(
R;R+) we

have

Lb1 (t) − Lb2 |x|2 � Lb
(
1 + |x|2).

(b) Construction of the Lyapunov function V satisfying Assumption 4.4 is often not
straightforward. However, one can construct (e.g. [44,45,65]) a polynomial Lya-
punov function growing at infinity as |x|2N , N ∈ N1, for a broad class of
SDE’s whose coefficients b( · , x), σ ( · , x) are continuous, and b(t, · ) ∈ C̃1,δ(Rd),
{σk (t, · )}1�k�m ∈ C̃1,δb

(
R
d) are such that

⎧
⎪⎪⎨

⎪⎪⎩

〈
b(t, x) − b(t, y), x − y

〉
� −Kt |x − y|2,

‖σ (t, x) − σ (t, y)‖HS � Lt |x − y|,
sup t∈R

{|b(t, 0)| + ‖σ (t, 0)‖HS
}

< ∞,

(4.16)

where 0 < Lt , Kt < ∞, and

lim sup
(t−s)→∞

1
t − s

∫ t

s
λ(u)du < 0, (4.17)

with λ(t) = −Kt + (p−1)
2 pL2t for some 1 < p < ∞. The function Kt is defined by

Kt = lim inf
R→∞ Kt (R),

where Kt : R → R is a Borel function defined by

Kt (R) = inf
{

−
〈
b(t, x) − b(t, y), x − y

〉

|x − y|2 : |x − y| = R
}
.

Many important classes of SDE’s driven Levy processes (including the Brownian
motion) satisfy the dissipative conditions (4.16)–(4.17); see [44,45,65] for more
details.

In order to study the ergodicity of τ -periodic measures, we will require variants of the
following standard conditions (e.g. [43]) to be satisfied:

(i) Relative compactness property of the transition kernel P in (3.3).
(ii) Irreducibility of the transition kernel.
(iii) Strong Feller property12 of the transition evolution (Ps,t )t�s (3.3).

Thus, we will require the following version of the Hörmander condition (e.g. [66,74]) in
Sect. 4.3 in addition to Assumption 4.4:

Assumption 4.6 Denote by σk , 1 � k � m, the columns of σ in (2.1), and assume that
the following are satisfied for all t ∈ R:

(i) b(t, · ) ∈ C̃∞(Rd) and t �→ b(t, · ) is differentiable.
12The transition evolution (Ps,t )t�s on a complete separable metric space X has strong Feller property if for
ϕ ∈ M∞(X ), one has Ps,tϕ ∈ C∞(X ), ∀s � t , i.e. Ps,t : M∞(X ) → C∞(X ), ∀s � t .
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(ii) σk (t, · ) ∈ C̃∞
b (Rd), t �→ σk (t, x) is differentiable, and

∣∣∂tDβ
x σk (t, x)

∣∣ � C < ∞, (t, x) ∈ R × R
d. (4.18)

for every multi-index β .
(iii) Lie

(
σ1(t, · ), · · · , σm(t, · )) = R

d , for all t ∈ I , where
Lie
(
σ1(t, x), · · · , σm(t, x)

)
:= span

{
σi, [σi, σj], [σi, [σj , σk ]], · · · , 1 � i, j, k � m

}
,

and [F, G ] is the Lie bracket between the vector fields F and G defined by

[F, G ](t, x) := DxG(t, x)F (t, x) − DxF (t, x)G(t, x).

4.2 Existence and uniqueness of time-periodic measures on stable random periodic paths

Given the preliminary results and assumptions outlined in Sect. 4.1, we have the following
result on the existence of a τ -periodic measure (Definition 4.1) for the lifted SDE in (4.2).

Theorem 4.7 Consider the forward stochastic flow {φ(t, s, · , · ) : s, t ∈ R, s � t}
generated by the SDE in (2.1) with time-periodic coefficients of period 0 < τ < ∞, and
satisfying the conditions of Theorem 3.5. If Assumption 4.4 holds, there exists a family
(μ̃t )t∈R+ of τ -periodic measures, μ̃t = δ(tmod τ ) ⊗ μt , μt ∈ P(Rd), μ̃t ∈ P([0, τ ) × R

d),
given by

μ̃t (Ã) := P
({ω : S̃(t,ω) ∈ Ã }), t ∈ R

+, Ã ∈ B([0, τ ])⊗ B(Rd), (4.19)

which are supported on a unique random periodic path S̃ of the RDS {�̃(t, · , · ) : t ∈ R
+}

with �̃ in (4.5) generated in the skew-product variables on [0, τ ) × R
d.

Proof First, for ξ ∈ Lp(�,F s−∞,P), 1 < p < ∞, where F s−∞ := ∨
r�s F s

r , we show
that {φ(t, s,ω, ξ ) : s, t ∈ R, s � t} converges to a random process S(t,ω) ∈ R

d almost
surely as s → −∞, and that S(t,ω) is bounded and independent of ξ . Next, we show
that t �→ S(t,ω) is a unique stable random periodic path of period 0 < τ < ∞ for
{φ(t, s,ω, · ) : s, t ∈ R, s � t}. Finally, we conclude that the law of the random periodic
path S̃(t,ω) = (

t mod τ , S(t,ω)
)
generates a τ -periodic measure for the RDS generated

by �̃ on the flat cylinder [0, τ ) × R
d , [0, τ ) � Rmod τ .

Existence of random periodic paths for the stochastic flow φ. Set ξ , η ∈ R
d to be random

variables on the filtered probability space (�,F s−∞,P), s.t. ξ , η ∈ Lp(�,F s−∞,P). Then, by
Itô formula (e.g. Theorem 4.2.4 in [54] or Theorem 8.1 in [53]) and Assumption 4.4 we
have for s � t

d E

[
V
(
t,φ(t, s, ξ ) − φ(t, s, η)

)] = E
[L(2)V

(
t,φ(u, s, ξ ) − φ(t, s, η)

)]
dt

� λ(t)E
[
V
(
t,φ(t, s, ξ ) − φ(u, s, η)

)]
dt,

where E
[
V (t,φ(t, s, ξ ) − φ(u, s, η))

]
:= ∫

�
V (t,φ(t, s,ω, ξ ) − φ(u, s,ω, η))P(dω). Thus, by

the first part of (4.10) and Gronwall’s inequality, we arrive at

E|φ(t, s, ξ ) − φ(t, s, η)|p � E

[
V (t,φ(t, s, ξ ) − φ(t, s, η))

]

� E

[
V (s, ξ − η)

]
exp

(∫ t

s
λ(u)du

)
. (4.20)
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Finally, given the bound (4.20), for r < s < t, we have

E
∣∣φ(t, r, ξ ) − φ(t, s, ξ )

∣∣p = E
∣∣φ(t, s,φ(s, r, ξ )) − φ(t, s, ξ )

∣∣p

� E

[
V
(
s,φ(s, r, ξ ) − ξ

)]
exp

(∫ t

s
λ(u)du

)
,

and, utilising the above with Assumption 4.4(iii), yields

lim sup
r<s, (t−s)→∞

E
∣∣φ(t, r, ξ ) − φ(t, s, ξ )

∣∣p = 0. (4.21)

Thus, for ξ ∈ Lp(�,F s−∞,P), 1 < p < ∞, the above bound implies that the Lp limit of
the flow {φ(t, s, · , ξ ) : s � t} exists as s → −∞. Note that this limit is independent of the
initial condition ξ by (4.12).We denote this limit by the random process S : R×� → R

d,
so that

E|S(t) − φ(t, s, ξ )|p → 0 as s → −∞,

for ξ ∈ Lp(�,F s−∞,P), where S(t) := S(t, · ). Then, by Chebyshev’s first inequality (aka
Markov’s inequality; e.g. [6]), for any ε > 0, we have

P
({ω ∈ � : |S(t,ω) − φ(t, s,ω, ξ )| � ε}) � ε−p

E|S(t) − φ(t, s, ξ )|p, (4.22)

which implies that the convergence is also in probability. Thus, there exists a subsequence
(sk )k∈N1 in R with sk → −∞ as k → ∞ such that

S(t,ω) = lim
k→∞

φ(t, sk ,ω, ξ ), P - a.s.

To simplify notation, we write

S(t,ω) = lim
s→−∞ φ(t, s,ω, ξ ), P - a.s. (4.23)

Note that for ξ ∈ Lp(�,F s−∞,P) with the norm ‖ · ‖p := (E| · |p)1/p we have

‖φ(t, s, ξ )‖p � ‖φ(t, s, ξ ) − ξ‖p + ‖ξ‖p
�
(
E

[
V
(
t,φ(t, s, ξ ) − ξ

)]) 1
p + ‖ξ‖p

�
(
sup
s�t

E

[
V
(
t,φ(t, s, ξ ) − ξ

)]) 1
p + ‖ξ‖p < ∞,

by condition (4.12) of Assumption 4.4. Consequently, for any t ∈ R, we have

‖S(t)‖p � lim sup
s→−∞

‖φ(t, s, ξ )‖p < ∞, (4.24)

implying that S(t,ω) is bounded in Lp(�,F t−∞,P).
Next, we show that t → S(t,ω) is a random periodic path of period 0 < τ < ∞ for the

stochastic flow {φ(t, s, · , · ) : s � t} using its τ -periodic property (see equation (3.13) with
appropriately changed variables); namely

S(t + τ ,ω) = lim
s→−∞ φ(t + τ , s,ω, ξ )
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= lim
s→−∞ φ(t + τ , s − τ + τ ,ω, ξ )

= lim
s→−∞ φ(t, s − τ , θτω, ξ )

= S(t, θτω) P - a.s. (4.25)

Then, by the continuity of (t, s, x) �→ φ(t, s, · , x) and the flow property, we have

φ
(
t + s, s,ω, S(s,ω)

) = lim
r→−∞ φ

(
t + s, s,ω,φ(s, r,ω, ξ )

)

= lim
r→−∞ φ(t + s, r,ω, ξ )

= S(t + s,ω) ∀ t ∈ R
+, s ∈ R P - a.s. (4.26)

The equalities (4.25) and (4.26) imply that S(t,ω) is a randomperiodic path (3.14) of period
0 < τ < ∞ of the stochastic flow

{
φ(t + s, s, · , · ) : s ∈ R, t ∈ R

+} on R
d.

Uniqueness: Let S1(t,ω) and S2(t,ω) be two randomperiodic paths of the forward stochas-
tic flow

{
φ(t + s, s, · , · ) : s ∈ R, t ∈ R

+} on R
d.We know from (4.26) that for s � t,

S1(t,ω) = φ
(
t, s,ω, S1(s,ω)

)
P - a.s.,

S2(t,ω) = φ
(
t, s,ω, S2(s,ω)

)
P - a.s.

Then, for 1 < p < ∞, we have

∥∥S1(t) − S2(t)
∥∥p
p = ∥∥φ

(
t, s, S1(s)) − φ(t, s, S2(s)

)∥∥p
p

� exp
(−λ̄(t − s)

)
E

[
V
(
s, S1(s) − S2(s)

)] −→ 0
s→−∞ .

Thus, S1(t,ω) = S2(t,ω) for all t ∈ R P - a.s.
Construction of τ -periodic measure for the RDS �̃: Let S̃ : R × � → [0, τ ) × R

d ,
[0, τ ) � Rmod τ , be defined by

S̃(r,ω) = (
rmod τ , S(r,ω)

)
, ∀ r ∈ R

+,

or, alternatively S̃(r,ω) = (|r|mod τ , S(r,ω)
)
, ∀ r ∈ R. Then,

S̃(r + τ ,ω) = (
r + τ mod τ , S(r + τ ,ω)

) = (
r mod τ , S(r, θτ ω)

)
, (4.27)

and from (4.5) and (4.26) we have

�̃(t, θrω, S̃(r,ω)) = �̃
(
t, θrω,

(
rmod τ , S(r,ω)

))

= (
t + rmod τ , φ(t + r, r,ω, S(r,ω))

)

= (
t + rmod τ , S(t + r,ω)

)

= S̃(t + r,ω), ∀ t, r ∈ R
+

P - a.s. (4.28)

The equalities (4.27)–(4.28) and the lifted version of (3.15) imply that S̃(t,ω) is a random
periodic path of period τ of the RDS generated by �̃ (4.5) in the skew-product represen-
tation on the flat cylinder [0, τ ) × R

d.
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Finally, let (μ̃t )t∈R+ , μ̃t ∈ P([0, τ ) × R
d) be defined by

μ̃t (Ã) = P
({ω : S̃(t,ω) ∈ Ã }), ∀ t ∈ R

+, Ã ∈ B([0, τ ))⊗ B(Rd).

It follows from (4.27)–(4.28) and Lemma 4.3 that the probability measure μ̃t is
τ -periodic under the action of the transition evolution (P̃∗

t )t∈R+ which is induced by
the RDS {�̃(t, · , · ) : t ∈ R

+} on [0, τ ) × R
d . The skew-product structure of these mea-

sures in P([0, τ ) × R
d) arises from Lemma 4.3, or directly from (4.6), so that for any

J ∈ B([0, τ )), A ∈ B(Rd)

μ̃t (J × A) = δ(t mod τ )(J ) ⊗ P
(
ω : S(t,ω) ∈ A

) = δ(t mod τ )(J ) ⊗ μt (A).

��

4.3 Ergodicity of time-periodic measures

In this section, we turn to establishing ergodicity of the τ -periodic measures (μ̃t )t∈R+ ,
μ̃t ∈ P([0, τ )× R

d), generated by the Markovian13 RDS
{
�̃(t, · , · ) : t ∈ R

+} which was
constructed in (4.5) in the skew-product representation on the flat cylinder [0, τ ) × R

d

from the lifted flow of solutions of the SDE (2.1) with time-periodic coefficients. The exis-
tence of τ -periodic measures supported on stable random periodic paths was established
in Theorem 4.7. The lack of stationarity and the unavoidable skew-product structure
of the underlying dynamics pose additional challenges when dealing with ergodicity of
P̃∗
t - invariant measures, as outlined below. The main theorem of this section (Theo-

rem 4.11) is preceded by some preparatory results and definitions.

Definition 4.8 (Ergodic periodic measure [33]) A family of τ -periodic measures (μ̃t )t∈R+

on the extended state space
(
[0, τ ) × R

d,B([0, τ )) ⊗ B(Rd)
)
is said to be ergodic if

¯̃μ = 1
τ

∫ τ

0
μ̃t dt, (4.29)

is ergodic with respect to the transition semigroup (P̃∗
t )t∈R+ in (4.8).

One can check by the linearity of μ̃0 �→ P̃∗
t μ̃0 and Fubini’s theorem that ¯̃μ is an invariant

measure for the transition semigroup (P̃∗
t )t∈R+ defined in (4.8); i.e. P̃∗

t - invariance of ¯̃μ
implies P̃∗

t ¯̃μ = ¯̃μ, for all t ∈ R
+. Moreover, from the definition of a τ -periodic measure

μ̃t in (4.19), induced by the RDS {�̃(t, · , · ) : t ∈ R
+} on [0, τ ) × R

d , we have

¯̃μ(Ã) = 1
τ

∫ τ

0
μ̃t (Ã)dt = 1

τ

∫ τ

0
P
({

ω : S̃(t,ω) ∈ Ã
})
dt = 1

τ
E

[∫ τ

0
IÃ
(
S̃(t, · ))dt

]

= E

[
1
τ
m1
({
t ∈ [0, τ ) : S̃(t, · ) ∈ Ã

})]
, Ã ∈ B([0, τ ))⊗ B(Rd),

where t → S̃(t,ω) = (
tmod τ , S(t,ω)

)
, t ∈ R

+, is a random periodic path (3.15) of
an RDS generated by the lifted dynamics of the SDE (2.1) via �̃ in (4.5), and m1 is the

13Here, the notion of a ‘Markovian RDS’means that there exists a version of the RDS which has the Markov property
w.r.t the filtration generated on the Wiener space by the canonical DS for the Wiener process with W̃t+s(θ−sω) for all
s ∈ [0, τ ), t ∈ R

+; see Proposition 3.9.
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Lebesguemeasure onR. Thus, given the invariance of ¯̃μ under the action of the transition
semigroup (P̃∗

t )t∈R+ in (4.8), and the τ -periodicity of μ̃t (see Definition 4.1), one has

E

[
1
τ
m1
({t ∈ [0, τ ) : S̃(t, · ) ∈ Ã})

]
= (P̃∗

u ¯̃μ
)
(Ã) = 1

τ

∫ τ

0
(P̃∗

u μ̃t )(Ã)dt

= 1
τ

∫ τ

0
μ̃t+u(Ã)dt = 1

τ

∫ u+τ

u
μ̃t (Ã)dt

= E

[
1
τ
m1
({t ∈ [u, u + τ ) : S̃(t, · ) ∈ Ã})

]
,

for any Ã ∈ B([0, τ ))⊗B(Rd) and any u ∈ R
+. This implies that the expected time spent

by the random periodic path t �→ S̃(t,ω) in any set Ã ∈ B([0, τ )) ⊗ B(Rd) over a time
interval of exactly one period is independent of the starting point.
Verification of ergodicity (in the sense ofDefinition 4.8) of τ -periodicmeasures (μ̃t )t∈R+

supported on the randomperiodic paths of �̃ requires one to assert that the time-averaged
measure ¯̃μ in the skew-product fibre bundle onP([0, τ )× R

d) is P̃∗
t - ergodic. This set-up

arises from the need to deal with the random periodic nature of the underlying dynamics,
and it prevents a direct application of the classical tools for asserting ergodicity in the
(asymptotically) stationary case. In particular, it is well known (e.g. [25, Theorem 3.2.4])
that the following are equivalent:14

(i) A probability measure ¯̃μ is weakly mixing.
(ii) There exists I ⊂ [0, ∞) of relative measure 1 such that limt→∞,t∈I P̃(t, x̃, · ) → ¯̃μ

weakly.

Thus, given the form of the transition kernel P̃ in (4.6) and the underlying skew-product
structure, it is clear that one cannot establish the mixing property in the random periodic
regime.15 Thus, this key condition in Doob’s Theorem [27] does not hold in the random
periodic regime which, alongside the lack of irreducibility of the transition kernel, renders
the Hasminskii’s Theorem [44] for asserting regularity of the transition kernel (needed in
Doob’s Theorem) inapplicable.
Instead, the P̃∗

t - ergodicity of ¯̃μ can be verified by means of a proposition which was
proved in [33, Lemma2.18];we repeat its statementbelowwith a conciseproof tomake this
section self-contained. The main benefit of utilising the proposition below when dealing
with ¯̃μ is that it essentially relies on ergodicity of τ -periodic measures μ̃t for any fixed
t ∈ [0, τ ) with respect to the discrete dynamics induced by (P̃∗

nτ )n∈N0 ; the subsequent use
of the semigroup property of (P̃∗

t )t∈R+ allows one to show the ergodicity of ¯̃μ. Importantly,
the P̃∗

nτ - ergodicity of μ̃t on the respective Poincaré sections with a fixed t ∈ [0, τ ) turns
the problem into a stationary one which can be dealt with using the standard methods.
The result below provides an extension of the classical Krylov–Bogolyubov procedure
(see, for example, [8, §1.5]).

Proposition 4.9 Consider a family of τ -periodic measures (μ̃t )t∈R+ on the extended state
space

(
[0, τ ) × R

d,B([0, τ )) ⊗ B(Rd)
)
. The P̃∗

t - invariant measure ¯̃μ in (4.29) is ergodic if
and only if the following holds for any Ã ∈ B([0, τ )) ⊗ B(Rd)

14These statements are not restricted to the skew-product representation of time-periodic measures.
15As before, we exclude the stationary regime from the random periodic regime by requiring that fundamental period
0 < τ < ∞; see Definition 4.1.
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lim
N→∞

∫

[0,τ )×Rd

∣∣∣∣∣

∫ τ

0

{
1
N

N−1∑

n=0
P̃(x̃; t + nτ , Ã) − μ̃t (Ã)

}
dt

∣∣∣∣∣
¯̃μ(dx̃) = 0. (4.30)

Proof Recall from (e.g. [8]) that ¯̃μ is ergodic if P̃t IÃ = IÃ, ¯̃μ - a.e. Ã ∈ B([0, τ )) ⊗ B(Rd)
implies that either ¯̃μ(Ã) = 0 or ¯̃μ(Ã) = 1. First, we assume that (4.30) holds for any
Ã ∈ B([0, τ ))⊗B(Rd) with P̃(x̃; t, Ã) = P̃t IÃ(x̃) = IÃ(x̃). Then, it follows from (4.30) that

∫

[0,τ )×Rd

∣∣∣IÃ(x̃) − ¯̃μ(Ã)
∣∣∣ ¯̃μ(dx̃) =

∫

[0,τ )×Rd

∣∣∣∣∣
1
τ

∫ (n+1)τ

nτ

P̃(x̃; t, Ã)dt − ¯̃μ(Ã)

∣∣∣∣∣
¯̃μ(dx̃) = 0.

This implies that IÃ(x̃) is a constant for ¯̃μ - a.e. x̃ ∈ [0, τ ) × R
d. Thus, either ¯̃μ(Ã) = 0 or

¯̃μ(Ã) = 1. Conversely, assume that ¯̃μ is ergodic, then for any Ã ∈ B([0, τ )) ⊗ B(Rd)

lim
T→∞

1
T

∫ T

0
P̃(x̃; t, Ã)dt = ¯̃μ(Ã) in L2( ¯̃μ).

Therefore,

lim
N→∞

1
Nτ

N−1∑

n=0

∫ τ

0
P̃(x̃; t + nτ , Ã)dt = ¯̃μ(Ã) in L2( ¯̃μ), (4.31)

and (4.30) follows from (4.31) and from the Cauchy–Schwartz inequality. ��

Consequently, the subsequent verification of the ergodicity of the P̃∗
t - invariantmeasure

¯̃μ on [0, τ )×R
d relies (explicitly or otherwise) on the semigroup property and periodicity

of the transition semigroup (P̃∗
t )t∈R+ , and on proving the strong Feller property of the

transition evolution (Ps,t )t�s in (3.3). Recall that the transition evolution (Ps,t )t�s has the
strong Feller property (i.e. Ps,tϕ ∈ C∞(Rd) for any ϕ ∈ M∞(Rd)) if and only if

(i) (Ps,t )t�s is Feller, i.e. Ps,t : C∞(Rd) → C∞(Rd), and
(ii) For any ϕ ∈ C∞(Rd) the family (Ps,tϕ)t�s is equicontinuous.

The first condition follows from the existence of the stochastic flow (see, for example,
[44,54]); thus, we only derive the second item in Proposition 4.10 below.

Proposition 4.10 Suppose that Assumption 4.6 holds. Then, for any t ∈ [s, s + T ], there
exist 0 < CT < ∞ such that, for any x, y ∈ R

d and ϕ ∈ C∞(Rd), we have

|Ps,tϕ(x) − Ps,tϕ(y)| � CT‖ϕ‖∞|x − y|.

Proof The proof consists of a tedious but relatively straightforward extension of results
which are well known in the autonomous case; for detailed derivations, involving some
Malliavin calculus estimates; see Theorem B.10 in “Appendix 5.3.2”. ��

Given the above setting, we have the following main result of this section:

Theorem 4.11 Suppose that Proposition 4.10 and Assumption 4.4 hold. Then, the family
of τ -periodic measures (μ̃t )t∈R+ , μ̃t ∈ P([0, τ ) × R

d), in (4.19) is ergodic in the sense of
Definition 4.8.
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Remark 4.12 The requirement in the above theorem that Assumption 4.4 holds is inher-
ited from the conditions required in Theorem 4.7 for the existence of stable random
periodic paths on which the τ -periodic measures (μ̃t )t∈R+ are supported; hence, the only
additional condition in Theorem 4.11 is introduced by imposing Assumption 4.6 which is
required in Proposition 4.10 to assert the strong Feller property of (Ps,t )t�s. If one dropped
Assumption 4.4, the existence of τ -periodic measures would have to be assumed a priori
alongside the ergodicity of μ̃t for all fixed t ∈ [0, τ ) w.r.t. the discrete transition evolution
(P̃nτ )n∈N0 , as done in [33]. In the present case, the properties of the τ -periodic measures
derived explicitly in the previous section allow us to dispense with such assumptions.

Proof of Theorem 4.11. The proof is relatively long, and we divide it into four steps.
Throughout, we skip the dependence on ω ∈ � in all quantities involving expectations.
Step I: First, we show that for a random periodic path S : R × � → R

d of the stochastic
flow φ on R

d , and η ∈ Lp(�,F s−∞,P), 1 < p < ∞, there exists 0 < C̃ < ∞ such that

‖φ(s + nτ , s, η) − S(s + nτ )‖p � C̃ exp
(
1
p

∫ s+nτ

s
λ(u)du

)
, n ∈ N0. (4.32)

To see this, note that from the definition of the random periodic path of a stochastic flow
(3.14) we have S(s + nτ ,ω) = φ(s + nτ , s,ω, S(s,ω)) P -a.s., so that

‖φ(s + nτ , s, η) − S(s + nτ )‖p = ‖φ(s + nτ , s, η) − φ(s + nτ , s, S(s))‖p
�
(
E

[
V (s, η − S(s))

]) 1
p exp

(
1
p

∫ s+nτ

s
λ(u)du

)

= C̃ exp
(
1
p

∫ s+nτ

s
λ(u)du

)
, n ∈ N0, (4.33)

by Assumption 4.4(i) and the fact that S(s) ∈ Lp(�,F s−∞,P), 1 < p < ∞, which was
shown in the proof of Theorem 4.7.
Step II: We show that for 1 < p < ∞, there exists 0 < C τ < ∞, such that for n ∈ N0

∣∣∣∣Ps,s+nτ ϕ(x) −
∫

Rd
ϕ(y)μs(dy)

∣∣∣∣ � C τ‖ϕ‖∞ exp
(
1
p

∫ s+nτ

s
λ(u)du

)
, ϕ ∈ C∞(Rd),

(4.34)

where μs(A) = P
({ω : S(s,ω) ∈ A}), A ∈ B(Rd).

To see this, we note that from the definition of the periodic measure μs, we have that
∫

Rd
Ps,s+nτ ϕ(y)μs(dy) =

∫

Rd
ϕ(y)μs(dy), ϕ ∈ C∞(Rd);

i.e. μs is invariant under the action of the dual of the discrete transition evolution
(P∗

s,s+nτ )n∈N0 . Thus, for ψ ∈ Lip∞(Rd), we have for 1 < p < ∞,

∣∣∣∣Ps,s+nτψ(x) −
∫

Rd
ψ(y)μs(dy)

∣∣∣∣ =
∣∣∣∣
∫

Rd

(
Ps,s+nτψ(x) − Ps,s+nτψ(y)

)
μs(dy)

∣∣∣∣

� ‖ψ‖BL
∫

Rd
E
∣∣φ(s+nτ , s, x)−φ(s+nτ , s, y)

∣∣μs(dy)

= ‖ψ‖BL E
∣∣φ(s + nτ , s, x) − φ(s + nτ , s, S(s))

∣∣
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� ‖ψ‖BL
(
E|φ(s + nτ , s, x) − S(s + nτ )|p

) 1
p

� C̃ ‖ψ‖BL exp
(
1
p

∫ s+nτ

s
λ(u)du

)
, (4.35)

where we appliedHölder’s inequality and estimate (4.32) in the last two lines, respectively.
Now, let ϕ ∈ C∞(Rd) be given. Setting ψ = Ps+nτ , s+τ+nτ ϕ = Ps,s+τ ϕ in (4.35),

which holds due to (3.13), and using the invariance of μs under the transition evolution
(P∗

s,s+nτ )n∈N0 , we obtain by Proposition 4.10 that

∣∣∣∣Ps,s+τ+nτ ϕ(x) −
∫

Rd
Ps,s+τ ϕ(y)μs(dy)

∣∣∣∣ =
∣∣∣∣
∫

Rd

(
Ps, s+τ+nτ ϕ(x) − Ps, s+τ+nτ ϕ(y)

)
μs(dy)

∣∣∣∣

� C̃ ‖Ps+nτ , s+τ+nτ ϕ‖BL exp
(
1
p

∫ s+nτ

s
λ(u)du

)

= C̃ ‖Ps,s+τ ϕ‖BL exp
(
1
p

∫ s+nτ

s
λ(u)du

)

� C τ‖ϕ‖∞ exp
(
1
p

∫ s+nτ

s
λ(u)du

)
, (4.36)

where C τ = Cτ C̃, and Cτ is a constant appearing in Proposition 4.10.
Step III: Let A ⊂ R

d be a closed set, take ϕ = IA, and consider the sequence (ϕm)m∈N1 of
functions defined by

ϕm(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x ∈ A,

1 − 2md(x, A), if d(x, A) � 2−m,

0, if d(x, A) � 2−m,

where d(x, A) = inf{|x − y| : y ∈ A}, x ∈ R
d. Then,

ϕm(x) → ϕ(x), as m → ∞, for all x ∈ R
d.

Next, for s ∈ [0, τ ), we have

Ps,s+nτ ϕm(x) → Ps,s+nτ ϕ(x) = Ps,s+nτ IA(x),

which implies that P(s, · ; s + nτ , A) = Ps,s+nτ IA ∈ C∞(Rd) and, since μs is invariant
under (P∗

s,s+nτ )n∈N0 , (4.36) leads to

∣∣P(s, x; s + nτ , A) − μs(A)
∣∣ � Cτ exp

(
1
p

∫ s+nτ

s
λ(u)du

)
. (4.37)

By the covering lemma (e.g. [6]), the inequality (4.37) holds for any A ∈ B(Rd), and thus,
for J ⊆ [0, τ ), we have

∫

J

∣∣P(s, x; s + nτ , A) − μs(A)
∣∣ds �

∫ τ

0

∣∣P(s, x; s + nτ , A) − μs(A)
∣∣ds

� Cτ

∫ τ

0
exp

(
1
p

∫ s+nτ

s
λ(u)du

)
ds
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= Cτ

∫ τ

0
exp

(
1

pnτ

∫ s+nτ

s
λ(u)du

)nτ

ds.

Now, we use the Chapman–Kolmogorov equation (3.2) for the transition probability to
obtain
∣∣∣∣
∫

J

[
P(s, x; t + nτ , A) − μt (A)

]
dt
∣∣∣∣ =

∣∣∣∣

[ ∫

J

∫

Rd
P(t, y; t + nτ , A) − μt (A)

]
P(s, x; t, dy)dt

∣∣∣∣

�
∫ τ

0

∫

Rd
Cτ exp

(
1

pnτ

∫ t+nτ

t
λ(u)du

)nτ

P(s, x; t, dy)dt

= Cτ

∫ τ

0
exp

(
1

pnτ

∫ t+nτ

t
λ(u)du

)nτ

dt.

By condition (4.11) of Assumption 4.4, there exists 0 < β < 1, 0 < K < ∞, such that
∣∣∣∣
∫

J

(
P(s, x; t + nτ , A) − μt (A)

)
dt
∣∣∣∣ �

∫

J

∣∣P(s, x; t + nτ , A) − μt (A)
∣∣dt � Kβnτ .

It then follows that

1
τ

∫ τ

0

∫

Rd

∣∣∣∣
∫

J

{
1
N

N−1∑

n=0
P(s, x; t+nτ , A)−μt (A)

}
dt
∣∣∣∣μs(dx)ds�

K
N

N−1∑

n=0
βnτ −→

N→∞ 0.

(4.38)

Step IV: In this final step, with the help of Step III, we show the convergence of Krylov–
Bogolyubov scheme for the τ -periodic measures (μ̃t )t∈R+ on the cylinder [0, τ )× R

d . For
any J × A ∈ B([0, τ )) ⊗ B(Rd) we have

∫

[0, τ )×Rd

∣∣∣∣∣

∫ τ

0

(
1
N

N−1∑

n=0
P̃
(
x̃; t + nτ ,J × A

)
− μ̃t (J × A)

)
dt

∣∣∣∣∣
¯̃μ(dx̃)

= 1
τ

∫ τ

0

∫

Rd

∣∣∣∣∣

∫ τ

0

(
1
N

N−1∑

n=0
P̃((s, x); t + nτ ,J × A) − μ̃t (J × A)

)
dt

∣∣∣∣∣μs(dx)ds

= 1
τ

∫ τ

0

∫

Rd

∣∣∣∣∣

∫ τ

0

(
1
N

N−1∑

n=0
P(s, x; t + s + nτ , A) − μt (A)

)
δ(t+s mod τ )(J )dt

∣∣∣∣∣μs(dx)ds

= 1
τ

∫ τ

0

∫

Rd

∣∣∣∣∣

∫ τ−s

0

(
1
N

N−1∑

n=0
P(s, x; t + s + nτ , A) − μt (A)

)
δ(t+s)(J )dt

+
∫ τ

τ−s

(
1
N

N−1∑

n=0
P(s, x; t + s + nτ , A) − μt (A)

)
δ(t+s−τ )(J )dt

∣∣∣∣∣μs(dx)ds

= 1
τ

∫ τ

0

∫

Rd

∣∣∣∣∣

∫ τ−s

0

(
1
N

N−1∑

n=0
P(s, x; t + s + nτ , A) − μt (A)

)
δ(t+s)(J )dt

+
∫ 0

−s

(
1
N

N∑

n=1
P(s, x; t + s + nτ , A) − μt (A)

)
δ(t+s)(J )dt

∣∣∣∣∣μs(dx)ds

= 1
τ

∫ τ

0

∫

Rd

∣∣∣∣∣

∫

J

(
1
N

N−1∑

n=0
P(s, x; t + nτ , A) − μt (A)

)
dt

− 1
N

∫ 0

−s

(
P(s, x; t + s, A) − P(s, x; t + s + Nτ , A)

)
δ(t+s)(J )dt

∣∣∣∣∣μs(dx)ds
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� 1
τ

∫ τ

0

∫

Rd

∣∣∣∣∣

∫

J

(
1
N

N−1∑

n=0
P(s, x; t + nτ , A) − μt (A)

)
dt

∣∣∣∣∣μs(dx)ds

+ 1
Nτ

∫ τ

0

∫

Rd

∣∣∣∣∣

∫ 0

−s

(
P(s, x; t + s, A)

− P(s, x; t + s + Nτ , A)
)

δ(t+s)(J )dt

∣∣∣∣∣μs(dx)ds −→
N→∞ 0.

��

Remark 4.13 The invariance of the τ -periodic probability measures under the discrete
evolution (P̃∗

nτ )n∈N0 on their respective Poincaré sections was pointed out in Lemma 4.3.
It can be shown, as a consequence of [33, Theorem 4.11], that such τ -periodic probability
measures are ergodic w.r.t. the discrete evolution (P̃∗

nτ )n∈N0 on their respective Poincaré
sections; given that we require Assumption 4.6 to be satisfied, these measures are sup-
ported on all of R

d . This fact will be useful in Sect. 5 concerned with ergodic averages in
the context of the linear response.

Example 4.14 (Stochastic Lorenzmodel with periodic forcing) Consider amodified Lorenz
system (e.g. [48]) given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = −ᾱ x + ᾱ y,

ẏ = −ᾱ x − β̄ y − xz,

ż = −γ̄ z + xy − γ̄ β̄−2 (�̄ + ᾱ),

(4.39)

with parameters ᾱ, β̄ , γ̄ , �̄ > 0. We set (v1, v2, v3) := (x, y, z) ∈ R
3 and consider the

periodically-in-time and stochastically perturbed version of (4.39) for t ∈ R
+ in the form

dvt = b(t, vt )dt + σ (vt )dWt = [− Avt − G(vt ) + F (t)
]
dt + σ (vt )dWt, v0 ∈ R

3,
(4.40)

where

A =
⎡

⎢⎣
ᾱ −ᾱ 0
ᾱ β̄ 0
0 0 γ̄

⎤

⎥⎦ , G(v) =
⎡

⎢⎣
0

v1v3
−v1v2

⎤

⎥⎦ , F (t) =
⎡

⎢⎣
f̄
(
1 + δ̄ sin

( 2π
τ
t
))

0
−γ̄ β̄−2(�̄ + ᾱ)

⎤

⎥⎦ ,

σ (v) = σ̄

⎡

⎢⎣
v1 0 0
0 v2 0
0 0 v3

⎤

⎥⎦ ,

with |δ̄| � |f̄ | < ∞ and σ̄ ∈ R\{0} finite, 0 < τ < ∞, and Wt = (W 1
t ,W 2

t ,W 3
t ) an

independent Wiener process in R
3. Although the above system is in the ‘toy category’,

considering the effects of time-periodic forcing and stochastic perturbations is relevant in
many atmosphere-ocean applications to model, for example, seasonal and diurnal cycles
in climatemodels (e.g. [59,60,64,77–79]). It is well known that for σ̄ = 0 the system (4.40)
has an absorbing ball for all values of the parameters, since for V (t, v) = |v|2 we have
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1
2
dV
dt

= 〈b(v), v〉 = −ᾱ

(
v1 − F1

2ᾱ

)2
− β̄v22 − γ̄

(
v3 + �̄ + ᾱ

2β̄2

)2

+ ᾱγ̄ β̄−2(�̄ + ᾱ)2 + F2
1

4ᾱ
,

where we skip the explicit time dependence and F1(t) = f̄
(
1 + δ̄ sin

( 2π
τ
t)
)
. Note that the

drift and diffusion coefficients, b, σ , in (4.40) are smooth and satisfy the growth conditions
(4.13) outlined in Remark 4.16(a); since for 0 < �1, �3 < ∞, and F̄1 = sup[0,τ ] | f1(t)| we
have

〈b(v), v〉�−ᾱ

(
1− F̄1

4ᾱ�1

)
v21 − β̄v22−γ̄

(
1 − �̄+ᾱ

4β̄2�3

)
v23+F̄1�1+γ̄ β̄−2(�̄+ᾱ)�3,

where we used the fact that |x| � � + 1
4� |x|2 for � > 0. Thus, we have

〈b(v), v〉 � Lb1 − Lb2 |v|2, ‖σ (v)‖2HS � Lσ

(
1 + |v|2 ), (4.41)

where Lσ = σ̄ and

Lb1 = �1F̄1 + �3 γ̄ β̄−2(�̄ + ᾱ), Lb2 = min
(

β̄ , ᾱ
(
1 − F̄1

4ᾱ�1

)
, γ̄
(
1 − �̄ + ᾱ

4β̄2�3

))
.

(4.42)

Thus, (4.40) has global solutions and it generates a stochastic flow of diffeomorphisms
on R

3.
Next, note that the linear part in (4.40) satisfies

〈Av, v〉R3 � CA|v|2, CA = min{ᾱ, β̄ , γ̄ },

and thenonlinear termG(v) = B(v, v) is givenby abilinearmapB(v, w) = (0, v1w3,−v1w2),
v, w ∈ R

3, which satisfies (see also [48])

⎧
⎪⎪⎨

⎪⎪⎩

〈B(v, w), w〉R3 = 〈(0, v1w3,−v1w2), (w1, w2, w3)〉R3 = 0,

〈B(v, w), u〉R3 = 〈(0, v1w3,−v1w2), (u1, u2, u3)〉R3 = −〈B(v, u), w〉R3 ,

|B(v, w)| � |v||w|.
(4.43)

Consider V (t, v) = |v|p for some 1 < p < ∞, so that

∂viV (t, v) = pvi|v|p−2, ∂2vivjV (t, v) = p(p − 2)vivj|v|p−4 + δijp|v|p−2.

Next, we have

〈G(v) − G(w), v − w〉 = 〈B(v − w, v), v − w〉 � |v − w|2|v|, (4.44)
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which follows from (4.43) after some simple manipulations,16 so that

L(2)V (t, v − w) = p
〈− Av + Aw − G(v) + G(w), v − w

〉
R3 |v − w|p−2

+ 1
2

3∑

ij=1

[
(vi − wi)

(
σi(v) − σi(w)

)(
σj(v) − σj(w)

)
(vi − wj)

p(p − 2)|v − w|p−4 + δij p
(
σi(v) − σi(w)

)(
σj(v) − σj(w)

)|v − w|p−2
]

� p|v||v − w|p − pβ|v − w|p + 1
2 σ̄

2p(p − 1)|v − w|p, (4.45)

where L(2) is the two-point generator associated with (4.40). Next, choose p such that for
v, w ∈ Lp+1(�,F t−∞,P) and 0 < E|v − w|p. Then, from Jensen’s inequality we have

0 < E|v − w|p � (E|v − w|p+1)p/(p+1) < ∞, (4.46)

while the Hölder’s inequality leads to (with ‖X‖p := (E[|X |p])1/p)

E
[|v||v − w|p] = ∥∥|v||v − w|p∥∥1 � ‖v‖p+1

(
E|v − w|p+1)p/p+1. (4.47)

The bounds (4.46) and (4.47) imply that there exists a constant 1 � Cp < ∞ such that

(
E|v − w|p+1)p/(p+1) = Cp E|v − w|p. (4.48)

Combining (4.48), (4.47), and (4.45) leads to

E
[L(2)V (t, v − w)

]
� −λp E

[
V (t, v − w)

]
,

where λp = p
(
CA − 1

2 σ̄ (p − 1) − Cp‖v‖p+1
)
. Now, for vt = φ(t, s,ω, ξ ), wt = φ(t, s,ω, η)

solving (4.40), we have from the above

E
[L(2)V

(
t,φ(t, s, ξ ) − φ(t, s, η)

)]
� −λp(t, s)E

[
V
(
t,φ(t, s, ξ ) − φ(t, s, η)

)]
, (4.49)

so that combining Itô’s lemma

dE
[
V
(
t,φ(t, s, ξ ) − φ(t, s, η)

)] = E
[L(2)V

(
t,φ(t, s, ξ ) − φ(t, s, η)

)]
,

with (4.49) we obtain

E
[
V
(
t,φ(t, s, ξ ) − φ(t, s, η)

)]
� E

[
V (s, ξ − η)

]
exp

(
−
∫ t

s
λp(r, s)dr

)
. (4.50)

16This identity is obtained with the help of (4.43) by noticing that one has

〈B(v − w, v), v − w〉 = 〈B(v, v), v − w〉 − 〈B(w, v), v − w〉
= 〈B(v, v), v − w〉 − 〈B(w,w), v − w〉 − 〈B(w, v − w), v − w〉
= 〈G(v), v − w〉 − 〈G(w), v − w〉,

where the last term in the second line vanishes due to the fact that 〈B(u, w), w〉R3 = 0 ∀u, w ∈ R
3 .
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Fig. 1 Illustration of some aspects of the dynamics of the stochastic Lorenz model with time-periodic
forcing (4.40) with the flow of solutions {φ(t, 0,ω, · ), t � 0} in two different regimes. The top row
corresponds to the regime in which the time-periodic measure exists and is supported on stable random
periodic orbits of (4.40); the inset of the top-right figure shows a finite sample from this measure on a
Poincare section (i.e. on the subspace R

3 ofX = [0, τ ) × R
3). The top-left inset illustrates the relationship in

(4.50) in the case when limt→∞ λp(t) < 0 and random periodic orbits exist (see text and Theorem 4.7);
colours denote path-wise evolution of |φ(t, 0,ω, ξ ) − φ(t, 0,ω, η)|2 for fixed ξ , η, and the dotted black line
denotes E|φ(t, 0, · , ξ ) − φ(t, 0, · , η)|2. The bottom row illustrates a regime where
limt→∞ |φ(t, 0,ω, ξ ) − φ(t, 0,ω, η)| > 0 and existence of random periodic orbits and periodic measures
cannot be guaranteed. Parameters in (4.40) are: (top row) ᾱ = 7.3, β̄ = 26, γ̄ = 7, �̄ = 10,
f̄ = 100, δ̄ = 0.9, τ = 1, σ̄ = 0.2, and (bottom row) ᾱ = 10, β̄ = 1, γ̄ = 8/3, �̄ = 28,
f̄ = 23, δ̄ = 0.9, τ = 1, σ̄ = 0.2

Thus, in order for Assumption 4.4(ii) to hold, it is sufficient to require that

CA − 1
2 σ̄ (p − 1) − lim sup

(t−s)→∞
1

t − s

∫ t

s
Cp(u, s)‖φ(u, s, ξ )‖p+1du > 0.

Finally, we choose p = 2, so that V (t, v) = |v|2 and note that (see “Appendix A”)

lim
(t−s)→∞

‖φ(t, s, ξ )‖3 = (27)1/6
(
Lb1 + Lσ

Lb2 − Lσ

)1/2
,

so that simple but tedious algebraic manipulations lead to

CA − 1
2 σ̄ − C̄

(
Lb1 + Lσ

Lb2 − Lσ

)1/2
> 0, C̄ = (27)1/6 lim

(t−s)→∞
1

t − s

∫ t

s
C2(u, s)du, (4.51)

where Lb1 , Lb2 , and Lσ for the system (4.40) are given in (4.42).
Therefore, by Theorem 4.7, we conclude that the time-periodically forced stochastic

Lorenz equation (4.40) admits a family of periodic measures {μt : t ∈ [0, τ )} ⊂ P(R3)
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supported on stable periodic solutions of (4.40) lifted to [0, τ ) × R
3. For σ̄ �= 0, Assump-

tion 4.6 holds in addition to Assumption 4.4, and Theorem 4.11 implies existence of
ergodic τ -periodic measures μ̃t = δt mod τ ⊗ μt ∈ P([0, τ ) × R

3) in the sense of Defini-
tion 4.8. Numerical illustration of the convergence in (4.50) is provided in Fig. 1 alongside
a sample from the density of the ergodic measure supported on the attractor containing
stable random periodic orbits.

5 Linear response in the random time-periodic regime
In this section, we derive a general formula for the linear response function which char-
acterises the change of a statistical observable in response to small perturbations of SDE
dynamics with a time-periodic ergodic probability measure. The results presented below
build on and extend the derivations obtained for time-dependent stochastic systems in
[62]. First, we derive the linear response formula associated with perturbations of dynam-
ics with time-periodic measures, and we represent it via formulas exploiting the asymp-
totic statistical properties of the unperturbed dynamics; in line with terminology from
statistical physics, these are termed fluctuation–dissipation formulas. In Theorem 5.14,
we derive the fluctuation–dissipation formulas in the case when only the unperturbed
dynamics has a time-periodic ergodic probability measure. In Theorem 5.16 we con-
sider the linear response associated with perturbations of dynamics with a time-periodic
ergodic probability measure under stronger conditions when perturbed dynamics also
has a time-periodic ergodic measure. During the revision of the manuscript, we become
aware of related results derived independently in [19] for non-autonomous SDE’s; those
results are complementary to ours since they are confined to a finite time interval in the
non-autonomous case with a restricted class of perturbations, and they do not deal with
perturbations of asymptotically time-periodic ergodic measures. We conclude with some
examples of the linear response for the periodically forced stochastic Lorenz model used
earlier in Example 4.14. In principle, the results discussed below apply to a wider class
of SDE’s generating time-periodic measures under less stringent conditions than those in
Assumption 4.4; however, establishing the existence and ergodicity of such measures in a
more general setting is not trivial and it is beyond the scope of this work.

5.1 Set-up and assumptions

Consider the following SDE on R
d for t � s, s ∈ R,

dXα
t = b̂(α(t), t, Xα

t )dt + σ̂ (α(t), t, Xα
t )dWt−s, Xα

s = x, (5.1)

where the maps t �→ b̂(0, t, · ) = b(t, · ), t �→ σ̂ (0, t, · ) = σ (t, · ), are τ -periodic and
coincidewith the coefficients in (2.1);α( · ) ∈ C1∞(R;R)will be assumed sufficiently small in
the sequel. Allowing for the explicit time dependence in α(t) enables one to consider time-
dependent changes in the coefficients of (5.1) relative to those in the original dynamics
for α = 0; for example, one can think of changes in the ‘climatological’ forcing (e.g. [1,3,
34,36–39,59,62,64]) which is relevant for considerations in atmosphere-ocean science.
Similar to Sect. 4, we consider the Wiener probability space (�,F ,P), � := C0(R,Rm),

withF the BorelS-algebra on�, and the probability measure P on (�,F ) induced by the
m-dimensional Wiener process Wt . Furthermore, we assume that there exists a proper
interval A ⊆ R containing α = 0 such that, for all α ∈ A, the coefficients b̂(α, t, · ),
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σ̂ (α, t, · ) are sufficiently regular for (5.1) to generate a forward stochastic flow on R
d

(see Theorem 3.5); i.e.

Xα
t (ω) = φα(t, s,ω, x), s � t P - a.s.

The forward stochastic flow
{
φα(t, s, · , · ) : s � t

}
induced by (5.1) has a one-point

generator

Lα =
∑

i=1
b̂i(α(t), t, x)∂xi + 1

2

∑

i,j=1
âij(α(t), t, x)∂2xixj , â := σ̂ σ̂T . (5.2)

As in the previous sections (see (4.2)), we lift the SDE (5.1) to R × R
d to represent the

dynamics as

dX̃α
t = b̃(α(t), X̃α

t )dt + σ̃ (α(t), X̃α
t )dW̃t−s, X̃α

s = x̃, s � t, (5.3)

where x̃ = (s, x) ∈ R × R
d , and

b̃
(
α, x̃

) = (
1, b̂(α, s, x)

)T , σ̃
(
α, x̃

) =
(
0 0
0 σ̂ (α, s, x)

)
.

Finally, shifting the time t → t + s allows to represent the dynamics in (5.3) for t ∈ R
+

as

dX̃α
t+s = b̃(α(t + s), X̃α

t+s)dt + σ̃ (α(t + s), X̃α
t+s)dW̃t+s, X̃α

s = x̃, (5.4)

where W̃t+s = W̃t+s(θ−sω) due to (3.12). In what follows, we will always assume that the
SDE with α = 0 satisfies the conditions of Theorem 4.7.
The lifted process �̃α : R

+ × � × R × R
d → R × R

d , is defined analogously to (4.5);
namely

�̃α
(
t,ω, x̃

)
:= (

t + s, φα(t + s, s, θ−sω, x)
)
, x̃ := (s, x) ∈ R × R

d, t ∈ R
+. (5.5)

Note that if the flow φα is induced by the solutions of (5.1) with the coefficients b̂
(
α(t), t, x

)

and σ̂
(
α(t), t, x

)
which are time periodic for all α ∈ A, �̃α can be represented on a flat

cylinder [0, τ̂ ) × R
d , [0, τ̂ ) � Rmod τ̂ , 0 < τ̂ < ∞, and the results of Sect. 4 hold; one

obvious case is for α = 0 when, by construction, the coefficients are time periodic with
period τ . If τ̂ = τ for any α ∈ A, both the unperturbed (α = 0) and perturbed (α �= 0)
dynamics can be considered on the same cylinder. We will consider such a case in the last
theorem of this section (Theorem 5.16).
Similarly, the transition evolutions (P̃α

t )t∈R+ and their duals (P̃α∗
t )t∈R+ can be defined

through (4.7)-(4.8) with the transition kernel P̃α
(
x̃; t, Ã

)
:= P

({ω : �̃α(t,ω, x̃) ∈ Ã });
namely

P̃α
t ϕ(x̃) :=

∫

R×Rd
ϕ(ỹ)P̃α(x̃; t, dỹ), ∀ ϕ ∈ M∞

(
R × R

d), (5.6)

μ̃α
t+r(Ã) = (P̃α∗

t μ̃α
r
)
(Ã) :=

∫

R×Rd
P̃α(x̃; t, Ã)μ̃α

r (dx̃), ∀ μ̃α
r ∈ P(R × R

d), r ∈ R
+,

(5.7)
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with the short-hand notation μ̃α
r (dx̃) = δr(s)ds ⊗ μα

r (dx) for probability measures in the
skew-product fibre bundle on P(R × R

d), where μ̃α
r ∈ P(R × R

d) and μα
r ∈ P(Rd); see,

for example, [23] for more details concerning the structure of skew-product fibre bundles
of probability measures. The definition in (5.6) can be extended to ϕ ∈ M

(
R × R

d) in a
standard fashion.
Thegenerator of the liftedone-pointmotion is givenby L̃α = ∂s+Lα (seeDefinition3.6).

By construction (see, for example, [62]), one can check that if μα
t ∈ P(Rd) is a solution of

forward Kolmogorov equation with the operator L∗
α , then μ̃α

t = δt ⊗ μα
t solves the lifted

forward Kolmogorov equation with L̃∗
α in the skew-product fibre bundle embedded in

P(R × R
d).

In the sequel, we derive fluctuation–dissipation formulas associated with the linear
response for time-asymptotic SDE’s dynamics in the random time-periodic regime with
the ergodic measure ¯̃μ ∈ P([0, τ )× R

d), as in Theorem 4.11. We start with the definition
of a linear response function which approximates changes in the statistical observables
due to sufficiently small perturbations of the unperturbed dynamics with a time-periodic
ergodic probability measure.

Definition 5.1 (Linear response function) Assuming that E[ϕ(�̃α)] ∈ L1(μ̃0), consider a
family of statistical observables

F
μ̃0
ϕ (t,α) =

∫

[0,τ )×Rd
E
[
ϕ
(
�̃α(t, · , x̃))]μ̃0(dx̃) = 〈P̃α

t ϕ, μ̃0
〉
, ϕ ∈ Cτ

(
R × R

d), (5.8)

where

C2τ (R × R
d) := {

ϕ ∈ C2(R × R
d) : ϕ(t + τ , · ) = ϕ(t, · ), t ∈ R

}
, (5.9)

the transition evolution {P̃α
t }t∈R+ is induced by �̃α in (5.5), and μ̃0 ∈ P([0, τ )×R

d) is the
probability measure on the initial condition in (5.4), which is assumed throughout to be
given by the τ -periodic ergodic measure associated with the ‘unperturbed’ dynamics with
α = 0. If there exists a locally integrable functionRμ̃0

ϕ such that the Gateaux derivative of
F̃

μ̃0
ϕ ( · ,α) at α = 0 satisfies

�F
μ̃0
ϕ,ϑ (t) :=

d
dε

F
μ̃0
ϕ (t, εϑ)

∣∣∣
ε=0

=
∫ t

0
Rμ̃0

ϕ (t − r, r)ϑ(r)dr, (5.10)

for ϑ ∈ C1∞(R+,R), ϑ(0) = 0, we say that Rμ̃0
ϕ is a linear response function due to

perturbations of the statistical observable F
μ̃0
ϕ .

In other words,Rμ̃0
ϕ can be defined if the functional Fμ̃0

ϕ ( · ,α) is Gateaux differentiable at
α = 0 in the direction of ϑ , and the Gateaux derivative is linear and continuous in the
neighbourhood of α = 0. The formula (5.10) can be interpreted as anO(ε) approximation
of the change of the statistical observable F

μ̃0
ϕ in response to a sufficiently small perturba-

tion εϑ(t) around α = 0. The explicit time dependence in the perturbation ϑ(t) enables
one to consider the linear response to small time-dependent changes in the coefficients
of (5.4) relative to those in the original dynamics for α = 0; for example, one can consider
changes in the climatological forcing (e.g. [1,3,34,36–39,59,62,64]).
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Throughout the remainder of this section,we impose the following regularity conditions
which reduce to Assumption 4.4 when α = 0, and which imply the smoothing property
(e.g. [26]) of the transition evolutions (P̃α

t )t∈R+ (in the x-component of the extended state
space R × R

d):

Assumption 5.2 Assume that there exists a proper interval A ⊆ R containing α = 0,
and that the following conditions are satisfied for all s � t, s ∈ R, and for all α ∈ A:

(i) Dn
α b̂(α, t, · ) ∈ C̃∞(Rd), |Dn

α b̂(α, t, x)| � C�(1 + |x|�), 0 � � < ∞, 0 � C� < ∞,
n ∈ N0, and t �→ b̂( · , t, · ) is differentiable onA × R × R

d .
(ii) Dn

α σ̂k (α, t, · ) ∈ C̃∞
b (Rd), n ∈ N0, and t �→ σ̂k (t, · , · ) is differentiable onA×R×R

d ,
and |∂t∂nαDβ

x σ̂k (α, t, x)| < C < ∞, (α, t, x) ∈ A × R × R
d, 1 � k � m, for any

multi-index β , and σ̂k , 1 � k � m the columns of σ̂ .
(iii) Lie

(
σ̂1(α, t, x), · · · , σ̂m(α, t, x)

) = R
d , for all s � t, where

Lie
(
σ̂1, · · · , σ̂m

)
:= span

{
σ̂i, [σ̂i, σ̂j], [σ̂i, [σ̂j , σ̂k ]], · · · , 1 � i, j, k � m

}
,

and [F, G ](α, t, x) is the Lie bracket between the vector fields F and G defined by

[F, G ](α, t, x) := DxG(α, t, x)F (α, t, x) − DxF (α, t, x)G(α, t, x).

Remark 5.3 Assumption 5.2, which is a version of the Hörmander condition, implies the
existence of a smooth density of the time-marginal probability measure on (Rd,B(Rd))
induced by the law of the solutions of (5.1); i.e.μα

t (dx) = ρα
t (x)dx, ρα

t ∈ C∞(Rd)∩L1+(Rd)
for all s � t. In order to simplify the subsequent derivations, we will abuse notation and
set the following

μ̃α
t (dx̃) ≡ ρ̃α

t (x̃)dx̃ ≡ δt (s)ds ⊗ ρα
t (x)dx, (5.11)

when dealing with probability measures μ̃α
t ∈ P(R × R

d), μ̃α
t = δt ⊗ μα

t , of the lifted
process in the skew-product fibre bundle associated with the SDE (5.4). This intuitive
convention is consistent with the convention introduced in (4.6) for transition evolutions.

In addition to Assumption 5.2, the last theorem of this section, which is concerned with
the linear response when both the unperturbed and perturbed measures are τ -periodic
and ergodic, will require the following assumption (which coincides with Assumption 4.4
for α = 0).

Assumption 5.4 Let V ∈ C1,2(R × R
d,R+) such that V (t, 0) = 0 for all t ∈ R, and the

coefficients b̂(α, t, x), σ̂ (α, t, x), in (5.1) be such that for α ∈ A, where A ⊆ R is a proper
interval containing α = 0, the following hold:

(i) There exist functions λα ∈ L1(R) with A � α �→ λα(t) bounded for t ∈ R, and a
constant 1 � C < ∞ such that for all ξ , η ∈ Lp(�,F s−∞,P) and some 1 < p < ∞ we
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have
⎧
⎨

⎩
E|ξ |p � E[V (t, ξ )] � C |ξ |p,
E
[L(2)

α V (t, ξ − η)
]

� λα(t)E
[
V (t, ξ − η)

]
,

(5.12)

where L(2)
α is defined analogously to the two-point generator L(2) in (3.8) but based

on the coefficients b̂(α, t, · ), σ̂ (α, t, · ) of (5.1); moreover, L(2)
α ≡ L(2) for α = 0.

(ii) There exists ¯̄λ > 0 such that

sup
α∈A

{
lim sup
(t−s)→∞

1
t − s

∫ t

s
λα(u)du

}
< − ¯̄λ < 0. (5.13)

(iii) Given the one-point motion t �→ φα(t, s,ω, ξ ) induced by (5.1) for ω ∈ �, ξ ∈ R
d ,

and s � t, there exists 0 < Dα < ∞ independent of s, t ∈ R such that17 for all
ξ ∈ Lp(�,F s−∞,P)

lim sup
(t−s)→∞

E
[
V
(
t,φα(t, s, ξ ) − ξ

)]
< Dα , (5.14)

where E
[
V
(
φα(t, s, ξ )

)]
:= ∫

�
V
(
φα(t, s,ω, ξ )

)
P(dω).

5.2 Preparatory lemmas

We start with the following standard and preparatory results which utilise relatively well-
known results from [26,85], and are aimed at representing P̃α

t ϕ(x̃) − P̃tϕ(x̃) in the form
amenable to further analysis in the context of the linear response. The main results are
derived in Sect. 5.3.

Lemma 5.5 Suppose that the coefficients b̂(α, t, x), σ̂ (α, t, x) in the SDE (5.1) satisfy
Assumption 5.2 so that global solutions of (5.1) exist for all time, and ϕ ∈ C2(R × R

d)
is such that for any fixed x̃ = (s, x) ∈ R × R

d and for all α ∈ A, E[Dβ
x ϕ(�̃α(t, x̃))] < ∞,

|β| � 2, where {�̃α(t, · , · ) : t ∈ R
+} in (5.5) is generated by the lifted SDE (5.4) onR×R

d.
Then, the function v(r, x̃) := P̃α

t−rϕ(x̃) with x̃ := (s, x) ∈ R×R
d, and P̃α

t defined in (5.6),
is the unique solution of the backward Kolmogorov equation with the terminal condition

⎧
⎨

⎩
∂rv(r, x̃) = −L̃αv(r, x̃), 0 � r � t,

v(t, x̃) = ϕ(x̃).
(5.15)

Moreover, for any ϕ ∈ C2∞(R × R
d), there exists a constant C > 0 such that

‖P̃α
t−rϕ‖2,∞ � C‖ϕ‖2,∞, 0 � r � t, (5.16)

where ‖ϕ‖2,∞ = ‖ϕ‖∞ +
∑

1�|β|�2
‖Dβ

x ϕ‖∞.

17This condition can be replaced by a stronger butmore concrete constraint on the global existence of the p-th absolute
moment of φα ; see Lemma A.1 in “Appendix A”.
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Proof See, for example, [54, Thm 4.8.11] or [17,26,85]. Sufficient conditions for
E[Dβ

x ϕ(�̃α)] < ∞, |β| � 2, ϕ ∈ C2(R × R
d), α ∈ A, are given in Proposition 5.8. It

can also be shown that, under Assumption 5.2, the problem (5.15) has unique classical
solutions for ϕ ∈ C(R × R

d) due to the smoothing property of (P̃α
t )t∈R+ (e.g. [26]; the

general case can be obtained by approximating ϕ ∈ C(R × R
d) by ϕn ∈ C∞(R × R

d)
converging uniformly to ϕ on compact subsets of R × R

d . ��

Lemma 5.6 Suppose that the conditions of Lemma 5.5 hold. Then,

P̃α
t ϕ(x̃) − P̃tϕ(x̃) =

∫ t

0
P̃r
(L̃α − L̃)P̃α

t−r ϕ(x̃)dr, 0 � r � t, x̃ ∈ R × R
d. (5.17)

Proof It can be obtained fromLemma5.5 that the functionu(r, x̃) = P̃α
t−rϕ(x̃)−P̃t−rϕ(x̃),

0 � r � t, x̃ ∈ R × R
d , uniquely solves the inhomogeneous Cauchy problem (see, for

example, [17,26,85])
⎧
⎨

⎩
∂ru(r, x̃) = −L̃u(r, x̃) − α(r) f̂t,α(r, x̃),

u(t, x̃) = 0,
(5.18)

where α ∈ C1∞(R,R), α(r) ∈ A, and

α(r)f̂t,α(r, x̃) :=
(L̃α − L̃)P̃α

t−rϕ(x̃). (5.19)

Next, consider the solutions of (5.4) with α = 0 represented through (5.5) as
�̃0 = �̃(r,ω, x̃) where �̃ is defined in (4.5) and solves the SDE (4.4). Then, by Itô’s
formula

du(r, �̃r) =
[
∂ru(r, �̃r) + L̃u(r, �̃r)

]
dr + Dxu(r, �̃r)T σ̃ (r, �̃r)dW̃r

= −α(r) f̂t,α(r, �̃r)dr + Dxu(r, �̃r)T σ̃ (r, �̃r)dW̃r , (5.20)

where �̃r ≡ �̃(r,ω, x̃) to simplify notation. Combining (5.20) with (5.18), and using the
explicit form of u(t, x̃) leads to

P̃α
t ϕ(x̃)−P̃tϕ(x̃) =

∫ t

0
α(r)E

[
f̂t,α(r, �̃(r, x̃)

]
dr =

∫ t

0
P̃r
(L̃α−L̃)P̃α

t−rϕ(x̃)dr.

The above identity is well defined due to the underlying assumptions, and it is discussed
further in Proposition 5.8. ��

Definition 5.7 (α-linearised generator) Given the infinitesimal generator L̃α = ∂s + Lα

with Lα defined in (5.2) and (b̂, σ̂ ) satisfying Assumption 5.2, the α-linearised generator
is defined by

Ṽϕ(x̃) = b(x̃)Dxϕ(x̃) + 1
2
Tr
(
a(x̃)D2

xϕ(x̃)
)
, x̃ = (s, x), ϕ ∈ C2(R × R

d), (5.21)

where

b(x̃) = ∂α b̂(α, s, x)
∣∣
α=0, a(x̃) := σ (s, x)HT (s, x) + σT (s, x)H (s, x),
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with Hik (s, x) = ∂ασ̂ik (α, s, x)
∣∣
α=0, 1 � k � m, 1 � i � d, and σ̂ (0, t, · ) = σ (t, · ) as

in (5.1). The L2(μ̃t ) dual of Ṽ is given by

Ṽ∗ρ̃t (x̃) = −Dx
(
b(x̃)ρ̃t (x̃)

)+ 1
2
Tr
(
D2
x
(
a(x̃)ρ̃t (x̃)

))
, (5.22)

where ρ̃t (x̃) is understood in the sense of (5.11).

Note that the properties of a(x̃) and b(x̃) are fully controlled through Assumption 5.2.

Proposition 5.8 Suppose that the conditions of Lemma 5.5 are satisfied, and consider a
function ft,α : [0, T ) × R × R

d → R, α ∈ A, defined by

ft,α(r, x̃) = Ṽ P̃α
t−rϕ(x̃), 0 � r � t � T. (5.23)

Then, ft,α ∈ C(R × R
d) and ft,α < ∞ for any fixed x̃ ∈ R × R

d.
If Assumption 5.2 holds for 0 � � < ∞, and the initial condition in the lifted SDE (5.4)

has p � max(2, �) finite moments, then there exists a constant C = C(T, k,ϕ) > 0 such that
for any fixed x̃ ∈ R × R

d one has

sup
0�r�t�T

E
∣∣ft,α(r, �̃(r, x̃))

∣∣ � C < ∞, (5.24)

where {�̃(r, · , · ) : r ∈ R
+} is the RDS (4.5) generated by the SDE (5.4) with α = 0.

The sufficient condition for (5.24) to hold for T → ∞ is that (b̂, σ̂ ) satisfy the dissipative
conditions (4.13)–(4.14)with p=max(2, �). Ifϕ( · , x)�Cl(1+|x|l), 0��<∞, 0�C� < ∞,
then (5.24) holds for T → ∞ when (b̂, σ̂ ) satisfy (4.13)–(4.14) with p = max(2, �, l); i.e.
the conditions E[Dβ

x ϕ(�̃α)] < ∞, |β| � 2, in Lemma 5.5 can be replaced by assuming a
polynomial growth of ϕ.

Remark 5.9 Note that for a dissipative dynamics satisfying (4.13) the dissipation coeffi-
cient Lb2 might not be large enough to satisfy (4.14) with a given p � 2. Thus, not all
dissipative dynamics automatically satisfy Proposition 5.8 for all time.

Proof For (s, x) ∈ R × R
d, one can obtain directly from (5.21) that

ft,α(r, x̃) = ṼP̃α
t−rϕ(x̃) = b(x̃)DxP̃α

t−rϕ(x̃) + 1
2
Tr
(
a(x̃)D2

xP̃α
t−rϕ(x̃)

)
. (5.25)

The regularity and growth conditions of the coefficients (b̂, σ̂ ) imposed in Assumption 5.2
ensure the existence of global solutions to (5.4) which are represented via �̃α(t − r, · , x̃),
t − r ∈ R

+, and generate P̃α
t−r in (5.6). If p � 2 moments of the initial condition of (5.4)

are finite and E[Dβ
x ϕ(�̃α(t, x̃))] < ∞, |β| � 2, t � T , then by the assumption on (b̂, σ̂ )

and Lemma 5.5, we have ft,α ∈ C(R × R
d) and ft,α < ∞ for any fixed x̃ ∈ R × R

d .
Regarding (5.24), the polynomial growth of b̂ combined with the standard calculation

utilising Itô’s formula guarantees the existence of max(2, �) finite moments of the solution
forT < ∞ (Theorem 3.5). Thus, (5.24) follows by the Cauchy–Schwarz inequality applied
to E|ft,α| and the finiteness of the moments of a, b for T < ∞.
Considering (5.24) for T → ∞, may require additional dissipative constraints on the

drift b̂, as outlined below.Moreover, we specify two explicit classes of ϕ ∈ C2∞(R×R
d) for
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which E[Dβ
x ϕ(�̃α(t, x̃))] < ∞, |β| � 2, (5.24) holds for all time. First, if ϕ ∈ C2∞(R × R

d),
then

sup
0�r�t�T

E|ft,α(r, �̃(r, x̃)| � CT sup
0�r�t�T

‖P̃α
t−rϕ‖2,∞. (5.26)

By the second part of Lemma 5.5, the term on the right of (5.26) is bounded by C‖ϕ‖2,∞
so that one can set explicitly C = CT C‖ϕ‖2,∞ in (5.24). Given the existence of global
solutions of (5.4) for all time (Assumption 5.2 and Theorem 3.5), the bound (5.24) can be
extended to T → ∞ provided that the dissipative conditions (4.13)-(4.14) hold for (b̂, σ̂ )
with p = max(2, �); so that E|b(�̃(r, x̃))| < ∞, E|a(�̃(r, x̃))| < ∞, r ∈ R

+, in (5.25). More
generally, if ϕ ∈ C2(R × R

d) and ϕ( · , x) � Cl(1 + |x|l) with 0 � � < ∞, 0 � C� < ∞,
the bound (5.24) can be extended to T → ∞ provided that the dissipative conditions
(4.13)-(4.14) hold for (b̂, σ̂ ) with p = max(2, �, l). Both assertions can be obtained through
derivations analogous to Lemma A.1 in “Appendix A”. ��

Corollary 5.10 Let f̂t,α : [0, T ) × R × R
d → R, α ∈ A, be defined by

α(r)f̂t,α(r, x̃) :=
(L̃α − L̃)P̃α

t−rϕ(x̃), x̃ ∈ R × R
d, 0 � r � t � T, (5.27)

as in (5.19) of Lemma 5.6; so that f̂t,α(r, x̃) = ft,α(r, x̃) + O(α) with ft,α defined in Proposi-
tion 5.8. Then, under the same conditions as those in Proposition 5.8, f̂t,α ∈ C(R × R

d) and
f̂t,α < ∞ for any fixed x̃ ∈ R × R

d. Furthermore, for p � 2 chosen as in Proposition 5.8 one
has

sup
0�r�t�T

E
∣∣f̂t,α(r, �̃(r, x̃))

∣∣ < ∞, x̃ ∈ R × R
d, (5.28)

which can be extended to T → ∞ in a way analogous to that in Proposition 5.8.

Proof This is a direct consequence of Proposition 5.8 and the fact that the O(α) terms
involve DxP̃α

t−rϕ(x̃), D2
xP̃α

t−rϕ(x̃), with coefficients given by Dn
α b̂ and Dn

ασ̂ which are
controlled through Assumption 5.2 and the polynomial bound on the growth of the
α-derivatives of b̂. ��

5.3 Linear response and fluctuation–dissipation formulas for time-periodic measures

Here, in Sect. 5.3.1 we derive a general expression for the linear response function charac-
terising the change in the statistical observable (5.8) to small perturbations of dynamics of
an SDE whose time-asymptotic dynamics is characterised by time-periodic ergodic prob-
ability measures (see Sect. 4). This is followed in Sect. 5.3.2 by deriving a more tractable
representation of the response function in terms of fluctuation–dissipation-type formulas
which allow one to express the change in the statistical observables through statistical
characteristics of the unperturbed dynamics.

5.3.1 The linear response

First, we derive a general formula for the linear response function associated with per-
turbations of the time-asymptotic dynamics of the SDE (4.4). The derived formula is
equivalent to the one obtained formally in [62].
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Theorem 5.11 (Linear response) Suppose that Assumption 5.2 holds, Assumption 5.4
holds for α = 0, and that Proposition 5.8 is satisfied. Consider the family of transition
semigroups {P̃α

t : (t,α) ∈ R
+ × A} induced by the SDE (5.4) which for α = 0 admit

τ -periodic ergodic measures (μ̃t )t�0, μ̃t ∈ P([0, τ ) × R
d).

Then, given the observable F
μ̃0
ϕ (t,α) = 〈P̃α

t ϕ, μ̃0
〉
in (5.8), for any ϕ ∈ C2τ (R × R

d) such
that E[Dβ

x ϕ(�̃α(t, · ))] ∈ L1(μ̃0), |β| � 2, and the perturbation α(·) = εϑ(·) ∈ C1∞(R+,R),
ϑ(0) = 0, such that εϑ ∈ A, the following holds

�F
μ̃0
ϕ,ϑ (t) =

∫ t

0
Rμ̃0

ϕ (t − r, r)ϑ(r)dr, (5.29)

with the linear response function given by

Rμ̃0
ϕ (t − r, r) =

∫

[0,τ )×Rd
P̃t−rϕ(x̃)

(Ṽ∗ρ̃r
)
(x̃)dx̃, (5.30)

where Ṽ∗ is defined in (5.22), and ρ̃r(x̃)dx̃ is understood in the sense of (5.11).

Remark 5.12 �F
μ̃0
ϕ,ϑ (t) can be interpreted as the approximateO(ε) response of the observ-

able F
μ̃0
ϕ (t, 0) in (5.4) to a sufficiently small perturbation α(t) = εϑ(t), ϑ(0) = 0. Note that

the linear response formula is solely based on quantities defined for the ‘unperturbed’
dynamics (α = 0). Moreover, the perturbation α(t) = εϑ(t) does not necessarily have to
factorise the coefficients of (5.1) as, for example, b̂(α(t), t, x) = b̂(0, t, x) + εF(x)ϑ(t). For
example, consider the following b̂(α(t), t, x) = −(2 − sin2

(
x(1 + α(t))

)
x cos2(t) in (5.1)

and the derivations below.

Proof First, we set α = εϑ ∈ A and show that under the assumptions of the proposition
the following holds for any ϕ ∈ C2τ (R × R

d) such that E[Dβ
x ϕ(�̃α(t, · ))] ∈ L1(μ̃0), |β| � 2

(see Proposition 5.8 for a sufficient condition for this to hold for all time),

lim
ε→0

1
ε

(
P̃εϑ(t)
t ϕ(x̃) − P̃tϕ(x̃)

)
=
∫ t

0
ϑ(r)P̃r (ṼP̃t−rϕ)(x̃)dr, 0 � r � t, ϑ ∈ C1∞(R+,R),

with Ṽ defined in (5.21). To this end, it follows from Lemma 5.6 that for ε > 0 sufficiently
small

1
ε

(
P̃εϑ(t)
t ϕ(x̃) − P̃tϕ(x̃)

)
= 1

ε

∫ t

0
P̃r
(
L̃εϑ(r) − L̃

)
P̃εϑ(r)
t−r ϕ(x̃)dr =

∫ t

0
ϑ(r)E

[
f̂t,ε(r, �̃(r, x̃))

]
dr,

where �̃(r,ω, x̃) represents the solution of (5.4) with α = 0 (or the solution of (4.4)).
By Proposition 5.8, Corollary 5.10, and the dominated convergence theorem, we have

lim
ε→0

1
ε

(
P̃εϑ(t)
t ϕ(x̃) − P̃tϕ(x̃)

)
=
∫ t

0
ϑ(r)E

[
lim
ε→0

f̂t,ε(r, �̃(r, x̃)
]
dr

=
∫ t

0
ϑ(r)E

[ṼP̃t−rϕ(�̃(r, x̃)
]

=
∫ t

0
ϑ(r)P̃r

(ṼP̃t−rϕ(x̃)
)
dr.



42 Page 40 of 62 M. Branicki, K. Uda ResMath Sci (2021) 8:42

Using Fubini’s theorem and Proposition 5.8, we have

lim
ε→0

1
ε

〈P̃εϑ(t)
t ϕ − P̃tϕ, μ̃0

〉 =
∫ t

0
ϑ(r)

∫

[0,τ )×Rd
P̃r
(ṼP̃t−rϕ(x̃)

)
μ̃0(dx̃)dr

=
∫ t

0
ϑ(r)

∫

[0,τ )×Rd
ṼP̃t−rϕ(x̃)(P̃∗

r μ̃0)(dx̃)dr

=
∫ t

0
ϑ(r)

∫

[0,τ )×Rd
ṼP̃t−rϕ(x̃)μ̃r(dx̃)dr.

By the Hörmander Lie bracket condition in Assumption 5.2, and ergodicity of the time-
periodic measures μ̃r , there exists 0 < ρr ∈ C∞(Rd) ∩ L1+(Rd) such that (P̃∗

r μ̃0)(dx̃) =
μ̃r(dx̃) = ρ̃r(x̃)dx̃, where ρ̃r(x̃)dx̃ is understood in the sense of (5.11). Thus, for any
ϕ ∈ C2τ (R × R

d), such that E[Dβ
x ϕ(�̃α(t, · ))] ∈ L1(μ̃0), |β| � 2, we have

lim
ε→0

1
ε

〈P̃εϑ(t)
t ϕ − P̃tϕ, μ̃0

〉 =
∫ t

0
ϑ(r)

∫

[0,τ )×Rd
ṼP̃t−rϕ(x̃)ρ̃r(x̃)dx̃dr

=
∫ t

0

( ∫

[0,τ )×Rd
P̃t−rϕ(x̃)

(Ṽ∗ρ̃r
)
(x̃)dx̃

)
ϑ(r)dr.

Finally, by the definition of the response functionalRμ̃0
ϕ we have for ϑ ∈ C1∞(R+,R), that

∫ t

0
Rμ̃0

ϕ (t − r, r)ϑ(r)dr = lim
ε→0

1
ε

[
F

μ̃0
ϕ (t, εϑ(t)) − F

μ̃0
ϕ (t, 0)

]

= lim
ε→0

1
ε

〈P̃εϑ(t)
t ϕ − P̃tϕ, μ̃0

〉

=
∫ t

0

( ∫

[0,τ )×Rd
P̃t−rϕ(x̃)

(Ṽ∗ρ̃r
)
(x̃)dx̃

)
ϑ(r)dr,

where ρ̃r(x̃)dx̃ is understood in the sense of (5.11). ��

5.3.2 Fluctuation–dissipation formulas

Given the general framework for the linear response in the time-periodic regime, we now
derive a set of more tractable representations of the response function (5.30) via formulas
exploiting the time-asymptotic statistical properties of the unperturbed dynamics (4.4),
or (5.1) with α = 0; in line with the terminology inherited from statistical physics, these
are termed ‘fluctuation–dissipation’ formulas. The first set of results in Theorem 5.14
shadows and formalises formulas derived in [62], while the results in a more restrictive
Theorem 5.16 concern the linear response in situations when the ‘α-perturbations’ do
not destroy the time periodicity and ergodicity of the dynamics in the sense that the
coefficients in (5.1) remain τ -periodic for all α ∈ A. It turns out the two results are related
in a specific way.

Definition 5.13 (Correlation function) Given the RDS
{
�̃(t, · , · ) : t ∈ R

+} on
[0, τ ) × R

d , and ϕ,ψ ∈ C2τ (R × R
d), such that for any fixed x̃ ∈ [0, τ ) × R

d ,
E[ϕ

(
�̃(t, x̃)

)
], E[ψ

(
�̃(t, x̃)

)
] < ∞, the correlation of the random variables ϕ

(
�̃(t, · , x̃))

and ψ
(
�̃(r, · , x̃)) is given by

E
[
ϕ
(
�̃(t, x̃)

)
ψ
(
�̃(r, x̃)

)] = P̃r
(
ψ(x̃)P̃t−rϕ(x̃)

)
, 0 � r � t, (5.31)
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where (P̃t )t∈R+ is defined in (4.7), and (5.31) follows from the Markov property of the
RDS �̃. The correlation function based on ϕ,ψ ∈ C2τ (R × R

d) and μ̃ ∈ P([0, τ ) × R
d) is

defined as

Kμ̃
ϕ,ψ (t − r, r) :=

∫

[0,τ )×Rd
P̃r
(
ψP̃t−rϕ

)
dμ̃ =

∫

[0,τ )×Rd
ψP̃t−rϕ d(P̃∗

r μ̃), 0 � r � t. (5.32)

Theorem 5.14 (FDT I) Suppose that Assumption 5.2 holds, Assumption 5.4 holds for
α = 0, and Proposition 5.8 is satisfied. Then, for any ϕ ∈ C2τ

(
R × R

d) such that
E[Dβ

x ϕ(�̃α(t,·))]∈L1(μ̃0), |β| � 2, the following holds:

(i) There exists a family (μ̃t )t�0, μ̃t ∈ P([0, τ )×R
d) of τ -periodic probability measures,

and a uniquely P̃∗
t -ergodic probability measure, ¯̃μ ∈ P([0, τ )× R

d), which is associ-
ated with the RDS {�̃(t, · , · ) : t ∈ R

+} on [0, τ )× R
d and generated by the SDE (5.4)

with α = 0.
(ii) The linear response function in (5.30) is given by

Rμ̃0
ϕ (t−r, r) = Kμ̃0

ϕ,Br
(t−r, r) =

∫

[0,τ )×Rd
Br(x̃)P̃t−rϕ(x̃)ρ̃r(x̃)dx̃, Br(x̃) = Ṽ∗ρ̃r(x̃)

ρ̃r(x̃)
,

(5.33)

where 0 � r � t, μ̃r(dx̃) = ρ̃r(x̃)dx̃ is understood in the sense of (5.11), the correlation
function Kμ̃0

ϕ, ( · ) is defined in (5.32), and the operator Ṽ∗ is defined in (5.22).
(iii) The linear response for perturbations of observables based on the ergodic measure ¯̃μ is

R̄ϕ(t − r) = K̄ϕ,B(t − r) =
∫

[0,τ )×Rd
B(x̃)P̃t−rϕ(x̃) ¯̃ρ(x̃)dx̃, B(x̃) = Ṽ∗ ¯̃ρ(x̃)

¯̃ρ(x̃)
,

(5.34)

where 0 � r � t, R̄ϕ(t − r) := R ¯̃μ
ϕ (t − r, 0), and K̄ϕ,B(t − r) := K ¯̃μ

ϕ,B(t − r, 0).

The above hold for all time if Proposition 5.8 is satisfied for all time.

Proof Part (i) is a direct consequence of Theorem 4.7 and Theorem 4.11. For Part (ii), we
have from the representation of the response functional Rμ̃0

ϕ in (5.30) together with the
operator Ṽ∗ in (5.22) that the following holds for 0 � r � t

Rμ̃0
ϕ (t − r, r)

=
∫

[0,τ )×Rd
P̃r Ṽ

(
P̃t−rϕ(x̃)

)
μ̃0(dx̃) =

∫

[0,τ )×Rd
Ṽ
(
P̃t−rϕ(x̃)

)
ρ̃r (x̃)dx̃

=
∫

[0,τ )×Rd

{
Gi(x̃)∂xi P̃t−rϕ(x̃) + 1

2
[
σik (x̃)Hjk (x̃) + σjk (x̃)Hik (x̃)

]
∂2xixj P̃t−rϕ(x̃)

}
ρ̃r (x̃)dx̃

=
∫

[0,τ )×Rd

{
− ∂xi [Gi(x̃)ρ̃r (x̃)] + 1

2
∂2xixj

( [
σik (x̃)Hjk (x̃) + σjk (x̃)Hik (x̃

]
ρ̃r (x̃)

)}
P̃t−rϕ(x̃)dx̃

=
∫

[0,τ )×Rd

Ṽ∗ρ̃r (x̃)
ρ̃r (x̃)

P̃t−rϕ(x̃)ρ̃r (x̃)dx̃ =
∫

[0,τ )×Rd
Br (x̃)P̃t−rϕ(x̃)ρ̃r (x̃)dx̃ = Kμ̃0

ϕ,Br
(t − r, r),
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where ϕ ∈ C2τ
(
R × R

d), E[Dβ
x ϕ(�̃α(t, · ))] ∈ L1(μ̃0), |β| � 2, as in Theorem 5.11 (see also

Proposition 5.8 for a sufficient condition), and ρ̃r(x̃)dx̃ is understood in the sense of (5.11);
i.e.

Rμ̃0
ϕ (t − r, r) =

∫

[0,τ )×Rd

(Ṽ∗ρr(x)
)(Pr,tϕ(t, x)

)
dx

=
∫

[0,τ )×Rd
Br(x)

(Pr,tϕ(t, x)
)
ρr(x)dx, 0 � r � t. (5.35)

As regards Part (iii), notice that due to the fact that P̃∗
r ¯̃μ = ¯̃μ for any r ∈ [0, τ ), we have

R ¯̃μ
ϕ (t − r, r) =

∫

[0,τ )×Rd
P̃r Ṽ

(P̃t−rϕ
) ¯̃μ(dx̃) =

∫

[0,τ )×Rd
Ṽ(P̃t−rϕ

)P̃∗
r ¯̃μ(dx̃)

=
∫

[0,τ )×Rd
Ṽ(P̃t−rϕ

) ¯̃μ(dx̃) = R ¯̃μ
ϕ (t − r, 0),

and the desired result can be derived by following analogous derivations to those above. ��

Remark 5.15

(i) Theorem 5.14 implies that for the RDS
{
�̃(t, · , · ) : t ∈ R

+} in (4.5) induced
by the lifted SDE (4.4) on [0, τ ) × R

d, the change in the value of an observable
F

μ̃0
ϕ (t,α) = 〈P̃tϕ, μ̃0〉 in (5.8) in response to a sufficiently small and regular per-

turbation can be represented by the correlation function utilising the unperturbed
dynamics/fluctuations. The operator Ṽ defined in (5.21) does not depend on time
due to the τ -periodicity of the coefficients of (5.1) at α = 0 and the skew-product
formulation on [0, τ ) × R

d.
(ii) The response functions (5.33) and (5.34) evaluated on the unperturbed dynamics are

amenable to practical approximations via the appropriate long-time averages.
By P̃∗

nτ - ergodicity of μ̃r for any fixed r ∈ [0, τ ), and r � t we have (see Remark 4.13)

Rμ̃0
ϕ (t − r, r) =

∫

[0,τ )×Rd
Br(x̃)P̃t−rϕ(x̃)ρ̃r(x̃)dx̃

= lim
n→∞

1
N

N∑

n=0
Br
(P̃nτ (x̃)

)P̃t−rϕ
(P̃nτ (x̃)

)

= lim
n→∞

1
N

N∑

n=0
Br(Pt,t+nτ (x))

(Pr,tϕ(t,Pt,t+nτ (x))
)
,

whereϕ ∈ C2τ
(
R×R

d),E[Dβ
x ϕ(�̃α(t, · ))] ∈ L1(μ̃0), |β| � 2, and in the last line above,

we used explicitly the skew-product formulation (5.11) and the representation (5.35);
(Pr,t )t�r is the family of transition evolutions defined in (3.3).
Similarly, by P̃∗

t - ergodicity of ¯̃μ (see Theorem 4.11) we have for any u ∈ R
+

R̄ϕ(u) =
∫

[0,τ )×Rd
B(x̃)P̃t−rϕ(x̃) ¯̃ρ(x̃)dx̃

= lim
n→∞

1
N

∫ N

0
B
(P0,ζ (x)

)P0,uϕ
(
ζ ,P0,ζ (x)

)
dζ .
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(iii) Note that the function Br in (5.30) of Theorem 5.14 is unique almost everywhere.
To see this, suppose that there exists B̃r ∈ L1(μ̃r) such that

Kμ̃

ϕ,Br
(t − r, r) = Kμ̃

ϕ,B̃r
(t − r, r), ϕ ∈ C2c ([0, τ ) × R

d), 0 � r � t.

This implies that

〈P̃t−rϕ,Br − B̃r
〉
μ̃r

= 0, ϕ ∈ C2c ([0, τ ) × R
d), 0 � r � t.

Given that ϕ ∈ C2c ([0, τ ) × R
d) is bounded, taking limit as r → t in the above

and applying the dominated convergence theorem, we obtain Bt = B̃t μ̃t - a.e. by
arbitrariness of ϕ.

Throughout the remainder of this section, we shall assume that t �→ b̂(α, t, x), σ̂ (α, t, x),
are τ -periodic for all (α, x) ∈ A × R

d . Thus, under Assumptions 5.4 and 5.2, the family
of measures {μ̃α

t : t ∈ R
+, α ∈ A} is τ -periodic and ergodic (as in the case of Sect. 4.2)

and, as a consequence, the time-averaged (P̃α∗
t - ergodic) measures ¯̃μα (see (4.29)) satisfy

the stationary PDE

∫

[0,τ )×Rd
L̃αϕ(x̃) ¯̃μα(dx̃) = 0, α ∈ A, ϕ ∈ D(L̃α) ∩ Eα , (5.36)

where L̃α is the generator of the RDS {�̃α(t, · , · ) : t ∈ R
+} on [0, τ ) × R

d , for α ∈ A (in
the same form as L̃ in Definition 3.6), and the domainD(L̃α) is defined by

D(L̃α) := H
1([0, τ ) × R

d ; ¯̃μα
)

=
{
ϕ : [0, τ ) × R

d → R : ϕ(0, · ) = ϕ(τ , · ) and
∫

[0,τ )×Rd
|ϕ(s, x)|2 ¯̃μα(dsdx)

+
∫

[0,τ )×Rd
|Dϕ(s, x)|2 ¯̃μα(dsdx) < ∞, α ∈ A

}
. (5.37)

Eα :=
{
ϕ ∈ C2([0, τ ) × R

d) : ϕ(0, · ) = ϕ(τ , · ), and
E[Dβ

x ϕ(�̃α(t, · ))] ∈ L1( ¯̃μα), |β| � 2, α ∈ A
}
. (5.38)

Sufficient conditions for ϕ ∈ Eα were given in Proposition 5.8.
Given the ergodic measure ¯̃μ (4.29) of the unperturbed dynamics (i.e. (5.4) with α = 0)

and the above set-up, the linear response �F
¯̃μ
ϕ,ϑ (t) of the statistical observable F

¯̃μ
ϕ (t,α)

in (5.8) due to a sufficiently small perturbation εϑ(t) around α = 0 such that it preserves
the τ -periodicity of the unperturbed dynamics is summarised as follows.

Theorem 5.16 (FDT II) Let Assumptions 5.2–5.4 be satisfied for α ∈ A, and suppose that
Proposition 5.8 holds. Assume further that t �→ b̂(t,α, x), t �→ σ̂ (t,α, x) are τ -periodic for
all (α, x) ∈ A × R

d. Then, the following hold:
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(i) For every α ∈ A, {μ̃α
t : t ∈ R

+} is a family of τ -periodic measures induced by the
one-point motion x̃ �→ �̃α(t,ω, x̃), ω ∈ �, with the uniquely P̃α∗

t - ergodic measure
¯̃μα satisfying (5.36).

(ii) Themap α �→ ¯̃μα(dx̃) = ¯̃ρα(x̃)dx̃ (with ¯̃ρα understood in the sense of (5.11)) is weakly
differentiable at α = 0 for all x̃ ∈ [0, τ )×R

d, and the linear response (5.30) associated
with perturbations of observables based on the P̃∗

t - ergodic measure ¯̃μ is given by

R̄ϕ(t − r) := R ¯̃μ
ϕ (t − r, 0) = ∂rK ¯̃μ

ϕ,W(t − r, r), 0 � r � t, (5.39)

for ϕ ∈ D(L̃α)∩Eα , with the correlation functionK ¯̃μ
ϕ,W in (5.32)W ∈ C∞

(
[0, τ )×R

d)

given by

W(x̃) = η(x̃)
¯̃ρ(x̃)

, s.t. 〈η,ϕ〉 := 〈∂α
¯̃ρα ,ϕ〉∣∣

α=0, (5.40)

with ∂α
¯̃ρα understood in the weak sense.

Proof Part (i) is a direct consequence of Theorem4.7 andTheorem4.11 given the fact that
Assumptions 5.2–5.4 hold for α in a proper intervalA containing α = 0. For Part (ii), we
proceed as at the beginning of the proof of Theorem 5.11, except that due to Part (i), both
the unperturbed and the perturbed measures are τ -periodic. Thus, for ϑ ∈ C1∞(R+;R)
and ε > 0 sufficiently small so that εϑ ∈ A, and for ϕ ∈ Eα there exists a constant
0 < Cε,ϕ < ∞ such that

〈ϕ, μ̃εϑ
t 〉 − 〈ϕ, μ̃t〉 =

∫

[0,τ )×Rd

(P̃εϑ
t ϕ(x̃) − P̃tϕ(x̃)

)
μ̃0(dx̃)

=
∫

[0,τ )×Rd

(∫ t

0
εϑ(r)E

[
f̂t,ε(r, �̃(r, · , x̃))]dr

)
μ̃0(dx̃)

� εt‖ϑ‖∞ Cε,ϕ , (5.41)

where the bound is due to Proposition 5.8. Averaging both sides over t ∈ [0, τ ), we have

lim
ε↓0

1
ε
〈ϕ, ¯̃μεϑ − ¯̃μ〉 < ∞, ϕ ∈ Eα . (5.42)

Thus, ¯̃μα is weakly differentiable. Next, by the Hörmander condition in Assumption 5.2,
we have ¯̃μα(dx̃) = ¯̃ρα(x̃)dx̃ so that for any ϑ ∈ C1∞

(
R

+,R
)

lim
ε↓0

1
ε
〈ϕ, ¯̃ρεϑ − ¯̃ρ〉 < ∞, ϕ ∈ Eα , (5.43)

which implies that ¯̃ρα is weakly differentiable at α = 0 (with ¯̃ρα understood in the sense
of (5.11) to simplify notation). Furthermore, (5.36) yields

〈 ¯̃ρα , L̃αϕ
〉 = 0, α ∈ A, ϕ ∈ D(L̃α) ∩ Eα . (5.44)

Differentiating (5.44) with respect to the parameter α (in the weak sense), we obtain

〈
∂α

¯̃ρα ,−L̃ϕ
〉∣∣∣

α=0
= 〈 ¯̃ρ, Ṽϕ

〉 = 〈Ṽ∗ ¯̃ρ,ϕ
〉
. (5.45)
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Next, we set
〈
η,−L̃ϕ

〉
:= 〈∂α

¯̃ρα ,−L̃ϕ〉|α=0, and note that P̃tϕ ∈ D(L̃α) ∩ Eα , t � 0, for
any ϕ ∈ D(L̃α) ∩ Eα (due to Assumption 5.2 and the associated smoothing property of
(Ps,t )s�t generating (P̃t )t∈R+ in (4.7); e.g. Proposition 4.10 and [26]). Thus, we have

K ¯̃μ
ϕ,W(t − r, r) = 〈P̃r

(
WP̃t−rϕ

)
, ¯̃ρ
〉 = 〈P̃t−rϕ,W ¯̃ρ

〉 = 〈P̃t−rϕ, η
〉
, (5.46)

where W is given in (5.40), and subsequently

∂rKϕ,W(t − r, r) = ∂r〈P̃t−rϕ, η〉 = 〈−L̃P̃t−rϕ, η〉.

Since P̃t−rϕ ∈ D(L̃α) ∩ Eα for 0 � r � t, we have by (5.45) that for ϕ ∈ D(L̃α) ∩ Eα

∂rKϕ,W(t − r, r) = 〈−L̃P̃t−rϕ, η〉 =
〈
ṼP̃t−rϕ, ¯̃ρ

〉

=
∫

[0,τ )×Rd
(ṼP̃t−rϕ)(x̃) ¯̃μ(dx̃) = R ¯̃μ

ϕ (t − r, 0).

Remark 5.17 Note that Theorem 5.14 is more general than Theorem 5.16 in the sense
that it only requires time periodicity of the coefficients of the SDE (5.1) and the existence
of time-periodic probabilitymeasure for the unperturbed dynamics (i.e. for α = 0 in (5.1))
but it does not preclude the perturbed dynamics to have time-periodic measures. Thus, a
natural question arises as to the connection between the linear response functions R̄ϕ in
(5.34) of Theorem 5.14 and (5.39) of Theorem 5.16, respectively, in the case when both
the unperturbed and the perturbed dynamics (i.e. for α ∈ A in (5.1)) have time-periodic
ergodic measures of period τ . The desired connection stems from the fact that under
Assumption 5.2 the identity (5.45) leads to

〈W,−L̃ϕ〉 ¯̃μ = 〈W ¯̃ρ,−L̃ϕ〉 = 〈η,−L̃ϕ〉 = 〈Ṽ∗ ¯̃ρ,ϕ〉 =
〈 Ṽ∗ ¯̃ρ

¯̃ρ
, ¯̃ρ ϕ

〉
= 〈B,ϕ〉 ¯̃μ,

for any ϕ ∈ D(L̃α) ∩ Eα , where L̃ = ∂s + L is the generator of the one-point motion
x̃ �→ �̃(t,ω, x̃), t � 0, on the extended state space [0, τ ) × R

d . Thus, B = −L̃ ¯̃μ∗
W,

where L̃ ¯̃μ∗ is the L2( ¯̃μ) dual of L̃. In fact, the above result also implies that W in (5.40) of
Theorem 5.16 is not unique in contrast toB in (5.34) of Theorem 5.14. To see this, assume
that there exists W̃ ∈ L1( ¯̃μ) on [0, τ ) × R

d such that

∂rK ¯̃μ
ϕ,W(t − r, r) = ∂rK ¯̃μ

ϕ,W̃(t − r, r), ϕ ∈ C∞
c ([0, τ ) × R

d), 0 � r � t,

which implies that (see (5.46))

d
dr
〈P̃t−rϕ,W − W̃

〉
¯̃μ = 0, ϕ ∈ C∞

c ([0, τ ) × R
d), 0 � r � t.

Since C∞
c ([0, τ ) × R

d) ⊂ D(L̃), it follows by the smoothing property of P̃t−r (under
Assumption 5.2) and the dominated convergence theorem that

〈L̃ϕ,W − W̃
〉
¯̃μ = 0.

Since W − W̃ ∈ L1( ¯̃μ), W − W̃ is a.e. constant; hence, W satisfying Theorem 5.16 is not
unique.
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Fig. 2 The responses �Ex (t), �Ey (t), �Ez (t) of the expectations E[xt ], E[yt ], E[zt ], associated with the
dynamics (4.40) perturbed to (5.47) via the spatially uniform, time-aperiodic perturbation (5.51) with ε = 0.05,
and t0 = 80τ ,�T = 12. The left column shows the direct simulation of (5.47), and the right column shows the
comparison between the exact response and the linear response given by (5.48) and the response function
given by (5.50). The parameters of the unperturbed system (4.40) are ᾱ = 7.3, β̄ = 26, γ̄ = 7, �̄ = 10,
f̄ = 100, δ̄ = 0.9, τ = 1, σ̄ = 0.2; see Fig. 1. Further details are discussed in the main text of Example 5.18

Example 5.18 (Stochastic Lorenz model with periodic forcing)We return to the stochastic
Lorenz model with time-periodic forcing used in Example 4.14, and we consider a simple
case of perturbed dynamics in (4.40) in the form

dvα
t = [− Avα

t − G(vα
t ) + F (t) + εF(vα

t )ϑ(t)
]
dt + σ (vα

t )dWt, (5.47)

where ϑ ∈ C1∞(R+,R), ϑ(0) = 0, v �→ F(v) ∈ C∞∞ (Rd), and A,G(v), F (t) are defined as in
(4.40) for vα

t = (xα
t , yα

t , zα
t ). Here, the last term in the drift represents a perturbation of the

dynamics (4.40) due to α(t) = εϑ(t), which is chosen for simplicity to be in the space-time
factorised form (recall, however, that the perturbation in this framework can take a more
general form; see Remark 5.12).
Note that, analogously to (4.40), the periodically forced dynamics in (5.47) satisfies

Assumption 5.2, and recall that in appropriate parameter regimes of (4.40) (or in (5.47)
with α = 0) there exists a time-periodic ergodic measure μt ∈ P(Rd) with a smooth
density ρt with respect to the Lebesgue measure on R

3 for all t ∈ [0, τ ), 0 < τ < ∞.
Assuming that the conditions of Theorem 5.11 hold, the linear response �F

μ̃0
ϕ,ϑ (t) in

(5.29)

�F
μ̃0
ϕ,ϑ (t) =

∫ t

0
Rμ̃0

ϕ (t − r, r)ϑ(r)dr, ϑ ∈ C1∞(R+,R), ϑ(0) = 0, (5.48)

of the observable ϕ to the perturbation εF(v)ϑ(t) in (5.47) in the random time-periodic
ergodic regime is determined by convolving the response function Rμ̃0

ϕ with ϑ , where
(see Theorem 5.14)

Rμ̃0
ϕ (t − r, r) =

∫

[0,τ )×R3
∂v
(
F(v)ρ̃r(ṽ)

)P̃t−rϕ(ṽ)dṽ = Kμ̃0
ϕ,Br

(t − r, r), 0 � r � t,

(5.49)
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which is solely based on the unperturbed dynamics. In the above expression
μ̃t (ṽ) = ρ̃t (ṽ)dṽ, ṽ = (s, v) ∈ [0, τ )×R

3, andKμ̃0
ϕ,Br

(t−r, r) is the correlation function (5.32)
of the random variables ϕ(ṽt ), and Br(ṽ) = −∂v(F(v)ρ̃r(ṽ))/ρ̃r(ṽ), with μ̃t (ṽ) = ρ̃t (ṽ)dṽ
understood in the sense of (5.11). Thus, the response function can be written in a form
amenable to computations as (see Remark 5.15(ii))

Rμ̃0
ϕ (t − r, r) =

∫

[0,τ )×Rd

(Ṽ∗ρr(v)
)(Pr,tϕ(t, v)

)
dv

=
∫

[0,τ )×Rd
Br(v)

(Pr,tϕ(t, v)
)
ρr(v)dv, 0 � r � t, (5.50)

where Ṽ∗ is defined in (5.22), Br is given in (5.33), and (Pr,t )t�r is the family of transition
evolutionsdefined in (3.3). Furthermore, (5.50) canbe evaluated in amorepractical fashion
via appropriate ergodic averages, as discussed in Remark 5.15(ii).
For simplicity of the numerical illustration, we consider the linear response of the expec-

tation of the solutions to (4.40) to the perturbation εF(vα)ϑ(t) introduced in the drift
coefficient of (5.47). Given the dynamics (5.47) and ϕ(v) = v, setting p = 2 is sufficient
for Assumption 4.4 and Proposition 5.8 to hold (i.e. Theorems 4.7, 4.11, 5.11, 5.14 will
hold for all time if the perturbation maintains dissipativity, which is the case here). In the
examples shown in Figs. 2 and 3, we denote the expectation of the solutions to (5.47) by
E[xt ], E[yt ], E[zt ], and we consider the response of the expectation to a spatially uniform
perturbation εF(vα)ϑ(t) with F(vα) = (f̄ , 0, 0)T and

ϑ(t) = Θ(t) cos(2π/3.3 t), (5.51)

where

Θ(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 t > t0 + �T,
2

�T (t − t0) − 1
�T 2 (t − t0)2 t0 � t � t0 + �T,

2
�T (t − t0) + 1

�T 2 (t − t0)2 t0 − �T � t � t0,

−1 t < −t0 − �T.

(5.52)

The simulations were performed for (5.47) with the same parameter values as those
in Example 4.14 in the random time-periodic regime, and the perturbation with
t0 = 80τ ,�T = 1 with the amplitudes set to ε = 0.05 in Fig. 2, and ε = 0.25 in
Fig. 3. The unperturbed initial time-periodic measure at t = 0, i.e. μ̃0 = δ0 ⊗ μ0, was
approximated from long-time simulations of an ensemble of solutions to (5.47) withα = 0
at t = τn, n ∈ N0. To simplify the notation, the linear response �F

μ̃0
ϕ,ϑ (t) in (5.29) of the

expectations is denoted by, respectively,�Ex(t),�Ey(t),�Ez(t). The linear response was
estimated with the help of the fluctuation–dissipation formula (5.50), whereKϕ,Br (t−r, r)
in (5.32) exploits the statistical correlations in the time-asymptotic dynamics of the unper-
turbed system (4.40) via (5.31). As expected from the theory, the linear response provides
a good approximation for a sufficiently small perturbation (Fig. 2), and it deteriorates with
the increasing amplitude of the perturbation (Fig. 3); the accuracy of the approximation
improves still with the decreasing amplitude of the perturbation but we do not show these
unsurprising results.
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Fig. 3 The responses �Ex (t), �Ey (t), �Ez (t) of E[xt ], E[yt ], E[zt ] associated with the dynamics (4.40) to a
spatially uniform, time-aperiodic perturbation (5.51) in (5.47) with ε = 0.25; the remaining parameters are as
in Fig. 2. See the main text in Example 5.18 for more details

In the simple example illustrated in Fig. 4, we consider the response of the expectation
of the solution to (5.47) in the stable random time-periodic regime to a spatially uniform
time-periodic perturbation εF(vα)ϑ(t) with ε = 0.1, F(vα) = ( f̄ , 0, 0)T and

ϑ(t) = H (t − 80.25τ ) cos2(2π/τ t), (5.53)

whereH (t) is theHeaviside step function. As in the previous examples, the accuracy of the
linear response via the FDT formulas (5.49) or (5.50) combined with (5.48) improves for
decreasing magnitude of the perturbation but we do not show these unsurprising results.
Note that in this case the perturbed measures are also τ -periodic and one could consider
the FDT for the ergodic measure ¯̃μ as in Theorem 5.16; such considerations of the linear
response are more relevant in the abstract analysis and we do not pursue such a scenario
here (see, however, Remark 5.17).
Finally, it needs to be stressed that the direct numerical evaluation of the correlation

function Kϕ,Br (t − r, r) in (5.49) is, in general, very computationally intensive due to the
need for estimating the time-dependent density ρt (v), v ∈ R

3, t ∈ [0, τ ); more practical
implementations rely on various approximations (e.g. a Gaussian approximation of the
underlying density), and they were discussed in [62] in the time-periodic setting, and in
[1–3,34,36–39,59,62,64] in the stationary setting. These references also consider much
more elaborate examples than what we could consider in this work.
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Fig. 4 The responses �Ex (t), �Ey (t), �Ez (t) of E[xt ], E[yt ], and E[zt ] associated with the dynamics (4.40) to
a spatially uniform, time-periodic perturbation (5.53) in (5.47) with ε = 0.1; the remaining parameters are as in
Fig. 2. See the main text in Example 5.18 for more details

Appendix A: Growth conditions and existence of absolute moments of
solutions of non-autonomous SDE’s
Here, we provide explicit examples of two classes of time-periodic coefficients in the
SDE (2.1) which satisfy Assumption 4.4.

Lemma A.1 Let {φ(t, s, · , · ) : t � s} be a stochastic flow generated by the SDE (2.1), and
let V ∈ C1,2(R × R

d ;R+) be a Lyapunov function satisfying the first part of (4.10) with
some 1 < p < ∞. Assume that the following ‘dissipative’ growth conditions hold on the
coefficients of (2.1)

〈b(t, x), x〉 � Lb1 (t) − Lb2 (t)|x|2, ‖σ (t, x)‖2HS � Lσ (t)(1 + |x|2). (A.1)

Suppose further that there exist bounded functions Lb1 (·), Lb2 (·), Lσ (·) ∈ C∞(R;R+) such
that

inf
t∈R

(
Lb2 (t) − 2

p
2−1Lb1 − 1

2 (2
p
2−1 + 1)Lσ (t)(p − 1)

)
> 0.

Then, there exists a stochastic flow {φ(t, s, · , · ) : s � t} on R
d induced by the solutions

of (2.1), which has a finite p-th absolute moment for all time. Furthermore, the following
holds

lim sup
(t−s)→∞

E
[
V
(
t,φ(t, s, x) − x

)]
< ∞

in Assumption 4.4(iii).

Proof It can be established (in a similar way to that in [54, Theorem3.4.6]) that the growth
conditions (A.1) lead to existence and uniqueness of global solutions of

dXs,x
t = b(t, Xs,x

t )dt + σ (t, Xs,x
t )dWt−s, Xs,x

s = x, (A.2)
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such thatXs,x
t (ω) = φ(t, s,ω, x) P-a.s., t � s. In order to prove themain part of the Lemma,

consider first g(x) = |x|p, p � 2; then,

Lt |x|p = p|x|p−2
d∑

i=1
bi(t, x)xi + 1

2p|x|p−4
d∑

i,j=1

{
|x|2δij + (p − 2)xixj

}
(σσT )ij(t, x, x)

� p|x|p−2(Lb1 (t) − Lb2 (t)|x|2) + 1
2Lσ (t)p(p − 1)(1 + |x|2)|x|p−2

= p
(
Lb1 (t) + 1

2Lσ (t)(p − 1)
)
|x|p−2 − p

(
Lb2 (t) − 1

2Lσ (t)(p − 1)
)
|x|p. (A.3)

Next, since |x|p−2 � (1 + |x|2) p2−1 � (1 + |x|2) p2 � 2
p
2−1(1 + |x|p), we get

Lt |x|p � 2
p
2−1p

(
Lb1 (t) + 1

2Lσ (t)(p − 1)
)

− p
(
Lb2 (t) − 2

p
2−1Lb1 − 1

2 (2
p
2−1 + 1)Lσ (t)(p − 1)

)
|x|p,

which can be written as

Lt |x|p � ap − bp|x|p, (A.4)

with coefficients

ap = p 2
p
2−1 sup

t∈R

(
Lb1 (t) + 1

2Lσ (t)(p − 1)
)
, (A.5)

bp = p inf
t∈R

(
Lb2 (t) − 2

p
2−1Lb1 − 1

2 (2
p
2−1 + 1)Lσ (t)(p − 1)

)
. (A.6)

It turns out that sharper bounds can be obtained for p = 2, 3; these are derived in Propo-
sition A.2.
Next, consider Xs,x

t (ω) = φ(t, s,ω, x) solving (A.2) and g(x) = |x|p, p � 2. Then, Itô’s
Lemma and the bound (A.4) lead to

d E
[|Xs,x

t |p] = E
[Lt |Xs,x

t |p]dt �
(
ap − bp E

[|Xs,x
t |p])dt. (A.7)

Therefore, based on the differential form of Gronwall’s inequality, (A.7) yields

E|Xs,x
t |p � e−bp(t−s)

E|x|p + ap
bp

(
1 − e−bp(t−s)

)
. (A.8)

Consequently, for p � 2, and Lb1 , Lb2 , Lσ such that bp > 0 in (A.6), we have

0 � lim
(t−s)→∞

E|φ(t, s, x)|p � ap
bp

< ∞.

For 1 < p < 2 we use Hölder’s inequality and obtain

E
[|Xs,x

t |p] �
(
E
[|Xs,x

t |2p]
) 1

2 .

Thus, analogous derivations to those in (A.3) onwards can be carried out for p′ = 2p > 2,
with 1 < p < 2.
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Finally, note that for Y s,x
t (ω) = φ(t, s,ω, x) − x we obtain

dY s,x
t = b(t, Y s,x

t + x)dt + σ (t, Y s,x
t + x)dWt, Y s,x

s = 0,

so that analogous calculations in conjunction with Assumption (4.4) lead to

E
[
V (t,φ(t, s, x) − x)

]p � CE|φ(t, s, x) − x|p � C
ap
bp

(
1 − ebp(t−s)

)
,

Consequently, for p > 1 and 0 < Lb1 , Lb2 , Lσ < ∞ such that bp > 0

0 � lim
s→−∞ sup

s�t
E
[
V
(
t,φ(t, s, x) − x

)]
< ∞,

0 � lim
t→∞ sup

s�t
E
[
V
(
φ(t, s, x) − x

)]
< ∞.

��

Proposition A.2 (Sharper conditions for existence of absolute moments p = 2, 3 for
SDE’s with dissipative growth conditions) Consider the same set-up as in Lemma A.1.
Suppose further that there exist bounded functions Lb1 (·), Lb2 (·), Lσ (·) ∈ C∞(R;R+) such
that

b̃2 = 2 inf
t∈R

(
Lb2 (t) − 1

2Lσ (t)
)

> 0.

Then, there exists a stochastic flow {φ(t, s, · , · ) : s � t} on R
d induced by the global

solutions of (2.1), which has a finite second absolute moment for all time. Moreover, if for
some � > 0

b̃3 = 3 inf
t∈R

(
Lb2 (t) − Lσ (t) − 4

27�2 (Lb1 (t) + Lσ (t))
)

> 0, (A.9)

then the stochastic flow has a finite third moment for all time.

Proof For p = 2, we proceed in a way similar to (A.3), and we have

Lt |x|2 � 2(Lb1 (t) − Lb2 (t)|x|2) + Lσ (t)(1 + |x|2)
= 2

(
Lb1 (t) + 1

2Lσ (t)
)

− 2
(
Lb2 (t) − 1

2Lσ (t)
)
|x|2 � ã2 − b̃2|x|3, (A.10)

where

ã2 = 2 sup
t∈R

(
Lb1 (t) + 1

2Lσ (t)
)
, (A.11)

b̃2 = 2 inf
t∈R

(
Lb2 (t) − 1

2Lσ (t)
)
. (A.12)

Thus, based on (A.8) the second absolute moment exists for all time if b̃2 > 0.
For p = 3 we have

Lt |x|3 � 3|x|(Lb1 (t) − Lb2 (t)|x|2) + 3|x|Lσ (t)(1 + |x|2)
= 3

(
Lb1 (t) + Lσ (t)

)
|x| − 3

(
Lb2 (t) − Lσ (t)

)
|x|3
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� 3�
(
Lb1 (t) + Lσ (t)

)
− 3

(
Lb2 (t) − Lσ (t) − 4

27�2 (Lb1 (t) + Lσ (t))
)
|x|3

� ã3 − b̃3|x|3, (A.13)

with

ã3 = 3� sup
t∈R

(
Lb1 (t) + Lσ (t)

)
, (A.14)

b̃3 = 3 inf
t∈R

(
Lb2 (t) − Lσ (t) − 4

27�2 (Lb1 (t) + Lσ (t))
)
, (A.15)

where we used the fact that |x| � � + 4
27�2 |x|3, � > 0. Thus, based on (A.8) the third

absolute moment exists for all time if b̃3 > 0. ��

Remark A.3 It is worth noting that, for Lb1 , Lb2 , Lσ constant, and such that b̃3 > 0,
the upper bound on the asymptotic moment E|φ(t, s, x)|p for p = 3 is optimised for
�2 = 12

(Lb1+Lσ

Lb2−Lσ

)
so that

min
�>0

ã3

b̃3
= (27)1/2

(
Lb1 + Lσ

Lb2 − Lσ

)3/2
. (A.16)

Moreover,

ã2

b̃2
�
(
Lb1 + Lσ

Lb2 − Lσ

)
�
(
min
�>0

ã3

b̃3

)2/3
= (27)1/3

(
Lb1 + Lσ

Lb2 − Lσ

)
; (A.17)

this factmerely reflects the Jensen’s inequality for the second and third absolutemoments,
i.e. E|Xs,x

t |2 � (E|Xs,x
t |3)2/3, but it is useful in Example 4.14.

Lemma A.4 Let {φ(t, s, · , · ) : t � s} be a stochastic flow generated by the SDE (2.1) and
let V ∈ C1,2(R×R

d ;R+) be a Lyapunov function satisfying the first part of condition (4.10).
Suppose further that there exist Lb(·), Lσ (·), C(·) ∈ C∞(R;R+) such that

〈b(t, x), x〉 � Lb(t)(1 + |x|2), ‖σ (t, x)‖2HS � Lσ (t)
(
1 + |x|2), (A.18)

and

0 < lim sup
(t−s)→∞

exp
(∫ t

s
C(u, p)du

)
< ∞, (A.19)

where C(t, p) = Lb(t) + 1
2 (p − 1)Lσ (t), for some 1 < p < ∞.

Then, for x ∈ R
d, there exist global solutions of (2.1) such that the stochastic flow φ

induced by the solutions of (2.1) has a finite p-th absolutemoment for all time. Furthermore,
the following holds

lim sup
(t−s)→∞

E
[
V (t,φ(t, s, x) − x)

]
< ∞

in Assumption 4.4(iii).
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Proof First, we suppose that p � 2 and set g(x) = 1 + |x|2 and ϕ(x) = g(x)
p
2 ; then,

Ltϕ(x) = pg(x)
p
2−1

d∑

i=1
bi(t, x)xi + 1

2
pg(x)

p
2−2

d∑

i,j=1

×
{
g(x)δij + (p − 2)xixj

}
(σσT )ij(t, x, x).

By the growth conditions (A.18) on the coefficients b, σ , we obtain

Ltϕ(x) � pC(t, p)ϕ(x),

where C(t, p) = Lb(t)+ c(t)+ 1
2 (p − 1)Lσ (t).Next, let Y x

t,s(ω) = φ(t, s,ω, x)− x, it follows
that Y x

t,s(x) solves the following SDE

dY x
t,s = b(t, Y x

t,s + x)dt + σ (t, Y x
t,s + x)dWt, Y x

s,s = 0.

By Itô’s formula, we have

E
[
ϕ(Y x

t,s)
] = ϕ(0) + E

[∫ t

s
Ltϕ(Y x

u,s)du
]

� ϕ(0) + p
∫ t

s
C(u, p)E

[
ϕ(Y x

u,s)
]
du.

By Gronwall’s inequality, we have

E
[
ϕ(Y x

t,s)
]

� ϕ(0) exp
(
p
∫ t

s
C(u, p)du

)
.

But Y x
t,s(ω) = φ(t, s,ω, x) − x P-a.s., ϕ(x) = g(x)

p
2 = (

1 + |x|2)
p
2 and ϕ(0) = 1, and thus,

E

[ (
1 + |φ(t, s,ω, x) − x|2)

p
2
]

� exp
(
p
∫ t

s
C(u, p)du

)
.

Next, note for p � 2, |x|p � (1 + |x|2) p2 and by the assumption that V (t, x) � C|x|p, we
obtain

E

[
V (t,φ(t, s, x) − x)

]
� CE

[ (
1 + |φ(t, s, x) − x|2)

p
2
]

� C exp
(
p
∫ t

s
C(u, p)du

)
.

Since C( · , p) ∈ C(R;R) such that lim sup
s→−∞

exp
(∫ t

s
C(u, p)du

)
< ∞, then for p � 2, we

have

E

[
V (t,φ(t, s, x) − x)

]
� C lim sup

s→−∞
exp

(
p
∫ t

s
C(u, p)du

)
< ∞. (A.20)

The case where 1 � p < 2, we use Hölder’s inequality, namely

E

[
V (t,φ(t, s, x) − x)

]
� CE

[|φ(t, s, x) − x|p] � C
(
E
[|φ(t, s, x) − x|2p]

) 1
2 ,

and the rest follows, since in this case 2p � 2. ��
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Appendix B: Strong Feller property for flows induced by non-autonomous
SDE’s
In order to prove Theorem 4.10, which is a generalisation of standard results to non-
autonomous SDE’s, we first outline some basic notions fromMalliavin calculus; the actual
proof is given in and discussed in Appendix 5.3.2.

Malliavin calculus estimates

Establishing the strong Feller property of Markov evolutions (Ps,t )t�s in our setting
requires some estimates rooted in Malliavin calculus. We recall the main concepts and
results on the Wiener space (�,F ,P); see (e.g. [40,43,66,71,74,88]) for a comprehensive
treatment. To this end, consider the Hilbert spaceH = L2([s,∞);Rm) equipped with the
inner product

〈η1, η2〉H =
∫ ∞

s
η1(t) · η2(t)dt.

For aHilbert spaceE and a real number p � 1,Lp(�;E) the space ofE-valued randomvari-
able ξ such thatE(‖ξ‖pE) :=

∫

�

‖ξ‖pE dP < ∞.Also, we set L∞−(�;E) :=
⋂

1�p<∞
Lp(�;E).

Following the approach due toMalliavin (e.g. [66,74]), we introduce a derivative opera-
tor D for a random variable G on the space L∞−(�;E).We say that G ∈ D

1,∞(E) if there
existsDG ∈ L∞−(�;H ⊗ E) such that for any η ∈ H,

lim
ε→0

E

∥∥∥∥
G
(
ω + ε

∫ .
s η(�)d�

)− G(ω)
ε

− 〈DG, η〉H
∥∥∥∥
p

E
= 0,

holds for every p � 1. In this case, one defines theMalliavin derivative ofG in the direction
of η ∈ H byDηG := 〈DG, η〉H. For any p � 1, we define the Sobolev space D

1,p(E) as the
completion of D

1,∞(E) under the norm

‖G‖1,p,E = (
E‖G‖pH

)1/p + (
E‖DG‖pH⊗E

)1/p.

We define the k-thMalliavin derivative byDkG = D(Dk−1G),which is a random variable
with values inH⊗k ⊗E. For any integer k � 1, the Sobolev spaceD

k,p(E) is the completion
of D

k,∞(E) under the norm

‖G‖k,p,E = ‖G‖k−1,p,E + ‖DkG‖1,p,H⊗k⊗E.

It turns out that D is a closed operator from Lp(�;E) to Lp(�;H ⊗ E). The adjoint δ of
the operatorD called the divergence operator is continuous from D

1,p(H⊗E) to Lp(�;E)
for any p > 1, with the duality relationship given as

E
[〈DG, u〉H⊗E

] = E
[〈G, δ(u)〉E

]
, (B.1)

for any G ∈ D
1,p(H ⊗ E) and u ∈ D

1,q(H ⊗ E), with 1
p + 1

q = 1.
Throughout the remaining part of this section, we assume the following notation:

– C is a generic constant which may depend on T, the exponent p > 1, the initial point
x and fixed element η of the Hilbert spaceH = L2

(
[s,∞);Rm).
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– (Hn) denotes a class of coefficients b, σk , 1 � k � m, where σk are columns of σ , such
that b(t, · ) ∈ C̃n, σk (t, · ) ∈ C̃nb

(
R
d).

Proposition B.1 Suppose the coefficients b, σ of the SDE (2.1) are in the class (H2). Then,
for any t � s, we have φ(t, s, · , · ) ∈ D

1,∞(Rd) and the Malliavin derivative Dηφ(t, s) of
φ(t, s) in the direction of η = (η1, η2, · · · , ηm) ∈ H is the unique solution of the following
affine SDE

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dDηφ(t, s) = Dxb
(
t,φ(t, s)

)Dηφ(t, s)dt +
m∑

k=1
Dxσk

(
t,φ(t, s)

)Dηφ(t, s)dWk
t

+
m∑

k=1
σk
(
t,φ(t, s)

)
ηk (t)dt, t > s,

Dηφ(s, s) = 0.

Corollary B.2 (Chain rule, cf. [74]) Suppose that condition (H2) holds true. Then, for any
η ∈ H, p � 2 and for any ϕ ∈ C2∞(Rd), we have

lim
ε→0

E

∣∣∣∣∣
ϕ
(
φεη(t, s)

)− ϕ
(
φ(t, s)

)

ε
− Dxϕ

(
φ(t, s)

)Dηφ(t, s)

∣∣∣∣∣

p

= 0,

where φεη(t, s), t � s, ε ∈ (0, 1) is the solution of the following perturbed SDE

⎧
⎪⎪⎨

⎪⎪⎩

dφεη(t, s) = b
(
t,φεη(t, s)

)
dt +

m∑

k=1
σk
(
t,φεη(t, s)

)
dWk

t + ε

m∑

k=1
σk
(
t,φεη(t, s)

)
ηk (t)dt,

φεη(s, s),= x ∈ R
d.

Moreover, ϕ(φ(t, s)) ∈ D
1,∞(R) andDϕ(φ(t, s)) = Dxϕ(φ(t, s))Dφ(t, s).

Definition B.3 (Mean square gradient) LetG(x) : � → R
d be a measurable function for

all x ∈ R
d and i ∈ F . We say that the mean square gradient ofG(x) with respect to x exists

if there is a linear map A(x) : � → R
d×d such that for any v ∈ R

d ,

lim
ε→0

E

∣∣∣∣
G(x + εv) − G(x)

ε
− A(x)v

∣∣∣∣
2

= 0.

We denote the mean square gradient matrix A(x) by DxG(x).

Theorem B.4 (e.g. [54,66,74]) Assume the condition (H2) holds. Let φ(t, s,ω, x), t � s, be
the solution of the SDE (2.1). Then, the mean square gradient of φ(t, s, · , x) with respect to
x exists. If we define Jt,s = Dxφ(t, s, · , x), then

⎧
⎪⎪⎨

⎪⎪⎩

dJt,s = Dxb(t,φ(t, s, · , x))Jt,s +
m∑

k=1
Dxσk (t,φ(t, s, · , x))Jt,sdWk

t , t � s,

Js,s = I,
(B.2)
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where I is a d × d identity matrix. Moreover, the inverse J−1
t,s of Jt,s exists and satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dJ−1
t,s = −J−1

t,s

(
Dxb

(
t,φ(t, s, · , x))−

m∑

k=1
Dxσk

(
t,φ(t, s, · , x))Dxσk

(
t,φ(t, s, · , x))

)
dt

−
m∑

k=1
J−1
t,s Dxσk

(
t,φ(t, s, · , x))dWk

t ,

J−1
s,s = I.

(B.3)

We shall refer to the mean square gradient {Jt,s = Dxφ(t, s, · , · ) : s � t} as derivative
flow of {φ(t, s, · , · ) : s � t}. Next, we provide a crucial Lp bound for the derivative flow
Jt,s and that of its inverse J−1

t,s .

Lemma B.5 Suppose the condition (H2) holds. Then, for any p � 2, there exists a positive
constant C = C(T, p) such that

E

(
sup

s�t,u�s+T
|Jt,u|p

)
� C and E

(
sup

s�t,u�s+T
|J−1
t,u |p

)
� C. (B.4)

Now, let Drφ(t, s) be the solution of the following SDE:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Duφ(t, s) = σ (u,φ(u, s)) +
∫ t

u
Dxb(�,φ(�, u))Duφ(�, u)d�

+
m∑

k=1

∫ t

u
Dxσk (�,φ(�, u))Duφ(�, u)dWk

� , for t � u,

Duφt,s = 0, for s � t < u.

(B.5)

Comparing the SDE’s (B.2) and (B.5), we obtain the following by the variation of parame-
ters formula

⎧
⎨

⎩
Duφ(t, s) = Jt,uσ (φ(t, s)), s � u � t � s + T,

Duφ(t, s) = 0, u > t.

Next, we recall a result on theMalliavin differentiability of the derivative flow Jt,s, t � s.
To this end, let’s denote byD�

u theMalliavin derivative with respect to the �-th component
of the Brownian motionW at time u.

Lemma B.6 Suppose that the condition (H3) holds. Then, for all s � t � s + T,
Jt,s ∈ D

1,∞(Rd ⊗ R
d) and for any p � 2, there exists a positive constant C = C(T, p, x),

such that for all j = 1, · · · , m and u ∈ [s, s + T ],

E

[
sup

s�t�s+T
|Dj

uJt,s|p
]

� C.

Moreover, for any t � s + T, X(t, s) ∈ D
2,∞(Rd) and for any p � 2, there exists a positive

constant C = C(T, p, x) such that for all j, l = 1, · · · , m and ς , u � t

E|Dj
u(Dl

ςφ(t, s))|p � C.
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Remark B.7 If (H∞) holds true, then φ(t, s) ∈ D
∞(Rd) and Jt,s ∈ D

∞(Rd ⊗ R
d).

Denote by (Dφ(t, s))T the transpose of the Malliavin derivative Dφ(t, s). From the rela-
tionshipDuφ(t, s) = Jt,uσ (u,φ(u, s)), we have (Duφ(t, s))T = σ (u,φ(u, s))T JTt,u.

Definition B.8 (Malliavin covariance; e.g. [66,74]) The Malliavin covariance Mt,s of the
random vector φ(t, s) is defined by

Mt,s = 〈Dφ(t, s), (Dφ(t, s))T 〉H =
∫ t

s
Jt,�σ (�,φ(�, s))σ (�,φ(�, s))T JTt,�d�

= Jt,s
[∫ t

s
J−1
�,s σ (�,φ(�, s))σ (�,φ(�, s))T (J−1

�,s )
Td�

]
JTt,s

= Jt,sCt,sJTt,s,

where Ct,s is defined by

Ct,s =
∫ t

s
J−1
�,s σ (�,φ(�, s))σ (�,φ(�, s))T (J−1

�,s )
Td�

is the so-called reduced Malliavin covariance of φ(t, s).

We conclude this section by elucidating the invertibility of the Malliavin covariance
almost surely and its integrability of all negative orders.

Proposition B.9 (e.g. [40,74,88]) Suppose Assumption 4.6 holds. Then, for every t � s,
the Malliavin covariance matrix Mt,s of the random vector φ(t, s) is invertible P - a.s., and
E

[
det(M−p

t,u )
]

< ∞, for every t, u ∈ [s, s + T ], T > 0, and p > 1. Moreover, for any
x ∈ R

d, s � t, the law of φ(t, s, · , x) is absolutely continuous with respect to the Lebesgue
measure on R

d and the probability density is smooth.

Strong Feller property for non-autonomous dynamics

A transition evolution denoted by (Ps,t )t�s (3.3) and induced by a stochastic flow
{φ(t, s, · , · ) : s � t} has the strong Feller property (i.e. Ps,tϕ ∈ C∞(Rd) for any
ϕ ∈ M∞(Rd)) if and only if

(a) (Ps,t )t�t is a Feller semigroup; i.e. Ps,t : C∞(Rd) → C∞(Rd), and
(b) For any ϕ ∈ C∞(Rd) the family (Ps,tϕ)t�s is equicontinuous.

The first condition follows from the existence of the stochastic flow (see, for example, [44,
54]); here, we are concerned with flows associated with solutions of the non-autonomous
SDE (2.1). Thus, we shall only derive the second item.
Intuitively, the strong Feller property states that for sufficiently close initial data x, y

and any realisation ω of the past driving noise, one can construct a coupling between two
solutions φ(t, s,ω, x) and φ(t, s,ω, y) such that with probability close to 1 as x → y, one has
φ(t, s,ω, x) = φ(t, s,ω, y), for t � s (e.g. [42,43]). Oneway of achieving such a coupling (e.g.
[41,43]) is via a change ofmeasure on the driving process for one of the two solutions such
that the noisesWx

t andWy
t driving the solutions φ(t, s,ω, x) and φ(t, s,ω, y), are related by

dWx
t = dWy

t + η
x,y
t dt, where η

x,y
t is a control process that steers the solution φ(t, s,ω, x)

towards the solution φ(t, s,ω, y). If one sets y = x + εη and looks for a control of the
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form η
x,y
t = εη, then in the limit as ε → 0, the scheme will induce a deformation onto the

solutionφ(t, s,ω, x) after time t in the formofMalliavinderivativeofφ(t, s,ω, x) atω ∈ � in
the direction of η ∈ H,H = L2([s,∞);Rd), i.e. 〈Dφ(t, s,ω, x), η〉H = Dηφ(t, s,ω, x). On the
other hand, the effect of the perturbation of initial condition by v is given by the directional
derivative of the solution φ(t, s,ω, x) at x along v, i.e. Dxφ(t, s,ω, x)v = Js,t (ω, x)v. In order
to assert the strong Feller property, one has to find a control ηv (e.g. [42,43]) such that

〈Dφ(t, s,ω, x), ηv〉H = Jt,s(ω, x)v, (B.6)

where for brevity of notation we skip the explicit dependence on ω and x.

Theorem B.10 Suppose that Assumption 4.6 hold true. Then, for any t ∈ [s, s + T ], there
exist CT > 0 such that, for any x, y ∈ R

d and ϕ ∈ C∞(Rd), we have

|Ps,tϕ(x) − Ps,tϕ(y)| � CT‖ϕ‖∞|x − y|.

Proof First, we find a control satisfying (B.6). To this end, for any v ∈ R
d with |v| = 1, let

ηv = (Dφ(t, s))TM−1
t,s Jt,sv. Then,

〈Dφ(t, s), ηv〉 = 〈Dφ(t, s), (Dφ(t, s))TM−1
t,s Jt,sv〉H

= 〈Dφ(t, s), (Dφ(t, s))T 〉HM−1
t,s Jt,sv = Jt,sv.

Next, we show that ηv ∈ D
1,p(H) for any p � 2. In fact, by chain rule of differentiation,

Dk
ςηv = (Dk

ς (Dφ(t, s))T )M−1
t,s Jt,sv + (Dφ(t, s))TM−1

t,s (Dk
ς Jt,s)v

+ (Dφ(t, s))T (Dk
ςM

−1
t,s )Jt,sv

= (Dk
ς (Dφ(t, s))T )M−1

t,s Jt,sv + (Dφ(t, s))TM−1
t,s (D�

ς Jt,s)v

− (Dφ(t, s))TM−1
t,s
[〈Dk

ς (Dφ(t, s)), (Dφ(t, s))T 〉H
+ 〈Dφ(t, s),Dk

ς (Dφ(t, s))T 〉H
]
M−1

t,s Jt,sv.

By Lemmas B.5, B.6, and Proposition B.9 , we arrive at

E‖ηv‖pH + E‖Dηv‖pH⊗H � E‖ηv‖pH +
m∑

k=1
E

[∫ t

s
‖Dk

ςηv‖pHdς

]
< ∞. (B.7)

Recalling that ηvς ,s = σ (ς , X(ς , s))T JTt,ςM
−1
t,s Jt,sv. Then, for ϕ ∈ C1∞(Rd), we have

Dx(Pt,sϕ)(x)v = E [Dx[ϕ(φ(t, s, x))]v] = E
[
Dxϕ(φ(t, s, x))Jt,s( · , x)v

]

= E
[〈Dxϕ(φ(t, s, x))DXs,x

t (ω), ηv〉H
] = E

[〈Dϕ(φ(t, s, x)), ηv〉H
]

= E
[〈Dϕ(φ(t, s, x)), ηv〉H

] = E
[
ϕ(φ(t, s, x))δ(ηv)

]

= E

[
ϕ(φ(t, s, x))

∫ t

s
σ (ς ,φ(ς , s))T JTt,ςM

−1
t,s Jt,sv � dWς

]

= E

[
ϕ(φ(t, s, x))

∫ t

s
ηvς ,s � dWς

]
, (B.8)

where in the first and second lines, we applied chain rule for mean square gradient and
Malliavin derivative, respectively, and third line is Malliavin integration by parts formula
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(e.g. [74]) and, the stochastic integral in the fourth or fifth line is interpreted in the sense
of Skorokhod, i.e.∫ t

s
ηvς ,s � dWς is the divergence of the process {ηvς ,sI[s,t](ς ) : ς � s} (see equation (B.1)).

Next, since C1∞(Rd) is dense in C∞(Rd), we have

(ϕn)n∈N ⊂ C1∞(Rd),ϕn −→
n→∞ ϕ ∈ C∞(Rd)

so that
⎧
⎪⎨

⎪⎩

lim
n→∞Ps,tϕn(x) = Ps,tϕ(x),

lim
n→∞Dx(Ps,tϕn)(x)v = E

[
ϕ(φ(t, s, x))

∫ t

s
ηvς ,s � dWς

]
.

(B.9)

On the other hand, by PropositionB.9, there exists a function 0 < ps,t ∈ C∞∞ (Rd)×C∞∞ (Rd)
such that P

({ω : φ(t, s,ω, x) ∈ dy}) = P(s, x; t, dy) = ps,t (x, y)dy. This implies that

lim
n→∞Dx(Ps,tϕn)(x)v = lim

n→∞

∫

Rd
ϕn(y)Dxps,t (x, y)vdy

=
∫

Rd
ϕ(y)Dxps,t (x, y)vdy = Dx(Ps,tϕ)(x)v. (B.10)

Comparing (B.9) and (B.10), we have that (B.8) holds for all ϕ ∈ C∞(Rd).
Next, the Cauchy–Schwartz inequality yields

|Dx(Ps,tϕ)(x)v| �
√
(Ps,tϕ2)(x)

(
E

∣∣∣∣
∫ t

s
ηvς ,s � dWς

∣∣∣∣
2)1/2

, ϕ ∈ C∞(Rd). (B.11)

By generalised Itô isometry (cf. [74]), we have

E

∣∣∣∣
∫ t

s
ηvς ,s � dWς

∣∣∣∣
2

= E

(∫ t

s
|ηvς ,s|2dς

)
+ E

(∫ t

s

∫ t

s
〈Dξ η

v
ξ ,s,Dςηvς ,s〉Rd⊗Rd dξdς

)

� E

(∫ t

s
|ηvς ,s|2dς

)
+ E

(∫ t

s

∫ t

s
‖Dξ η

v
ς ,s‖2Rd⊗Rd dξdς

)

= E‖ηv‖2H +
m∑

k=1
E

(∫ t

s
‖Dk

ξ ηv‖2Hdξ

)
.

Then, by the inequality (B.7) and (B.11), there exists CT > 0 such that

|Dx(Ps,tϕ)(x)v| � CT‖ϕ‖∞|v|, x, v ∈ R
d, ϕ ∈ C∞(Rd). (B.12)

Finally, let z� = �x + (1 − �)y, � ∈ [0, 1] and set v = x − y. Then, by the mean value
theorem and inequality (B.12), we have

∣∣Ps,tϕ(x) − Ps,tϕ(y)
∣∣ �

∫ 1

0
|Dx(Ps,tϕ)(z�)v|d� � CT‖ϕ‖∞|x − y|.

��
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