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Abstract

We study analytic and arithmetic properties of the elliptic gamma function

Il

m,n=0

1 — X—1 qm+1pn+1

’ ’ 1/

T xgp lal, Ipl <

in the regime p = g, in particular, its connection with the elliptic dilogarithm and a
formula of S. Bloch. We further extend the results to more general products by linking
them to non-holomorphic Eisenstein series and, via some formulae of D. Zagier, to
elliptic polylogarithms.

Keywords: Theta function, Elliptic gamma function, Elliptic dilogarithm, Elliptic
polylogarithm

1 Introduction

27z and g = e?™T. Transformation

For complex z and 7 with Im7 > 0, setx = e
properties of the so-called short theta function

o0

bo(zit) = [ (1 =g )1 — xg™)
m=0
under the action of the modular group are well understood. In view of its transparent
invariance under translation T + 7 4+ 1, the main source of the modular action originates
from the t-involution

ZH>Z=—, TH>1T=——. (1)
The related classical transformation of 6y(z; t) can be recorded as

(see, for example, [3, Section 2]), where we define & = e¥™% and ¢ = ¥t

Less is known about modular properties of the related product

S (1 _ xflqm+1)m+1

O1(z; ) := l_[ 0= xg)

m=0
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which naturally comes as the 0 = t specialisation of the elliptic gamma function

T l=aTlgmtp
I'(z;t,0) := l_[ pqp——

m+1 ,n+1

2mwio
2

, wherep=e

m,n=0

introduced by Ruijsenaars [5] (see also [3,4]). Namely, we have
01(z;7) =00(z;T) (257, 7) =T (z+ 157, T).

A known functional equation of the elliptic gamma function [3, Theorem 4.1] represents
an SL3(Z) symmetry of I'(z; 7, o). The problem of determining its behaviour in the regime
o = 1 under SL(Z) transformations is specifically addressed in [2], where the (logarithm
of the) infinite product is related to the elliptic dilogarithm via a formula of S. Bloch [1].

Our principal aim in this note is recasting analytic and arithmetic (modular) properties
of the function 6;(z; 7) and its relatives, in particular, linking them to non-holomorphic
Eisenstein series and the elliptic dilogarithm. This programme is carried out in Sects. 2—4;
it gives a new proof of Bloch’s formula and related results from [2]. In Sect. 5 we go further
to discuss similar features of products that generalise ones for 6y and 0;; their relationship
with non-holomorphic Eisenstein series and formulae from [7] allow us to link them to
elliptic polylogarithms.

For future record, notice that iterating the transformation (z, t) > (%, t) twice maps
(z 7) to (—z ) and that

O(—z;1) = and 6p(—z;71) = —x_leo(z; 7). (3)

O1(z; T)

2 Period functions
A natural way of measuring failure of weight k modular behaviour under the transforma-
tion (2, T) > (%, 1) for a function f (z, 7) is through the period function

¢a1) =gz 1) =1 1) - f(z ).
Lemmal We have
*e(3 1) + (-1 gz T) = T (f(—z 1) — (1) (5 7).

Observe that the expression in the parentheses on the right-hand side measures the
failure of k-parity of f (z, 7).

Proof We only use ¢,4)=(—z1)and 1t = — 1:

thg(5 1) — gz 1) = X (f(—z 1) — thF (5 1)) + (DX (& £) — Tf (2 7))
= (f(-z 1) - (D} (& 1) o

The lemma and the parity relation for In 6;(z; 7) in (3) imply the following.
Lemma 2 The function
T(z;t) =11In0i(z; ) — InO1(2; ) (4)

satisfies the functional equation

T(;t) =1t ' T(z7).
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Furthermore, we can relate the function 7'(z; t) to the dilogarithm function
* dt
Lis(x) = — / In(1 —¢) —.
0 t
Lemma 3 The function (4) admits the following representation:

wi(t — 22)(1 + 2tz — 22%)

127 + zIn6y(z; T)

T(z;t) =
— — Y (Liae™'q"*") — Lia(xq™)).
m=0

Proof As shown in the proof of Theorem 5.2 in [3],

In61(z;1) =Inby(z;t) +InT(z; 7, T)
6o(z; 7)
GO(Z’ A)
_ 00 wk

Lo TR &
”’_Z)kglku—qk)”Zk(l—qk)

= —mir(z;T) + In

L # -6 q (x - (x_lq)k)
2 kz(l— Z ,
k=1
where
° — - - — —
Mz;T) = “ 2t -1 24 (r -1t —-1) . (t —2)(2r — 1)

3t2 272 672 127

and the assumptions |%|, [¥~14| < 1 are made to ensure convergence. (The latter can be
dropped in the final result by appealing to the analytic continuation in z.) Recalling the
transformation (2), using

e e]

l_lqk =Z£1mk and k)2 qu

m=0

interchanging summation and summing over k, we obtain

1 22 1 1 z
ln91(z;t)=—ni<k(z;r)———|——+——Z+—+—>
T

6 61
+z Z (In(1—%7'¢"") +1In(1 — 2¢™))
o0
—‘L'Z m+1 ln _1”"“) mln(l—fcc}’”))
1 o0
—— Y (Lia (#7'9""") — Lia (2¢™))
2mi
m=0
j 2z(1 1+2
21422 - 2201 +2)0+2) +41n6(5%) — t1lnby (5 %)
12 72
1 oo

= 5= 2 (L2 (3719™) — Lia (24™)).

39
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(This formula can be alternatively derived from logarithmically differentiating identity
(2) with respect to t and further integrating the result with respect to z.) Substituting
(z/t, —1/7) for (z, T) translates the result into

mi(t —22)(1 4 21z — 22%)

tlnbi(z; ) —In6y (2;1) = B + zIn6y(z; 1)
T

o0

— — ) (Lizg (¢ '¢"*") — Liz(xq™)),
the desired relation. O

3 Non-holomorphic modularity

Denote
z—2z
A=Az 1) := — e R,
T—T
so that
. ZT — 2T
A=A t) = — e R
T—7T

and z = At — A. Define

—x m)m+A qB3(A)/390(Z; 'L')A
CLEY 1_[ P ’ (5)
1 _ x—lqm-i-l) 01(z; )

where Bs(t) := 3 — %tz + %t is the third Bernoulli polynomial, B3(1 — t) = — B3(¢), and

Fi(zt):=InQ(%;t) —tInQ(z;t), F_(z;7):=1InQ(Z; %) — 7In Q(z; 7).
It follows then from Lemma 1 and the parity relations (3) that
tFi(2;t) — Fi(z; 1) = t(ln Q(—z 1) +1InQ(z; r))
2mi

= —(Bg(—A) + B3(A))t? + 2miAzt — miAt

= —mA( (At —2) + l)r = —7miARA + 1)t

and

tF_(%;t) —F_(z;1) = r(ln Q(—z1)+1In Q(z;r))
2wi _ L= .
=— —(Bg(—A) + B3(A))TtT — 2miAZT + wiAtT
= TiA(2(AT - 2) + )T = miAQA + D)t

We summarise our finding in the following claim.

Lemma 4 We have

tFy (2;t) — Fi(z;t) = —7wiA (2121 + 1) T,
tF_(5t)—F_(57) = miA(2A+1)t

Lemma 3 leads to the following expansions of the functions F; and F_.
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Theorem 1 We have

1
Fi(z;1) =Sz 1) — — L(z ),
2mi

2mwit(t — T 1 1 ——
Flan=- 21D g ) 450+~ U0 + — & 7)
3 b4 2mi
where
o0
Lz ) = Z (L12 (x_lqm“) — Liz(xq”’)),
m=0
o0
Uz 1) = Z (ln lx~ g™ Li; (x_lq’”H) — In |xg™| Lil(xqm)),
m=0
S(z 1) == —t (24 — 1) (62% — 1247z + 62 + 84272 — 2472 — 6AT +1).

12

Proof For Fy substitute the expression of T'(z; ) from Lemma 3 into the computation

Fi(zt)=InQ(%t) —1InQ(z; 1)
= %(Bg(ﬁ&)f — B3(A)t*) + Alnby (%) — (A +2) Inby(z; 7)

+1ln0i(z; ) — In 6y (2;1).

This leads to the formula
1
Fi(zt) =Sz 1) — — L(z 1)
2mi
with

2mi « A T 1 1
S(Z, ‘L’) = T(Bg(A)f — B3(A)‘L’2) +A7Ti<g - g +zZ — E —z +2)

i
+ — (1t — 22)(1 4 212 — 22%),
127

and the latter simplifies to the expression given in the statement of Theorem 1 by elemen-
tary manipulation.
For F_ we proceed as follows. We have

Q1) = 2 S (1 - A LinG g™ — G+ A) LinGeg™).

m=0
Multiply this expression by t — 7 = 2iIm 7 and use A(t — 7) = 2iImz to get
_ 2mit(r —T)B3(A) 1

(t—-7)InQz1) = 3 - Ul(z 1).

Now, notice
(t—7)InQ(z;7) = F_(z;t) — Fy(z; )
to deduce the expression for F_ as in the theorem. O

A consequence of this expansion is the invariance of

Flosr) = THET) ;“F‘(Z”) —1n|Q(; )| — 71n |Q(z; 7))

under translation 7 — 7 + 1.

Page 5 of 11
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Lemma 5 We have
Fint+1) ~Fizn) = — (F(sT+1) — (5 7).

Proof The functions L(z t) and U(z, t) (hence their complex conjugates) are clearly
invariant under translation t — t + 1. The result follows from noticing that

2mit(t — T —7i(t —7)?A(1 —A)(1 —24
IReS( 1)+ =D pgy = ZiT — DAL — AN )
3 6
—7i(t —7)2
= ———F——B3(4)
3
is also invariant under the transformation. O

We summarise the results in this section as follows.

Theorem 2 The weight 1 period function

F(z;7) =1In|Q(% %) — 7 In|Q(z; T)|

e ]

1 -
= Z(ln lx~1g”*!| Liy (x~1g"+1) — In |xqg™| Li; (xq™) )
T m=0
. =2 1 o0
— wBB(A) ~ 5 Im Z (Li2(x—1qm+l) _ Liz(xqm))

m=0
of In |Q(z; 7)| satisfies
tF(z;t) =F(z;t) and F(z;t)=F(z;T + 1)
In other words, it behaves like a Jacobi form of weight 1 on SLy(Z).
4 Elliptic dilogarithm

Theorem 2 provides a natural link between the period function F(z; t) and the elliptic
dilogarithm (7]

o
D(g;x) =Y  Dxg™) = Y _ (D(xqg™) — D(x"'q"*"))
meZ m=0
together with its companion
- log?|q| ,, (log|x]
Jgx) =Y _(Jxg™) —Jx"'q") + Bs( )
— 3 log |q]

where

D(x) := In |»| arg(l — x) + Im Liz(x) = — In |»| Im Li; (x) + Im Lip(x)
denotes the Bloch—Wigner dilogarithm and

J(x) :=In|x| In|1 — x| = — In |x| Re Li;(x)

its companion. Namely, the expansion in the theorem can be stated as

F(z;7t) = #(D(q; x) + iJ (q; x)). (6)
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This is essentially the result discussed in [2, Section 1].
Viewing now z as an element of the lattice R+ Rt, so that A and Ainthe representation
z = — A + At are fixed, we find out that the 7-derivative

is the Eisenstein series

i , ezm(mA+nA)

473 mt + n)3
mnel ( + )

of weight 3, where the notation ) indicates omitting the term m = n = 0 from the
summation. Integrating we obtain

1 , e2ni(mA+nA)

1 5 = — _—
n Q) 472 m(mt + n)?
mnez

implying
In QG 7)) = 3 (10 Qe ¥) + 0 Q7))

_ 1 S pritmiena) 1 _ 1
82 m(mt +n)2  m(mT + n)?

mnel

1 ! omimitna) imImT (mRet +n)

m(mt + n)2(mT + n)?
mnez

_ ilmrt Z/ eZHi(mA+nA)(m Ret + n)

272 |mt + n|*

mnel
This is equation (7) in [2]. Since z = z/t = A — A/t = A + At, it follows that

iImt Z/ 27 i=mA+nA) (1 Re + 4 )

In|Q(%;t)| = o2 = ot
iImt v 2T (pReT)/|7 + 1)
= 2712|T|2m,n€Z A
_ ilm7 o 2T iA=mA) (|7 |2 — i Re )
21 mnel Int —m|*
ilmt , eZni(mA+nA)(m|t|2 4 nRet)
a2 jme + nf*
Im7 <~ A4 (nRe T + m)ri+ (mr + n) Im 7)
= on2 = e
implying
In|QE %) — 7 In|Q 1) = (I;T?Z / 62”’(";‘::“:(2: +n)
mnel,

The latter is a (non-holomorphic) modular form of weight 1, and combined with equation
(6) is the formula of Bloch mentioned previously.
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Theorem 3 (Bloch’s formula [1,2,7]) Forz = At — A, we have

F(zt) = %(D(q; x) + i/ (g; %))

i
(Im ‘5)2 , eZni(mA+nA)(m.L_ + }'1)
T 2x? |mt + n|*
mne

5 General weight
A natural generalisation of the product in (5) is

oo
Qu(z; 7) i= B2/ (+2) 1—[ 1-— xqm)(m-i-A)k(l _ x—lqm-i-l)(—l)k(m-‘rl—A)k, )
m=0

where k = 0,1,2,... and Bg(¢) stands for the kth Bernoulli polynomial. Then Qo(z; )
is an arithmetic normalisation of the short theta function 6y(z; t) (a Siegel modular unit)
and Q1 (z; ) coincides with (5). Following the earlier recipe, define

Fi(zt) =Fiy(z7) :=InQr( t) — ¥21n Qr(z; 1),
F_(z;1) = Fr_(z;7) .= In Q(2; %) — F21n Qrlz; 1)

Y

and Fi(z;T) := %(F/H(z; 7) + Fr_(z; ‘L')). Then from Lemma 1 we deduce the following
generalisation of Lemma 4.

Lemma 6 We have, fork > 1,
tRFL(54) + (=) Fi(z;t) =  (—=D)fmid% (24 + 1)<k,
*F_ (3 1) + (-1 F_(z;7) = — (=1 mid% 24 4 1)7%.
Proof Apply Lemma 1 and the relation

Biao(—t) — (—1)*Brya(t) = (—1)* (k 4 2)¢F 1, O
We further use that the 7-derivative of In Qi (z; t) is an Eisenstein series.

Lemma 7 Fork > 1,
(—l)kk! , eZni(mA+nA)

In Qi(z;7) = ,
k1 k+1
(2mi) e m(mt + n)

wherez = — A + Ar.

Proof Consider Qu(A, A; 1) := Qi(AT — A; 1) as a function of real variables 4, A and
complex variable 7. The t-derivative

. 1 d . d .

GrioA A1) = — — InQr(A, A7) = q— In Qr(4, A; 7)
2mi dt dg

is seen to be the Eisenstein series

(—1)k+1(k+ 1)! Z, eZni(mA+nA)

EraA A7) i= (2mi)k+2 (mt + n)k+2

mnez
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of weight k + 2. This is true for k = 1 (see Sect. 4), while for k > 1 we observe the
functional equation

0 . 0 N
—FE A A; 1) = —E A A;T).
Y] k+3( T) o= k2( T)

The equality Grio(4, A;1) = Exyo(A, A; 1) then follows by induction on k using the fact
that the constant terms of both functions at 7 = oo (or g = 0) agree.

Integrating we obtain
(—l)kk! , eZni(mA+nA)

In Qx(A, A;7) = - )
Nk+1 k+1
(27i) e m(mt + n)

Since both sides continuously depend on A and A, the formula remains valid also for
In Qg (z; 7). O

As in our computation in Sect. 4 we obtain

—1)*k! P 1 1
In |Qx(z; 7)| = LR ez”’(’”A+”A)( - )

2(27‘(l')k+1mn€Z m(mt + mk+l  m(mT + n)k+l
(—=1)kk! / 2ni(mA+nA)(? _ 1) k
ECIA mt + ny (mT + n)<~/
2(271i)/<+1mz (mt + nk+1(mT + n)k+1 Z( )1( )
l ki1 Im © 2m(mA+nA)
C@u)k Z %Z (mt + nf T+ (mT + ny+1
and
k! Im 7 2mi(—mA+nd)
Q&N =~ e ]XOSMZZ e
z kit Im © 27Tl(mA+nA) kg
= (27‘[ k+l Z %Z (}’I’I'L' +l’l)k /+1(m_L_ I I’l)/+1
Thus,

Fi(z;t) = In|Qg(%; 1 )I—f In [Qx(z; 7)|

lkk' Im<t 2m(mA+nA)

= —(27-[)/(+1 Z‘L’k ](‘L'l_‘[l) Z (mt—i—n)’“(m‘r—l—n)k —j+1

m,ne”Z

ik
i“k! o
B m Z (& —T)Dj1 ey @)

ik!
" UrImo) Z T m() Dy (@50)
where
(T _ ?)a—&-b—l , eZni(mA+nA)
D, JX) = - 8
ab(43%) 2mi (mt + n)*(mT + n)b ®)

mnez

39
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for positive integers a and b.

Finally, observe that the non-holomorphic Eisenstein series (8) can be identified with
the elliptic polylogarithms using a formula of Zagier [7, Proposition 2]. This leads to the
following general result.

Theorem 4 Fork > 1andz = At — A, we have

. k
fa ik! . )
In |Qk(z )| — T8 In|Qu(ziT)| = G IR T () Dy 11 (@),
7 lmt ia
where
o0
_ (47 Im 7)*to-1
Dyp(q;x) = Z (Da,b(xq’”) + (—1)a+bDa,b(x lqm+1)) + WBaHz(A)
m=0 !
and
a+b—1 b—0—1
_ o1 (0 =1\ (= In|x[)*" .
D — _la 1 2a+b -1 L
wh®) = (=D Y o1) s = W@

l=a

a+b—1 —{—
—1\ (=1 a+b—0—1

+ (=D 2““’—4—1(( )—( n Jx) Li, ().
v b—1)atb—t—1)

6 Conclusion
This final (and very short!) part is devoted to highlighting some directions for further
research.

In spite of generalisability of the story in Sects. 2—4 to the function
Fi(z; 1) = In| Q& 1)| = t°In | Qu(z; 7))

where k > 1 and the product Qg(z; 7) is defined in (7), the case kK = 1 remains the only
one, which is invariant under translation t — 7 + 1. At the same time, Lemma 6 implies

the transformation
"5, 1) = (1) (g 1) fork=1,2,....

This consideration does not exclude, however, a possibility for modified products (7) and
related functions Fj to exist such that the latter ones have true modular behaviour for
each k > 1. It sounds to us a nice problem to determine such modular objects.

Several arithmetic problems related to the case k = 1 (originating from the elliptic
gamma function) are still open. Our personal favourites include connection of (5) with
the Mahler measure and mirror symmetry; see, for example, observation in [6].
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