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Abstract
Robotic automation has emerged as a leading solution for replacing human workers in dirty, dangerous, and demanding 
industries to ensure the safety of human workers. However, practical implementation of this technology remains limited, 
requiring substantial effort and costs. This study addresses the challenges specific to nuclear power plants, characterized 
by hazardous environments and physically demanding tasks such as nozzle dam replacement in confined workspaces. We 
propose a digital twin and deep-reinforcement-learning-driven robotic automation system with an autonomous mobile 
manipulator. The study follows a four-step process. First, we establish a simplified testbed for a nozzle dam replacement 
task and implement a high-fidelity digital twin model of the real-world testbed. Second, we employ a hybrid visual percep-
tion system that combines deep object pose estimation and an iterative closest point algorithm to enhance the accuracy of 
the six-dimensional pose estimation. Third, we use a deep-reinforcement-learning method, particularly the proximal policy 
optimization algorithm with inverse reachability map, and a centroidal waypoint strategy, to improve the controllability of 
an autonomous mobile manipulator. Finally, we conduct pre-performed simulations of the nozzle dam replacement in the 
digital twin and evaluate the system on a robot in the real-world testbed. The nozzle dam replacement with precise object pose 
estimation, navigation, target object grasping, and collision-free motion generation was successful. The robotic automation 
system achieved a 92.0% success rate in the digital twin. Our proposed method can improve the efficiency and reliability of 
robotic automation systems for extreme workspaces and other perilous environments.

Keywords Robotic automation · Autonomous mobile manipulator · Deep reinforcement learning · Digital twin · Nuclear 
power plants · Confined workspace

1 Introduction

Digital twin (DT) and deep reinforcement learning (DRL) 
have emerged as pivotal technologies for advanced robotic 
automation systems (RASs) in extreme environments [1–3]. 
For instance, nuclear power plants need sophisticated RAS 
for tasks such as maintenance, inspection, and repair, which 
are often executed under harsh conditions with elevated 
radiation exposure and geometrically confined and complex 
structures [4]. Tasks in nuclear power plants are hazardous 
and difficult, with potential radiation exposure that could 
lead to serious health problems or even death for human 
workers. Moreover, the tasks are technically challenging 
and require specialized skills, experience, and precise tools. 
The challenge lies in ensuring safe, accurate, and efficient 
completion of these tasks.
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With nuclear power technology now classified as green 
technology in the European Union Taxonomy, the impor-
tance of deploying RAS in nuclear power plants has become 
more pronounced than ever. This shift towards recognizing 
nuclear energy as a sustainable energy source underscores 
a crucial precondition, which is the assurance of safety. 
In this context, the introduction of RAS in nuclear power 
plants offers various advantages. First, RAS minimizes the 
risk of workplace accidents and harmful radiation expo-
sure for human workers [5], which mitigates environmental 
risks associated with nuclear power plants. Additionally, 
robots can operate continuously without breaks, result-
ing in increased productivity and efficiency in power plant 
operations. This contributes to a reduction in carbon emis-
sions and other environmental impacts related to electric-
ity generation. Furthermore, RAS decreases the reliance on 
human labor, which can lead to improved social outcomes, 
such as increased employment opportunities in other sectors, 
enhanced working conditions, and reduced income inequal-
ity [6]. Considering these aspects, the introduction of RAS 
in nuclear power plants can be viewed as an embodiment 
of advanced technological integration, which, from a long-
term perspective, qualifies as a form of green technology 
that protects the environment [7–10].

DT technology, in conjunction with RAS, is crucial in 
extreme environments such as those of nuclear power plants, 
manufacturing facilities, and other hazardous workspaces 
[11, 12]. DT serves as a virtual representation of a physi-
cal system or process, enabling engineers and operators to 
simulate and test various scenarios without endangering 
human lives or incurring expensive equipment damage. DT 
technology, when integrated with RAS, allows for optimized 
performance, proactive issue resolution, and real-time con-
trol, enhancing safety and environmental sustainability in 
extreme industrial environments.

DRL has emerged as a promising approach for resolving 
intricate decision-making problems in the robotics industry. 
It enables robots to learn new skills and adapt to dynamic 
environments, resulting in advancements in automation, 
productivity, and safety [13, 14]. Applying DRL in robot-
ics enables robots to execute complex tasks with enhanced 
precision and efficiency, reducing human error and increas-
ing overall productivity. It holds significant potential across 
various fields such as healthcare, manufacturing, explora-
tion, and disaster response, ultimately contributing to an 
improved quality of life, increased productivity, and a safer 
society [15].

Numerous studies are being conducted to enhance the 
reliability and efficiency of autonomous mobile manipulators 
(AMMs) [16]. To mitigate frequent hardware damage during 
robot development, algorithms and systems related to self-
collision avoidance between the autonomous mobile robot 
(AMR) and the robot manipulator have been investigated 

[17, 18]. Furthermore, the development of algorithms and 
systems for collision avoidance in dynamic and uncertain 
environments is underway, enabling AMMs to operate over 
an extensive range [19]. Deep-learning algorithms have 
recently been integrated into the complex control systems of 
AMMs, enabling them to perform more diverse and intricate 
tasks, like peg-in-hole and spraying [20].

As the application of AMMs expands, efforts have been 
made to employ them as maintenance robots in facilities 
with confined structures, such as nuclear power plants [21]. 
Typical tasks required in large and structurally confined 
facilities involve avoiding collisions between structures and 
robot hardware, necessitating the use of end-effectors capa-
ble of stably performing specific tasks. Continuum robots 
are flexible to work in complex and confined structures, but 
they are limited by the inevitable contact with structures 
[22]. Unmanned aerial vehicles (UAVs), such as drones, can 
maneuver without contact in complex structural environ-
ments but they cannot physically control targets [23, 24].

AMMs can significantly address these challenges; how-
ever, there are still some limitations when performing tasks 
in confined and complex structures. Although numerous 
studies focused on autonomous driving based on simultane-
ous localization and mapping and navigation from a mobility 
perspective [25], further research is needed on manipulators 
that can organically respond to the dynamic three-dimen-
sional (3D) environment, particularly for executing delicate 
tasks in intricate spaces. Most vision sensor-based percep-
tion algorithms rely on pre-defined augmented reality tags 
for accurate calibration between the target and the robot 
location, or when the target is initially present within the 
field of view (FOV) of the camera [26]. However, these con-
ditions are inefficient in actual workspaces owing to their 
large and complex structures. Although preliminary studies 
have been conducted on trajectory generation in confined 
spaces, they often do not consider the geometry of robot 
manipulators with intricate shapes, which are mostly limited 
to simulation environments [27]. To overcome these limita-
tions, a stable, robust, and integrated DT platform is needed. 
An integrated DT platform should enable the development 
and evaluation of state-of-the-art (SOTA) perception, deci-
sion, and control algorithms, ensuring secure operation of 
robots without collisions in confined workspaces.

We propose a DT and DRL (DT-DRL) approach for a 
RAS capable of robust and flexible operations within a 
confined chamber including a narrow passage, targeting 
steam generator compartments in nuclear power plants. 
The hybrid visual perception system precisely estimates 
the target pose using deep object pose estimation (DOPE) 
and iterative closest points (ICP). After finding the optimal 
base pose by using an inverse reachability map (IRM), a 
DRL algorithm, along with a novel and intuitive reward 
shaping strategy, trains the robot manipulator of the 
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AMM for collision-free trajectory generation in confined 
workspaces. This DT-DRL approach is implemented in 
real-world robotic automation systems using the robot 
operating system (ROS) and has proven successful. The 
contributions of the study include the following:

(1) End-to-end DT for robotic automation in confined 
and hazardous workspaces: The study develops a 
high-fidelity DT capable of virtualizing actual envi-
ronments including geometrically confined structures. 
The DT also enables the development and evaluation 
of SOTA RAS without the need for any third-party 
platforms. Notably, the DT delivers hyper-realistic 
rendering for visual perception systems and also offers 
training acceleration, facilitating efficient trajectory 
generation for complex robots. This end-to-end DT can 
drastically reduce the development time and cost of 
RAS for demanding perilous tasks, where conducting 
actual pre-evaluation poses challenges.

(2) Hybrid vision algorithm-driven enhancement of 
6D pose estimation accuracy: The study introduces 
a hybrid visual perception system that combines deep-
learning-based estimation algorithm DOPE with a 
mathematical registration algorithm ICP, focusing 
on improving the accuracy of 6D pose estimation. 
The fusion approach significantly surpasses the per-
formance of single-algorithm approaches, leading to 
an increased success rate of tasks. This novel fusion 
approach can estimate the precise pose of a target 
object in various environments that are not defined in 
advance, improving perception performance, which is 
essential for RAS.

(3) DRL-driven collision-free trajectory generation in a 
confined chamber: The study presents a novel and intu-
itive reward shaping of DRL algorithm for collision-free 
trajectory generation in a confined chamber. A centroidal 
waypoint with a high positive reward guides the robot 
manipulator to a safe path. The method has a higher 
task success rate than conventional or distance-based 
DRL motion-planning algorithms in confined cham-
bers, including narrow passages. This method can be 
universally used in various confined workspaces where 
the joints of the robot manipulator are constrained.

(4) Nozzle dam replacement task in nuclear power 
plants using the DT-DRL for RAS: This study dem-
onstrates the feasibility of DT-DRL for RAS through a 
nozzle dam replacement task in nuclear power plants. 
RAS fully developed in the DT environment is used to 
automate the nozzle dam replacement task in nuclear 
power plants, and empirically evaluate it even in the 
real-world system.

The remainder of this paper is organized as follows. Sec-
tion 2 explores the research focusing on robots in confined 
workspaces and DRL applications for AMMs. Section 3 
provides the background of the systems used in this study. 
Section 4 introduces the proposed DT-DRL system for RAS, 
with specific emphasis on the development of a hybrid per-
ception algorithm employing DOPE and ICP, DRL-based 
algorithms using IRM and a centroidal waypoint, along with 
ROS-based control systems. Section 5 provides both qualita-
tive and quantitative experimental evaluations of the DT and 
real-world environments. Section 6 presents conclusions and 
future research prospects.

2  Related Works

2.1  Digital Twin with Robotic Perception, Decision, 
and Control System

The DT concept, originally articulated by Grieves [28], 
entails creating a digital mirror of a physical entity to facili-
tate its study and comprehension. Over time, the complex-
ity and scope of this notion have evolved significantly, as 
numerous researchers explored its applications. A pivotal 
study by Tao et al. [29] underscored the essential function 
of DT in Industry 4.0, amalgamating technologies such as 
simulation, the Internet of Things, and Big Data to enhance 
product quality while minimizing development expenses. 
The application of DTs in the realm of robotics, specifically 
in perception, decision, and control, has attracted signifi-
cant attention from the research community. For instance, 
Niki et al. [30] proposed a DT-based method for enhancing 
robotic perception. Their approach used a high-fidelity DT 
to mimic the environment, providing a training platform for 
machine-learning algorithms and significantly improving the 
ability of the robot to understand its surroundings. In terms 
of decision making, a study by Lee et al. [31] introduced a 
DT-driven approach for complex task planning and execu-
tion in robotic construction. By creating a virtual replica of 
the physical world, their system tested various decision-mak-
ing strategies in a risk-free environment, thereby enhancing 
the efficiency and robustness of the robotic system. Regard-
ing control, Yang et al. [32] made a significant contribution 
using DTs for predictive control in robotic systems. Their 
approach leveraged the real-time data from the DT to predict 
the future state of the robot and adjust its control strategy 
accordingly. This work demonstrated the potential of DTs to 
significantly improve the operational efficiency and adapt-
ability of robotic systems.

Despite these substantial strides in research and appli-
cation, the current literature reveals the lack of com-
prehensive studies that delve into the intricate intersec-
tion of DT technology, visual perception systems, and 
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GPU-based training acceleration in robotics. Recogniz-
ing this gap, this study aimed to meticulously investigate 
these themes, and contribute to a more holistic under-
standing of this rapidly evolving field.

2.2  Robots in Confined Workspaces

Extensive studies have been conducted on different types 
of robots, such as AMRs, UAVs, continuum robots, 
and robot manipulators, for their potential to operate 
in obstructed workspaces [33]. Each type of robot has 
unique advantages and limitations, and various methods 
have been investigated to overcome these limitations. 
Compact and lightweight AMRs were proposed for 
inspection and maintenance tasks in cluttered workspaces 
[16, 17]. These AMRs could navigate through narrow 
passages and confined spaces; however, their mobility 
was limited, which posed a disadvantage in complex envi-
ronments with obstacles.

Another approach used lightweight and easy-to-operate 
UAVs for inspection and maintenance tasks in obstructed 
workspaces, such as inspecting large structures [34]. How-
ever, UAVs have limitations in terms of precise operation, 
making handling targets in narrow or obstructed environ-
ments challenging. Furthermore, UAVs cannot provide 
tactile feedback, which may not be suitable for tasks 
requiring contact with surfaces or objects.

Many continuum robots have been proposed for use 
in narrow workspaces. For instance, a snake robot was 
developed for inspecting and repairing pipes [35]. The 
design of the snake robot enabled it to move around obsta-
cles and through confined spaces, making it suitable for 
use in restricted environments. However, controlling the 
movement of the snake robot is challenging owing to its 
unstable movement, and it may not be ideal for carrying 
heavy payloads or performing tasks that require precise 
manipulation of objects.

The emerging field of AMMs combines the mobility 
of AMRs with the dexterity of robot manipulators. Their 
mobility enables them to perform tasks in hard-to-reach 
locations and various translations and orientations, which 
can increase the efficiency and safety of industrial pro-
cesses by reducing the need for human intervention in 
hazardous areas [36]. However, the size and weight of 
AMMs can limit their mobility in certain environments, 
and advanced navigation and control systems are required 
to ensure safe and accurate operation, increasing system 
complexity. These challenges can be addressed by lever-
aging new technologies such as DT and DRL, which have 
the potential to make AMMs the most practical robots in 
industrial fields.

2.3  Deep Reinforcement Learning for Autonomous 
Mobile Manipulators

Considerable research has been conducted on the efficacy 
of DRL in training AMMs to master collision avoidance. 
An early study employed deep deterministic policy gra-
dient (DDPG) to guide an AMM around obstacles in its 
environment [20]. The AMM leveraged sensor data to per-
ceive its surroundings and predict potential collisions in 
real time, effectively avoiding obstacles while efficiently 
pursuing its intended destination. The application of DRL 
in complex environments has also been explored. Xia et al. 
[37] employed soft actor-critic (SAC), a model-free algo-
rithm, in AMMs operating in cluttered environments. The 
authors demonstrated how SAC, integrated with a meticu-
lously designed reward function, could facilitate effective 
navigation in spaces populated with static and dynamic 
obstacles. DRL has shown promise in assisting AMMs in 
executing complex tasks. Ander et al. [38] implemented a 
twin delayed DDPG (TD3) algorithm, a variant of DDPG, 
to instruct an AMM in precise object manipulation tasks, 
effectively circumventing the inherent difficulties linked to 
conventional control algorithms. In multi-robot scenarios, 
DRL has been of considerable interest as well. Chen et al. 
[39] used a multi-agent DDPG (MADDPG) to optimize 
the coordination between a group of AMMs, resulting in 
improved performance in task completion time and colli-
sion avoidance. Additionally, Sun et al. [40] showcased the 
versatility of DRL by employing it to develop an adaptive 
trajectory generation system for AMMs using an asyn-
chronous advantage actor-critic (A3C), demonstrating its 
potential to adapt to changes in the dynamics of the robot 
or its environment.

Despite the advantages of using machine-learning-
based approaches for AMMs, there are still limitations. 
One such challenge is the requirement for extensive train-
ing data to learn collision-free C-spaces or collision avoid-
ance policies, leading to long training times. Previous 
DRL-based algorithms were limited to implementing com-
plex RAS or evaluating simulation-to-reality (Sim2Real) 
transferability. As a result, a stable virtual environment 
capable of evaluating any RAS and an algorithm that can 
automate new tasks rapidly and flexibly are necessary.

3  Backgrounds

The RAS constructed in this study comprises perception, 
decision, and control systems. For a better understanding, 
this section aims to provide an explanation of the main 
algorithms.
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3.1  Perception algorithms

3.1.1  Deep Object Pose Estimation (DOPE)

The proposed approach uses DOPE algorithm, which com-
bines visual geometry group 19 deep-learning models, belief 
maps, and vector fields to estimate the 6D pose of objects 
in images or video frames. In the initial step, a convolu-
tional neural network (CNN)-based detector generates belief 
maps to identify locations of objects in an image. The sub-
sequent step involves another CNN model using these belief 
maps to regress the 6D pose of the object, represented as 
x, y, z, �,�,� (Eq. 1).

where IRGB denotes the RGB image, and x, y, z and �,�,� 
represent the 3D position coordinates of the object and the 
Euler angles for rotation, respectively. The DOPE algorithm 
demonstrates efficiency and robustness in challenging sce-
narios, including cluttered backgrounds and occlusions [41], 
and finds use in applications such as robot manipulators, 
augmented reality, and autonomous systems.

However, its reliance on well-defined environments lim-
its flexibility and scalability in dynamic or unknown set-
tings. Performance may decline due to limitations in train-
ing data, occlusions, and lighting changes. In scenarios 
where the environment frequently changes or is unknown, 
the lack of adaptability becomes a significant disadvantage. 
Additionally, as an algorithm highly dependent on the pixel 
resolution of RGB cameras, it also has the drawback of 
significantly reduced accuracy for objects at a distance. To 
overcome these challenges, this study proposes an innovative 
solution based on deep neural networks (DNN) and robust 
mathematical methods [42, 43].

3.1.2  Iterative Closest Point (ICP)

ICP algorithm is widely used for registering and aligning 
two or more point cloud data (PCD) to estimate their relative 
transformation (Eq. 2).

where the variables R and T  represent the rotation matrix 
and translation vector, respectively, optimized to find the 
transformation between two point clouds. Pi denotes a point 
in the source point cloud, and P′

i
 represents its corresponding 

point in the target cloud.
ICP operates by iteratively identifying and minimizing the 

distance between corresponding points until the error is below 

(1)DOPE
(
IRGB

)
= 6D pose(x, y, z, �,�,�)

(2)argmin
R,t

N∑

i=1

‖‖‖Pi −
(
RP�

i
+ T

)‖‖‖
2

a threshold � , achieving accurate PCD alignment. ICP is ver-
satile, handling rigid and non-rigid alignments, and manages 
noise, outliers, and missing data effectively. While computa-
tionally efficient for various applications, the accuracy of ICP 
depends on the initial transformation estimate. If the initial 
estimate is incorrect, the resulting estimate can be significantly 
erroneous, particularly in point clouds with significant shape 
differences or occlusions [44].

3.2  Decision and Control Algorithms

3.2.1  Inverse Reachability Map (IRM)

IRM algorithm aims to identify the optimal mobile base pose 
for the AMM, thereby narrowing the solution space for DRL 
in achieving collision-free trajectories [45]. IRM computes the 
optimal base pose for a robot, ensuring the tool center point 
(TCP) reaches a specified target point (Eq. 3).

where RMTCP
AMMbase

 is a reachability map containing the target 
pose of the robot manipulator TCP relative to the base pose 
of the AMM in Cartesian coordinates. The inverse transfor-
mation of this map, 

(
RMTCP

AMMbase

)−1

 , computes the inverse 
reachability map IRMTCP

AMMbase
 , containing multiple base poses 

of the AMM (Eq. 4).

The search space B , including each grid cell bi , is defined 
before IRM computation (Eq. 5).

where bi contains the set of (x, y,�) the base pose that the 
robot manipulator can reach the target point ptarget . The fea-
sible base poses of the AMM are stored in each grid cell bi 
including the translations x, y , and the orientation yaw � . 
These feasible base poses are computed using IRMTCP

AMMbase
 

(Eq. 6).

where bij means the set of bi(x, y,�).
To determine the optimal base pose, the algorithm identi-

fies the maximum norm of feasible base poses max(∥ b ∥) and 
normalizes it as di , resulting in a feasibility score (Eq. 7).

(3)RMTCP
AMMbase

= (x, y, z, �,�,�)

(4)
(
RMTCP

AMMbase

)−1

= IRMTCP
AMMbase

(5)B =
[
b0,⋯ , bi,⋯ , bT

]

(6)bij =

{
ptarget ∗

(
IRMTCP

AMMbase

)

j

}

i

(7)di =

{
∥bi∥

max(∥b∥)
, if ∥ bi ∥≥ 1

0, otherwise
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The normalized values are stored in an array D (Eq. 8).

This process assists in selecting the optimal base pose for 
the AMM. However, while IRM is effective in determining 
the best base pose, it does not directly compute collision-free 
trajectories as it lacks integrated collision avoidance strate-
gies during the planning phase.

(8)D =
[
d0,⋯ , di,⋯ , dT

]
DRL agents aim to maximize accumulated rewards over 

time, using DNNs to represent policies that map states to 
actions a . The agent iteratively improves its decision-making 
by interacting with the environment, observing the state s , 
receiving rewards r , and updating its DNN parameters � and 
policy � (Fig. 1).

PPO, a robust DRL algorithm, optimizes the policy using 
a surrogate loss function, advantage function, and an clip-
ping ratio � for stable and efficient updates [46]. The sur-
rogate loss function L enables effective balance between 
exploration and exploitation (Eq. 9).

where �̂[⋅] represents taking the expected value, which 
means averaging the expression inside the function over a 
specific probability distribution, �t(⋅|s) represents the prob-
ability of selecting a given action state under the policy, t 
denotes the step of the policy, �t+1(⋅|s) denotes the updated 
policy, � is a set of parameters that govern the action selec-
tion based on the current state s , and �k is a set of fixed 
parameters that determine the action selection in the cur-
rent policy iteration and remains constant during the policy 
update process. clip(⋅) is used to restrict the policy update to 

(9)
L
(
s, a, �k, �

)
= �̂

[
min

(
�� (a|s)
��K (a|s)

A
��k (s, a), clip

(
�� (a|s)
��K (a|s)

, 1 − �, 1 + �

)
A
��k (s, a)

) ]
.

Fig. 1  Basic principle and parameters of DRL

3.2.2  Deep Reinforcement Learning (DRL) and Proximal 
Policy Optimization (PPO)

DRL combines deep-learning with Markov decision pro-
cesses (MDP) principles, providing a framework for agents 
to learn optimal decision-making policies through environ-
mental interaction and feedback in the form of rewards [13].
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ensure that the new policy does not deviate too much from 
the old policy. To ensure that policies are updated within 
a trust region and to prevent drastic and unstable policy 
changes, PPO optimizes this surrogate loss function.

The advantage function ÂGAE(𝛾 ,𝜆) quantifies each impact 
of an action on performance (Eq. 10).

where � denotes a parameter used in algorithms that employ 
generalized advantage estimation, such as PPO. It deter-
mines the trade-off between bias and variance in estimating 
the advantages of policy updates. A higher � assigns more 
weight to future rewards, leading to a higher emphasis on 
long-term planning, while a lower � places more importance 
on immediate rewards and focuses on short-term gains. � 
affects the balance between exploration and exploitation dur-
ing policy updates in PPO. �V

t+l
 represents the temporal dif-

ference error, which is the difference between the estimated 
value V  of the current state and the value of the next state. 
The exponent l represents the time steps into the future, 

(10)ÂGAE(𝛾 ,𝜆) =

∞∑

l=0

(𝛾𝜆)l𝛿V
t+l

indicating how far the estimator looks ahead to calculate 
the advantage.

In PPO, one of the crucial hyper-parameters is � , which 
controls the level of clip or proximity during the policy 
update step. It limits the maximum change allowed in pol-
icy parameters and maintains the stability of the learning 
process. By constraining the policy update within a cer-
tain range determined by � , PPO balances exploration and 
exploitation, avoiding large policy changes that could hin-
der the stability of the learning process. The selection of 
ε impacts the trade-off between learning speed and policy 
stability, with a smaller value encouraging more cautious 
updates and a larger value allowing more exploration and 
potentially faster learning.

In the realm of robot control systems, PPO stands out as 
a robust DRL algorithm with multiple benefits. First, it can 
handle continuous action spaces, making it ideal for control-
ling the precise joint movements of the robot manipulators. 
By using PPO, robot manipulators can learn policies that 
enable smooth and continuous motions, empowering them to 
navigate confined and complex environments without colli-
sion. The stability and reliability of PPO during the learning 

Fig. 2  System overview



946 International Journal of Precision Engineering and Manufacturing-Green Technology (2024) 11:939–962

1 3

process are crucial for robot manipulators, facilitating safe 
exploration of the environment while gradually enhancing 
collision-free trajectory generation capabilities. This fea-
ture is particularly valuable when dealing with confined 
and complex environments that require accurate and safe 
trajectory generation.

4  Methods

This study aims to develop an innovative RAS using DT-
DRL for maintenance tasks in a challenging confined cham-
ber, focusing on the nozzle dam replacement tasks in nuclear 
power plants. This task involves workers entering a confined 
steam generator compartment through a narrow man-way 
with high levels of radiation. Owing to the high risk to work-
ers, primarily caused by excessive radiation exposure and the 
heavy weight of the nozzle dam, this task is often classified 
as an aversion task. Therefore, it is necessary to create a DT 
environment and develop RAS within it to transform high-risk 
tasks typically performed by human workers into automated 
tasks performed by the RAS. The proposed DT-DRL for RAS 
comprises three subsystems (Fig. 2): (1) a digital transforma-
tion to the DT, explained in Sect. 4.1, (2) a DT-based visual 

perception system, described in Sect. 4.2, and (3) a DRL-
based trajectory, described in Sect. 4.3. This DT-DRL for 
RAS enables precise modeling, realistic perception, autono-
mous learning, and seamless integration between virtual and 
real-world environments. The study aims to improve the effi-
ciency, accuracy, and safety of RAS in challenging industrial 
fields, where conducting empirical evaluations is difficult for 
real-world robot systems.

4.1  Digital Transformation of Actual System 
to High‑Fidelity DT

All the hardware components are virtualized in the DT envi-
ronment, including an AMM (Syscon© AMR and Doosan© 
M1013 robot manipulator), RGB-D camera (Realsense© 
D435i), suction gripper (OnRobot© VGC10), simplified 
steam generator compartment model with a single port 
(man-way), and nozzle dam segment (Fig. 3). The actual 
steam generator was simplified considering the specifica-
tions of the robot hardware. Considering the reachable work-
space of the robot manipulator and the structure and size of 
the simplified steam generator, this structure was suitable for 
the motion generation problem in a confined workspace that 
we were trying to solve with our proposed method.

Fig. 3  Real robot system and 
hardware models for the noz-
zle dam task, a the hardware 
components of the robot system 
in the real-world, b the virtual 
hardware components of the 
robot system in the DT, c the 
simplified steam generator 
compartment model in the 
real-world, d the virtual steam 
generator compartment model 
in the DT
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An NVIDIA Omniverse Isaac Sim was used as the DT 
platform in this study; it is an end-to-end platform that pro-
vides a realistic physical environment as well as perception, 
decision, and control systems, which are the components of 
RAS [47]. This DT platform offers a highly realistic environ-
ment for modeling and evaluating complex robot systems, 
with the added benefit of integrating the NVIDIA Isaac Gym 
[48] for training and optimizing intelligent agents. By inter-
acting with the parallelized simulation environment, these 
agents can learn and adapt optimal behaviors, making this 
platform a powerful tool for developing and validating the 
proposed RAS. For these reasons, our DT platform is par-
ticularly proper to address the challenges associated with 
single-port enclosure tasks, such as the nozzle dam replace-
ment of nuclear power plants.

4.2  Hybrid Visual Perception System for the Precise 
6D Pose Estimation

We propose a hybrid algorithm that integrates the DOPE 
and ICP algorithms to estimate a more precise 6D pose of 
the target object. DOPE employs deep-learning models 
and belief maps to estimate the initial pose of the object, 
whereas ICP facilitates the iterative refinement of point 
cloud alignment (Fig. 4). By combining the strengths of 
both algorithms, we aim to overcome individual limitations 
and achieve enhanced accuracy and robustness in 6D pose 
estimation.

This hybrid visual perception system offers several advan-
tages over using either algorithm individually. DOPE pro-
vides an accurate initial pose estimation by harnessing the 
power of deep-learning and belief maps. This estimation 

Fig. 4  Diagram of hybrid visual perception system
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serves as a reliable foundation for subsequent ICP align-
ment, reducing the reliance on potentially inaccurate initial 
guesses and improving overall alignment accuracy. Incor-
porating ICP allows for iterative refinement, enabling fine-
grained adjustments to align point clouds and augment the 
accuracy and precision of the pose estimation. By synergiz-
ing the strengths of both algorithms, the hybrid approach 
attains superior robustness, accuracy, and performance com-
pared to employing either algorithm alone.

Where the mobile bases of the AMMs should be located 
can be defined using the hybrid visual recognition system. 
The final base position p∗ to which the mobile base should 
move can be determined by adding bopt obtained by IRM to 
the absolute coordinates of the steam generator pSG (Eq. 11).

where pSG is the absolute steam generator pose estimated 
by the combined algorithm with DOPE and ICP, bopt is the 
relative optimal pose of AMM obtained by IRM.

4.3  Hybrid Decision System Combining IRM 
and PPO for Collision‑Free AMM Trajectory

We used a hybrid decision system to generate the collision-
free trajectory �∗ of the robot manipulator to the target point 
(Eq. 12).

where p0 is the initial point, pi is the i-th point, and pT is 
the final point of TCP. Note that pT should be within 10 mm 
from the target point p∗ , and all points pi ( 0 ≤ i ≤ T , i ∈ ℤ ) 
should be collision-free. The initial point p0 is determined 
by IRM, and the rest of the trajectory 

[
p1,⋯ , pi,⋯ , pT

]
 is 

determined by the trained policy of PPO.

(11)p∗ = pSG + bopt

(12)�∗ =
[
p0,⋯ , pi,⋯ , pT

]

Controlling the mobile base and the 6-DOF robot 
manipulator simultaneously theoretically allows for more 
degrees of freedom and potentially more flexible move-
ments in confined workspaces. However, in practice, the 
accumulation of errors and instability in the hardware 
can render it unsuitable for performing complex tasks 
accurately. To address this issue, we adopted a different 
approach by fixing the mobile base at a specific location 
and controlling the robot manipulator separately. This sep-
aration of control aims to enhance precision and stability 
in the trajectory generation of the mobile manipulator and 
execution.

This hybrid decision system that combines IRM and 
PPO generated collision-free trajectories for the AMM 
operating in a confined chamber, including narrow pas-
sages (Algorithm 1). First, the target points ptarget that the 
robot manipulator TCP needs to reach and search space B 
are set. The algorithm then iterates through the IK com-
putation for every grid cell (lines 1–4). The base pose bopt 
with the highest number of feasible solutions is selected as 
the final pose (line 5). Once the selected optimal base pose 
bopt is applied to the pose of the AMM, the PPO algorithm 
trains the collision-free trajectory generation of the robot 
manipulator. The PPO policy �(a|s) selects an action a , 
which is assigned to the robot manipulator TCP p , and this 
process is repeated to obtain state information s and reward 
r (lines 6–11). In the case of a collision, the entire environ-
ment is reset, and a penalty is applied (lines 12–15). When 
the robot manipulator TCP passes through a waypoint, a 
high reward is applied only once (lines 16–18). This is to 
prevent the TCP from repeatedly passing by the waypoint 
intentionally. In addition, the distance between p and ptarget 
is given as a penalty, so that learning can converge quickly 
(line 19). This iterative process trains the robot manipula-
tor to generate final trajectories �∗ in confined workspaces 
without collisions (lines 20–22).
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Algorithm 1 Hybrid algorithm combining IRM and DRL for collision-free trajectory
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4.3.1  IRM‑Driven Optimal Base Pose Estimation

In this study, we set the search space range xmin as −0.20 m , 
xmax as 0.20 m , ymin as −0.30 m , ymax as −0.10 m , based 
on the origin of the steam generator. The grid cells were 
divided by 50 × 50 × 1 , then the x, y interval of grid cell 
xstep , ystep were set as 8.00 mm and 4.00 mm , respectively. 
We set the range of yaw values �  in each grid cell �min 
as −90.0◦ , �max as 90.0◦ , and the interval �step as 0.50◦ . 
Consequently, the dimension of search space B and fea-
sibility score set D were both 2500 . To find the optimal 
base pose bopt , base poses b and target point ptarget we used 
the objective function (Eq. 13). We set the target point 
to  ptarget(x, y, z, �,�,�) = (−0.43 m, 0.18 m, 1.08 m,−122◦,−33.2◦, 71.1◦)  , 
and that point is where the nozzle dam segment was to 
be attached.

The grid cells are visualized with different colors 
based on the feasibility score D , and the grid cell with 
the highest number of IK solutions (blue) was chosen 
as the optimal base pose bopt (Fig. 5(a)). The color of 
each grid point varied depending on the relative num-
ber of reachable base poses, indicating relatively few 
(green) or no solutions (red), respectively. Finally, the 
base pose of the mobile base was fixed to one of its opti-
mal base poses in terms of the absolute coordinate sys-
tem (Fig. 5(b)). The optimal base pose was selected as 
bopt(x, y,�) = (−0.32 m,−1.64 m, 22.5◦).

(13)bopt = argmax
b∈B

D(b|ptarget)

4.3.2  DRL‑Driven Collision‑Free Trajectory Generation 
with a High‑Rewarded Waypoint

After finding the optimal base pose using IRM, PPO trains 
the policy to find the collision-free trajectory �∗ . Distance-
based DRL methods, which use the distance between the TCP 
of the robot manipulator and the target point, are commonly 
employed in DRL-based motion generation. However, it is 
difficult to create collision-free paths in narrow passages and 
confined workspaces using distance-based reward shaping 
only. To address this issue, the centroidal waypoint pc with 
a high reward value was applied. This waypoint has a higher 
positive reward than the penalty for collisions and it makes 
the training converge; it generates collision-free trajectories. 
Therefore, the robot manipulator can pass through the narrow 
passage without collision according to the trajectory including 
the waypoint pw (Eq. 14).

where pw is the centroidal waypoint, and pw is 
located inside the midpoint of the entrance. We set 
pw(x, y, z) = (1.05 m, 0 m, 1.15 m) relative to the origin of 
the absolute coordinate system. Next, the components of 
MDP, which serves as the fundamental framework for DRL, 
are defined. These components include the state observation 
s , action a , reward r , and the reset condition for initializing 
episodes. The current state observation st includes various 
elements such as the current time step t , current joint angles 
qcurrent , joint velocities q̇ , pose of the TCP pTCP , pose of the 

(14)�waypoint =
[
p0,⋯ , pi,⋯ , pw,⋯ , pT

]
.

Fig. 5  IRM-driven optimal base pose estimation of the AMM in the DT environment, a generated IRM with grid cells in front of the steam gen-
erator compartment and b a collision-free IK solution of the AMM on the optimal base pose
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target point ptarget , collision buffer Co , and translation of a 
waypoint pwaypoint (Eq. 15).

The next step involves setting a as the change of joint val-
ues q per unit time dt (Eqs. 16–18). By adding Δq to the cur-
rent joint values of the robot manipulator qt , the PPO policy 
enables direct control of the joints of the robot manipulator 
to the next joint states qt+1.

where the range of the action a was within ±1.19◦∕frame 
considering the performance of the actual robot manipula-
tor. Since the maximum angular velocity of each joint of the 
robot manipulator we used was 120◦ ∼ 220◦∕s , it is theoreti-
cally possible to rotate between 2.00◦ ∼ 3.67◦∕frame.

The rewards, r1 and r2 , represent penalties for the 
Euclidean distance between the TCP and the target point 
at each time step and collision occurrences, respectively. 
r3 represents a positive reward for passing by the waypoint 
(Eqs. 19–21).

To prevent excessive bias toward a single reward param-
eter, each r is multiplied by a scale factor w . The values of 
w1,w2,w3 are set to 2, 80, and 100, respectively (Eq. 22).

To reset an episode, conditions such as the distance 
between the TCP and the target point being less than 
10.0 mm, collisions occurring, or exceeding the maximum 
time step are defined.

Next, the hyper-parameters are tuned (Table 1). The 
action and critic network of each PPO algorithm had three 
hidden layers, and the value of � was set to 0.20 to ensure 
stable learning. In particular, � was set to 0.85 to increase 
the exploration component of the PPO policy, enabling the 
performance of a wider range of actions. This set of hyper-
parameters encourages passing the waypoints located within 

(15)st =
[
t, q, q̇, pTCP, ptarget,Co, pwaypoint

]
∈ ℝ

29.

(16)q =
[
q1, q2, q3, q4, q5, q6

]
∈ ℝ

6.

(17)at = Δq =
[
Δq1,Δq2,Δq3,Δq4,Δq5,Δq6

]
∈ ℝ

6.

(18)qt+1 = qt + at.

(19)r1 = − ∥ ptarget − pTCP ∥ .

(20)r2 =

{
−1, if collision occurs

0, otherwise

(21)r3 =

{
+1 if away point passage

0, otherwise

(22)rt
(
st, at

)
= w1r1 + w2r2 + w3r3.

a narrow single-port enclosure. A single episode consisted 
of 200 time steps, and 5000 time steps was executed during 
a single training.

The agent was trained in parallel using Isaac Sim and 
OmniIsaacGymEnvs [49], which enables the use of Isaac 
Gym within Isaac Sim. The training was conducted with 
512 individual agents, and the information generated by each 
agent was used to update the global network and facilitate 
rapid learning through information sharing (Fig. 6).

5  Experiments and Results

5.1  Case study: Nozzle Dam Replacement Task

As a case study, a nozzle dam replacement task was per-
formed using the integrated DT (Fig. 7). At the initial posi-
tion, RGB data and PCD are obtained through the RGB-D 
camera, and (1) the DOPE algorithm is used to detect the tar-
get model, that is, the steam generator compartment model 
and approximately estimate its 6D pose. The approximately 
extracted 6D pose and (2) PCD obtained by the camera are 
then used as the input data for the ICP algorithm. Using ICP, 
a more precise 6D pose is obtained, enabling the estima-
tion of the relative translation and orientation between the 
target object and the AMM. (3) The AMM navigates to the 
optimal base pose selected through IRM. (4) The suction 
gripper picks up the nozzle dam segment and (5) based on 
the collision-free motion generation policy trained by DRL, 
the robot manipulator can pass through the narrow passage, 
that is, the man-way. Once the TCP of the robot manipulator 
reaches the target point inside the confined steam generator 
chamber, (6) the nozzle dam segment is attached to it, and 
(7) the robot manipulator returns to the initial home position.

All experiments were conducted in the DT environment 
based on Isaac Sim. High-performance hardware and soft-
ware were used to enable rapid computation of high-fidelity 

Table 1  Hyper-parameters for the PPO algorithm

Hyper-parameters Values

Learning epochs 8
Mini batches 8
Learning rate 0.001
Number of hidden layers of actor network 3
Number of hidden layers of critic network 3
Discount factor ( �) 0.99
GAE lambda ( �) 0.85
Ratio clip ( �) 0.20
Max time step 200
Total time step 5000
Number of training agents 512
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physics data and 3D visualization (Table 2). The DT based 
on Isaac Sim is built on Ubuntu; the algorithmic systems 
and actual hardware systems communicate through ROS.

5.2  Evaluation of the Hybrid Visual Perception 
System

To assess the performance of the hybrid visual perception 
system, experiments were conducted in both the DT and 

real-world environments. Our goal was to perform more 
accurate pose estimation with a perception system that 
connects the two algorithms in series, rather than using 
each of the DOPE and ICP algorithms individually. In 
the first step, a realistic RGB-D camera was implemented 
in the DT environment. To increase the similarity with 
the real-world environment, the camera resolution in the 
DT was adjusted to match the specifications of the actual 

Fig. 6  Parallel learning in DT using OmniIsaacGymEnvs 

Fig. 7  System workflow of the nozzle dam replacement task
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camera. The RGB frame resolution was set to 1920 × 1080 
pixels with a FOV of 69.0◦ × 42.0◦ , while the depth chan-
nel resolution was set to 1280 × 720 pixels with a FOV of 
87.0◦ × 58.0◦ . The RGB data and PCD obtained from the 

camera in the DT environment were fed into the hybrid 
perception algorithm. Following the algorithm flow, the 
obtained PCD (cyan) was registered with the PCD of the 
target object (yellow), resulting in a successful transfor-
mation (Fig. 8).

In the real-world environment, the same camera cap-
tures RGB data and PCD, and the hybrid algorithm is 
applied, resulting in a successful PCD transformation and 
smooth registration (Fig. 9).

To provide a more quantitative comparison, the accu-
racy of the DOPE, ICP, and hybrid algorithms was meas-
ured in the DT environment (Table 3). When using the 
DOPE and ICP algorithms individually, an average trans-
lation error of 0.41 m and 1.74 m , respectively, along with 
orientation errors of 8.33◦ and 102◦ , were observed. In 
contrast, when using the hybrid algorithm that combines 
DOPE and ICP, an average translation error of 0.11 m 
and an average orientation error of 7.00◦ were observed. 
The translation accuracy improved by 73.0% and 93.6% 

Table 2  Hardware and software specification of a workstation for the 
DT

Component Specification

Hardware CPU Intel Core i9-9900KF
Memory 39.1 GB DDR4 RAM
Graphics card NVIDIA GeForce RTX 2080 Ti
Storage 512 GB SSD

Software Operating system Ubuntu 18.04 LTS
Graphic driver 525.60.11
CUDA 12.0
ROS Melodic Morenia
Isaac Sim 2022.2.0

Fig. 8  Evaluation of the perception system in the DT a virtual model of steam generator compartment in the DT, b raw PCD obtained from 
RGB-D camera, c obtained and target PCD before hybrid perception algorithm, d PCD after hybrid perception algorithm
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compared to DOPE and ICP alone, respectively. The ori-
entation accuracy improved by 16.0% and 93.1% compared 
to DOPE and ICP alone, respectively.

In the case of ICP, the translation and orientation errors 
were significantly larger than those of the other two algo-
rithms. This was the result of the initial transformation 
failure, which is a main weakness of ICP. However, when 
the approximate 6D pose of the target object obtained 
through DOPE was used as the initial transformation of 
ICP, the accuracy was greatly improved. The vulnerability 
of DOPE to the noise of RGB data was overcome by using 
PCD-based registration of ICP and the estimation accuracy 
was improved. Based on the result, the hybrid algorithm 

Fig. 9  Evaluation of the perception system in the real-world, a real model of steam generator compartment, b raw PCD obtained from RGB-D 
camera, c obtained and target PCD before hybrid perception algorithm, d PCD after hybrid perception algorithm

Table 3  Performance comparison of perception algorithms

n = 20 DOPE ICP Hybrid 
(DOPE + ICP)

Translation
[m]

Mean 0.41 1.74 0.11
Std 0.19 0.59 0.05
Min 0.14 0.94 0.05
Max 0.84 2.85 0.24

Orientation
[◦]

Mean 8.33 102 7.00
Std 5.17 55.5 3.68
Min 2.38 7.59 2.58
Max 21.9 236 15.2
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successfully addressed the limitations of DOPE and ICP and 
provided a significant improvement in 6D pose estimation 
accuracy.

Combining DOPE and ICP in a serial manner signifi-
cantly improved the accuracy of 6D pose estimation, but 
also introduced some challenges. In particular, due to the 
high computational complexity of the DOPE algorithm, the 
average inference speed was only 1.32 frames per second. 
This processing speed presents a disadvantage in terms of 
real-time performance, especially when fast responses are 
required. However, in our application, where precision and 
accuracy of target object pose estimation are of utmost 
importance, the accuracy improvement achieved through the 
hybrid algorithm is more important than real-time perfor-
mance. In situations where the accuracy of pose estimation 
is critical to the results, such as delicate or high-risk robotic 
tasks, slower inference speeds may be justified. Therefore, 
despite low real-time performance, a hybrid approach inte-
grating DOPE and ICP provides a valuable solution where 
accuracy is paramount.

5.3  Hybrid Algorithm for Collision‑Free Trajectory 
Generation Using IRM and PPO

To assess the efficacy of the collision-free trajectory gen-
eration policy, the PPO algorithm was implemented in the 
DT environment after 5000 training time steps. Five dif-
ferent target points were tested to evaluate the trajectory 
generation policy of the robot manipulator (Fig. 10). The 
TCP trajectories are recorded and displayed in a 3D Car-
tesian space (Fig. 10(a)). From the top-view, all trajecto-
ries can be observed to depart from the home point, pass 
through the waypoint (green circle), and arrive at the target 
point (Fig. 10(b)). From the isometric-view, the TCP can 
be seen to pass through the center of the narrow man-way 
(Fig. 10(c)). From the front-view, the TCP successfully 
reaches the designated target points through the waypoint 
(Fig. 10(d)). At the end of every TCP path, it reached the 
target by bending, which is because the geometrical complex 
collision avoidance between the robot manipulator and the 
confined steam generator was also considered. Consequently, 
it can be concluded that the waypoint-based policy has effec-
tively learned how to plan collision-free trajectories.

To determine the impact of the waypoint on the train-
ing results, separate training sessions were conducted with 
and without the waypoint. The policies are displayed in 3D 
Cartesian space in Fig. 11. The policy without the waypoint 
avoided collisions but tended to linger around the vicinity 
of the target point, outside the steam generator compartment 

(Fig. 11(a-b)). The policy without the waypoint failed to 
enter the man-way and reach the target point (Fig. 11(c)). 
However, the policy with the waypoint successfully gen-
erated trajectories that passed by the centroidal waypoint, 
enabling it to reach the target point (Fig. 11(d)).

Examining the accumulated rewards, it can be observed 
that in both cases, the reward values converged to a specific 
value after 2000 time steps (Fig. 12). The policy without the 
waypoint (blue line) converged to a reward value near −50 
after approximately 1000 time steps, resulting from the pen-
alty incurred for the distance, as it did not incur any penalty 
for collision or obtain any positive reward from the way-
point. Conversely, the policy with the waypoint (red line) 
maintained an accumulated reward of −100 from around 500 
time steps and converged to close to 0 at 1500 time steps. 
This suggests that the centroidal waypoint-based DRL policy 
explores the high-reward waypoint within the narrow man-
way through extensive exploration, even in the presence of 
collisions, and learns to minimize the distance to the target 
point. These results demonstrate the successful development 
of a DRL-based collision-free trajectory generation policy 
in the single-port enclosure.

To compare the performance of the DRL-based colli-
sion-free trajectory generation policy with and without the 
waypoint to conventional trajectory generation algorithms, 
sampling-based algorithms, rapidly exploring random trees 
connect (RRTConnect) and probabilistic roadmap star 
(PRMStar) [50] were evaluated. The results demonstrate that 
the success rate of the DRL policy with the waypoint was 
relatively higher than that of the other algorithms (Fig. 13). 
Particularly, the RRTConnect algorithm, which efficiently 
and rapidly generates paths in complex spaces using random 
trees, had an average success rate of 32.0% (green bar). The 
PRMStar algorithm (blue bar) had an average success rate of 
4.00% . RRTConnect depends on sampling, and if sufficient 
sampling is not performed in the initial phase, performance 
in a geometrically confined environment is significantly 
reduced. PRMstar specializes in path optimization; more 
sampling was required and the success rate of path plan-
ning in a high-dimensional space was lower. In contrast, 
the policy trained with the waypoint (cyan bar) had a 100% 
success rate in all cases, while the policy trained without 
the waypoint (black bar) failed in all attempts. These results 
confirm that the DRL-based collision-free trajectory gen-
eration policy trained with the waypoint is the most suit-
able algorithm for performing the nozzle dam replacement 
task in the steam generator compartment of the single-port 
enclosure structure.
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5.4  Evaluation of the Integrated System in the DT 
and the Real‑World Environment

5.4.1  Experiment in the DT

All the developed components were integrated to experiment 
on the nozzle dam replacement task in the DT environment 

(Fig. 14). The image information of the surroundings was 
captured using a virtual RGB-D camera, and the hybrid per-
ception system was used to estimate the precise 6D pose of 
the steam generator compartment (Fig. 14(a)). Using the 
estimated 6D pose as a reference coordinate, the AMR was 
navigated to the optimal base pose using IRM (Fig. 14(b)). 
Once the target location was reached, the suction gripper was 

Fig. 10  3D trajectories of the TCP of the robot manipulator toward different target points in the Cartesian workspace a TCP trajectories of the 
robot manipulator, b top-view of the TCP trajectories, c isometric-view of the TCP trajectories, d rear-view of the TCP trajectories



957International Journal of Precision Engineering and Manufacturing-Green Technology (2024) 11:939–962 

1 3

employed to pick up the nozzle dam segment (Fig. 14(c)). 
The TCP of the robot manipulator navigated through the 
narrow port of the steam generator compartment using 
the DRL-based trajectory generation policy (Fig. 14(d-
e)), passing through the waypoint to reach the target point 

(Fig. 14(f)). Subsequently, the nozzle dam segment was 
attached, and the TCP returned to its initial home point fol-
lowing the reverse trajectory (Fig. 14(g-h)). This entire pro-
cess was executed within 60 s in the DT environment.

Fig. 11  3D trajectory comparison of DRL policies with and without 
the waypoint a TCP trajectories of the robot manipulator trained with 
and without the waypoint, b top-view of the trajectory, c side-view of 

the trajectories, d difference of the trajectories between policies with 
and without the waypoint
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5.4.2  Experiment in the REAL‑WORLD

To evaluate the performance in the real-world environment, 
all tasks conducted in the DT environment were repeated 
using ROS (Fig. 15). The RGB and PCD data obtained 
from the forward-facing RGB-D camera attached to the 
robot manipulator at the initial position were used by the 
hybrid perception system to estimate the precise 6D pose 
(Fig. 15(a)). The AMR moved to the optimal base pose 
computed by IRM (Fig. 15(b)). Next, the nozzle dam seg-
ment was picked up using the suction gripper (Fig. 15(c)). 
The DRL-based trajectory generation policy was used to 

navigate the TCP of the robot manipulator through the nar-
row man-way of the simplified steam generator compartment 
(Fig. 15(d)), passing through the waypoint to reach the target 
point (Fig. 15(e)). After attaching the nozzle dam segment 
to the target point (Fig. 15(f)), the TCP returned along the 
same path to the initial home point (Fig. 15(g-h)). The entire 
process was executed within 130 s.

The outcomes of the experiments conducted in both the 
DT and real-world environment were quantitatively analyzed 
(Table 4). We calculated the error rates for perception and 
navigation, as well as success rates for trajectory generation 
and task completion. The translation error rate is determined 

Fig. 12  Accumulated reward 
of DRL with the waypoint (red 
line) and without the waypoint 
(blue line)

Fig. 13  Comparison of success rates between conventional and DRL-based trajectory generation
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by computing the absolute difference between the ground-
truth Euclidean distance d and the estimated distance d∗ , 
then dividing it by d (Eq. 23). Similarly, the orientation error 
rate is calculated by taking the absolute difference between 
the ground-truth yaw angle � , and the measured yaw angle 
�∗ , and dividing the outcome by � (Eq. 24). Finally, the suc-
cess rate is calculated by dividing the number of successful 
attempts by the total number of trials (Eq. 25). In the case 
of perception and navigation system, only translation x, y 
and orientation � values were used to control the AMM, so 

translation z , and orientation �, � were excluded from the 
errors.

(23)(Translation error rate) = ∥ d∗ − d ∥ ∕d × 100%.

(24)(Orientation error rate) =∥ �∗ − � ∥ ∕� × 100%.

(25)
(Success rate) = (number of sucess)∕(number of trial) × 100%.

Fig. 14  Evaluation of the nozzle 
dam replacement task in the 
DT a initialization and 6D pose 
estimation of the steam genera-
tor compartment with hybrid 
perception system, b automa-
tion driving of the AMR toward 
the IRM-driven optimal base 
pose, c picking up the nozzle 
dam segment, d entering the 
TCP into the narrow man-way 
with DRL-based policy, e pass-
ing through the waypoint by the 
TCP, f reaching target point of 
the TCP and attaching nozzle 
dam segment, g returning to the 
home point, h completion of 
the task
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The results show that in the DT environment, the percep-
tion and navigation systems had translation error rates of 
4.66% and 0.95% , respectively. The orientation error rates 
were 2.16% and 4.49% , respectively. The trajectory gen-
eration success rate and task success rates were 100% and 
92.0% , respectively. However, the accumulated error of the 
perception and navigation system led to an inaccurate base 
positioning of the AMM and an 8.00% task failure rate in 
the DT environment.

In the real-world, due to the lack of precise ground-truth 
data about perception and navigation, only the trajectory 
generation success rate was evaluated, which is equivalent 

Fig. 15  Evaluation of the 
nozzle dam replacement task 
in the real-world environment 
a initialization and 6D pose 
estimation of the steam genera-
tor compartment with hybrid 
perception system and the real 
RGB-D camera, b automation 
driving of the AMR toward the 
IRM-driven optimal base pose, 
c picking up the nozzle dam 
segment using the real suction 
gripper, d entering the TCP into 
the narrow man-way with DRL-
based policy, e passing through 
the waypoint by the TCP, f 
reaching target point of TCP 
and attaching the nozzle dam 
segment, g returning to home 
point, h completion of the task

Table 4  Experimental results of the DT and the real-world systems

Metrics Digital twin [%] Real-world [%]

Perception error rate Translation 4.66 –
Orientation 2.16 –

Navigation error rate Translation 0.95 –
Orientation 4.49 –

Trajectory generation success rate 100 74.0
Task success rate 92.0 74.0
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to the task success rate. The trajectory generation success 
rate was 74.0% , and the task success rate was 74.0% , which 
were lower than those of the DT environment. This can 
be attributed to the presence of various noise factors that 
affect the perception and navigation systems, leading to 
increased trajectory generation errors and task failures. 
Nevertheless, all the algorithms and systems demonstrated 
robust and reliable operation. The encountered problems 
could be addressed with better-performing sensors, hard-
ware, and additional sensors. Consequently, the DT-DRL 
system was successfully implemented, enabling the devel-
opment and evaluation of all robot automation tasks with-
out the need for actual hardware.

6  Conclusion and Future Works

This study successfully developed and evaluated a DT-DRL 
system for RAS to operate in a narrow passage, particularly 
for a nozzle dam replacement task in a steam generator com-
partment of nuclear power plants. All the SOTA perception, 
decision, and control algorithms were integrated and evalu-
ated in the high-fidelity DT environment. The perception 
system for robots to recognize target objects and estimate 
their precise 6D pose can be developed and evaluated in 
the DT. The DRL with IRM-based algorithm can also be 
employed to train robots with various tasks such as colli-
sion-free trajectory generation policies. We demonstrated 
that our high-fidelity DT imitates a task environment that is 
almost like the real one and can train and evaluate all com-
ponents of robotic automation in a short time. Although the 
steam generator compartment in this study was simplified, 
the potential benefits of the DT-DRL for RAS, particularly 
for AMMs, are significant. It can lead to the development 
of more efficient, reliable, and safe RAS that can consider-
ably reduce the risk of accidents and damage to the robots 
and facilities while improving productivity. Moreover, the 
use of AMMs can help minimize the environmental impact 
of hazardous workspaces, such as nuclear power plants, by 
reducing the need for human workers to operate in such 
environments. Future research will focus on improving the 
perception algorithm for more accurate 6D pose estimation 
and developing the DT-DRL for RAS that can handle more 
complex tasks, such as bolting and peg-in-hole operations, 
in more intricate structures. The oscillation of the path by 
the damping effect of the robot manipulator will be stabi-
lized by reward shaping and a more stable inverse kinematics 
algorithm.
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