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Abstract

Remanufacturing has emerged as an effective strategy to promote sustainability, reduce waste, and enhance resource effi-
ciency in modern manufacturing processes. However, traditional remanufacturing methods have limitations in producing
complex geometries and restoring parts to their original condition, leading to reduced performance and durability. Metal
additive manufacturing (AM) methods have shown significant potential in overcoming these limitations and enhancing the
quality and reliability of remanufactured parts. Metal AM enables the production of replacement parts with high geometrical
complexity and tight tolerances. On the other hand, surface treatment techniques, such as polishing and coating, can improve
the surface properties of additively manufactured parts. Recent advancements in metal AM have led to significant progress
in manufacturing technologies, including the development of hybrid methods combining metal AM with a surface treatment
to achieve superior surface finish and accuracy while reducing production time and cost. Despite progress, challenges such
as the need for cost-effective and scalable processing methods, the development of new materials, and the optimization of
process parameters for specific applications still need to be addressed. Moreover, although surface modification techniques
suitable for metal components fabricated through additive manufacturing can be employed for remanufactured parts, their
adoption needs to be improved and necessitates additional advancement. This paper provides an overview of recent progress
in manufacturing and remanufacturing technologies using metal additive manufacturing processes and surface treatments,
highlighting their potential to significantly improve the quality and reliability of remanufactured parts. The paper concludes
with a discussion of the future prospects of this field and the need for continued research and development to fully realize
the potential of remanufacturing technologies.
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1 Introduction

Remanufacturing has become a popular approach to promote
This paper is an invited paper (Invited Review). sustainability, reduce waste, and increase resource efficiency
in modern manufacturing processes. In addition, by recover-
ing materials and parts from finished products and extending
their useful life, remanufacturing helps reduce the environ-
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AM has enabled the production of replacement parts with
high geometrical complexity and tight tolerances, allowing
remanufacturers to restore components that may have been
discarded. Additionally, surface treatment methods, such as
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improve the surface properties of remanufactured parts and
restore them to their original condition.

Recent advancements in metal AM and surface treatment
methods have significantly progressed in manufacturing
technologies. Researchers have developed hybrid methods
combining metal AM with a surface treatment to achieve
superior surface finish and accuracy while reducing produc-
tion time and cost. Metal AM technologies such as powder
bed fusion and directed energy deposition have been investi-
gated in remanufacturing various parts, including aerospace
components and automotive parts. These technologies offer
significant advantages, such as the ability to produce com-
plex geometries and increase the mechanical properties of
the reconstructed parts. Surface treatment techniques, such
as thermal spray coating and electroplating, have also been
explored in manufacturing.

Overall, metal AM methods and surface treatment meth-
ods have the potential to improve the quality and reliability
of remanufactured parts significantly. However, there are
still challenges, such as the need for cost-effective and scal-
able processing methods, the development of new materi-
als, and the optimization of process parameters for specific
applications.

This paper is divided into several sections to provide an
overview of recent progress in remanufacturing technologies
using metal additive manufacturing processes and surface
treatments. Section 2 introduces the concept of remanufac-
turing, including its steps and technologies. Section 3 delves
into the metal additive manufacturing process, explaining
its basic principles and applications, with a specific focus
on remanufacturing. Section 4 discusses surface treat-
ment techniques, their features, and recent studies, all of
which are crucial in improving the properties and perfor-
mance of remanufactured parts. Section 5 provides a sum-
mary of surface treatment in metal additive manufacturing,
addressing the challenges in remanufacturing using this
process. It explores a range of surface modification meth-
ods, encompassing mechanical, chemical, thermal, and coat-
ing techniques, along with hybrid approaches. Section 6 is
the paper’s main focus, providing an overview of recent
advances in remanufacturing technologies using metal addi-
tive manufacturing processes and surface treatment. Finally,
Sect. 7, the conclusion, summarizes the paper’s key findings
and offers insights into the future prospects of this field.

2 What is the Remanufacturing Process?

Remanufacturing is repairing, refurbishing, and restoring
a product to its original operating specifications. This pro-
cess typically involves disassembling a used or worn-out
product, cleaning and repairing its parts, and then reassem-
bling it to work and new. Remanufacturing aims to extend a
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product’s life, reduce waste, and conserve natural resources
while providing a cost-effective alternative to purchasing a
brand-new product [1]. Product reuse is not a new concept
and has been an increasingly common industrial practice
since World War II, reflecting its potential to reduce waste
and promote sustainable production [2—4]. Steinhilper and
Hudelmaier coined the term “remanufacturing” in 1988 to
describe an industrial process aimed at restoring used com-
ponents to a state that is “as good as new” [5]. In 2015, the
Ellen MacArthur Foundation demonstrated that repaired
parts could sometimes perform superior to newly manufac-
tured ones. They defined “refurbishment” as a process that
involves repairing or replacing major components to restore
products to their original condition [6].

Remanufacturing processes can be applied to various
products, including electronics, automobiles, machinery,
and many other industrial goods, such as:

e Gas-turbine blades: Gas turbines are used in power gen-
eration, aviation, and other applications where high-power,
high-efficiency engines are needed. Remanufacturing gas
turbine blades involves repairing cracks, restoring worn
surfaces, and applying protective coatings to extend their
lifespan [7, 8].

e Metal parts: Metal parts, such as engine blocks, crank-
shafts, and transmission cases, can also be remanufac-
tured. In many cases, remanufactured metal parts are just
as good as new parts but cost less and use fewer resources
to produce [9, 10].

e Printing equipment: Remanufactured printing equipment,
such as toner cartridges, drums, and fusers, can be just as
reliable and

e high-quality as new equipment. Remanufacturing these
components also reduces waste and saves resources [11, 12].

e Electronic components: Remanufactured electronic com-
ponents, such as circuit boards and power supplies, are
often used in industrial applications where reliability is
critical. By remanufacturing these components, com-
panies can save money and reduce their environmental
impact [13, 14].

e Heavy equipment: Remanufactured heavy equipment,
such as bulldozers, excavators, and loaders, can be just as
reliable and effective as new equipment but cost signifi-
cantly less. Remanufactured equipment also uses fewer
resources to produce, which can help companies reduce
their carbon footprint [15, 16].

The process often involves strict quality control proce-
dures to ensure the remanufactured product meets or exceeds
the original specifications and standards. In Fig. 1, the three
processes of repair, reconditioning, and remanufacturing
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Fig.2 Role of remanufacturing in the circular economy context

are presented hierarchically based on the amount of work
content they typically require, the level of performance that
should be achieved, and the value of the warranty they gen-
erally offer [17].

The emergence of academic interest in remanufacturing as
aresearch topic can be traced back to the late 1970s and early
1980s when Robert Lund conducted innovative studies of the
remanufacturing industry [18]. Before Lund’s work, remanu-
facturing had received relatively little attention from academic
researchers. However, interest in remanufacturing is rapidly
increasing as its benefits become better understood, and it is
increasingly recognized as having a potentially important role
in our changing human life [19]. In the United States, an esti-
mated 70,000 remanufacturing businesses generate approxi-
mately $53 billion in revenue annually [20, 21]. Figure 2
shows the role of manufacturing in the circular economy [22].

Remanufacturing can offer various benefits to both busi-
nesses and the environment. First, it can be a profitable busi-
ness venture, as material and energy savings can lead to cost
savings compared to newly manufactured equivalents [23].

Furthermore, by extending a product’s lifecycle through
remanufacturing, companies can create an additional profit
when the remanufactured product is subsequently sold [24].

Also, Remanufacturing can play a vital role in waste
reduction and environmental protection by utilizing fewer
materials and energy than manufacturing new goods and
by diverting used components from landfills [18, 25, 26].
Studies have demonstrated that remanufacturing.

can result in considerable environmental advantages,
such as decreased greenhouse gas emissions, energy usage,
and waste production [27, 28]. However, disposing of prod-
ucts after their services have been fulfilled contributes to
the growing problem of waste in landfills. Waste Electrical
and Electronic Equipment (WEEE) is a major and challeng-
ing waste stream due to its quantity and toxicity. In Europe
alone, approximately 7 million tons of WEEE have gener-
ated annually [29], while China generates 1.1 million tons
per year [30]. The rapid pace of technological innovation
and shorter usage lifecycles of EEE mean that WEEE is
growing faster than any other municipal waste stream [31].
To address this issue and keep the Earth cleaner, End-of-Life
(EoL) recovery strategies are critical, and remanufacturing is
seen as a "hidden green giant" and gaining increasing atten-
tion from researchers and practitioners [32-35].

Moreover, remanufacturing can help businesses meet
increasingly stringent environmental legislation, particularly
in Europe, as end-of-life directives such as WEEE (Waste
electrical and electronic equipment) and ELV (End of Life
Vehicle) become more widespread [36, 37]. Furthermore,
remanufacturing can be considered superior to other end-
of-life strategies, such as repair and reconditioning; as a
result, it is a higher quality product with a longer extended
life, making it more commercially viable [38]. In addition to
the benefits mentioned above, remanufacturing can provide
many economic benefits, such as creating jobs, reducing the
cost of goods, and boosting local economies.

2.1 Remanufacturing Steps

Remanufacturing is the process of restoring used or end-
of-life products to their original condition, or even better,
through a series of steps. The specific steps involved in
remanufacturing can vary depending on the type of reman-
ufactured product and the degree of complexity involved.
However, some key steps in the remanufacturing process
include (Fig. 3) [39-41]:

e Collection and Inspection of Used Products: The first
step in the remanufacturing process is to collect used
products suitable for

e Remanufacturing. This may involve collecting products
from various sources, such as recycling centers or end-
of-life product disposal facilities. Once the products are
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collected, they are inspected to determine if they are
suitable for remanufacturing.

e Disassembly of Products: After the products have been
inspected, they are disassembled into their parts. This
may involve using specialized tools and equipment to
carefully remove each part from the product without
damaging it.

e C(Cleansing and Surface Processing of Subparts: Once
the parts have been removed, they are cleaned and pro-
cessed to remove any contaminants or surface damage.
This may involve various cleaning and surface treat-
ment techniques, such as sandblasting, shot peening,
or chemical treatments.

e Inspection and Sorting: After the parts have been
cleaned and processed, they are inspected again to
determine if they are suitable for remanufacturing.
Parts that cannot be remanufactured are sorted and
disposed of properly.

e Component Remanufacture and Replenishment by New
Components: Parts that can be remanufactured are repaired
or remanufactured to like-new condition using specialized
equipment and techniques. In some cases, new components
may replace parts that cannot be remanufactured.

e Product Reassembly: Once all the parts have been
repaired, remanufactured, or replaced, they are reassem-
bled to form a complete product. This may involve using
specialized tools and equipment to ensure all the parts
are properly aligned and fitted.

e Final Testing: The remanufactured product is then sub-
jected to rigorous testing to ensure that it meets or exceeds
the original performance and quality standards. This may
involve various types of testing, such as functional testing,
stress testing, and quality control inspections.

The remanufacturing process is highly technical and
requires specialized equipment, knowledge, and expertise.
However, it can result in high-quality, cost-effective, and
environmentally friendly products when done correctly.
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2.2 Remanufacturing Technologies

The remanufacturing process involves using various tech-
niques such as welding, electroplating, grinding, High-
Velocity Oxygen Fuel (HVOF) thermal spraying, and
cladding to perform repairs. These methods are commonly
utilized to restore damaged parts to their original condition
and ensure the successful remanufacturing of products.

e Welding: Welding is a common method used in indus-
tries that employ large castings or in shipbuilding, espe-
cially when it is challenging to manufacture new parts.
The repair process involves various welding techniques
such as the Friction Stir Welding (FSW) process [42],
Shielded Metal Arc Welding (SMAW) process [43], elec-
tro-spark deposition (ESD) [44], and arc welding process
[45, 46]. These methods are widely used and applied to
repair damaged products effectively.

e Electroplating: Electroplating is the most used technique
for corrosion-resistant structural steel surfaces, machin-
ery, jewellery, and other applications, particularly for the
repair of steam generator tubes [47-49]. It is an efficient
method for increasing the corrosion resistance of surfaces.

¢ Grinding: Grinding has a long history of usage in indus-
tries such as shipbuilding, mold-making, and rail trans-
portation. It is frequently employed to address issues
arising from wear and tear on products like rails and
wheels used in the railroad industry. Grinding is gener-
ally effective in restoring such products’ distorted shape
or rough surface [50-52]. Although it is primarily used
to regulate roughness, grinding also tends to reduce the
size of the products.

e HVOF thermal spraying: HVOF (High-Velocity Oxy-
gen Fuel) thermal spraying is a popular technique used
in remanufacturing processes. It involves spraying a
coating material onto the surface of a worn-out com-
ponent using a high-velocity stream of oxygen and fuel
gas mixture [53]. This creates a very high-temperature
flame that melts the coating material and propels it onto
the component’s surface at high speeds. The result is a
dense, uniform coating that provides excellent resistance
to wear, corrosion, and erosion. HVOF thermal spray-
ing can be used to restore the surface of a wide range of
components, including engine parts, pumps, valves, and
hydraulic cylinders [54, 55].

e Cladding: Industries that manufacture high-value goods,
such as shipbuilding, aerospace, and mold production,
often employ cladding techniques. These processes typi-
cally involve the use of a heat source, such as laser clad-
ding [56-58], E-beam cladding [59], Directed Energy
Deposition (DED) [58], and arc cladding [60]. These
methods are the latest and most extensively researched
processes for repair.
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3 Metal Additive Manufacturing Process Mirror
b TG galvanometers
Metal additive manufacturing, also called metal 3D printing, laser
is a burgeoning industry with diverse applications in fields Powder bed
. Recoater -0 lens
such as aerospace, automotive, healthcare, and consumer blade camera
goods. This process involves creating metal components, U
layer by layer, from a digital model utilizing a range of tech- ~ Powder ----y- 72222 .. Powder bed
niques [61-66]. These techniques include powder bed fusion layer
(PBF), directed energy deposition (DED), binder jetting,
material extrusion, cold spray, and sheet lamination. Powder Build plate Powder
Powder Bed Fusion (PBF): PBF is a metal additive dispenser collector
manufacturing process that uses a laser or an electron ' 1 ;

beam to selectively melt and fuse the metal powder, layer
by layer, to form a part [67]. The most common types
of PBF are selective laser melting (SLM) and electron
beam melting (EBM). SLM uses a high-power laser to
selectively melt the metal powder [68], while EBM uses
an electron beam to melt the metal powder, which is per-
formed in a vacuum to prevent oxidation [69]. PBF is
known for its high accuracy, complex geometries, and

Fig.4 Schematic representation of the PBF system and process

ability to produce fully dense parts, making it a popu-
lar choice for aerospace and medical applications [70,
71]. Figure 4 shows a schematic representation of PBF
[72]. The basic information and advantages and disad-

vantages of each process are shown in Table 1.

Table 1 Overview of basic principles, advantages, and disadvantages of common metal AM techniques and their applications

Metal AM technique Basic principles Advantages Disadvantages References
Powder Bed Fusion (PBF) The powder is selectively High resolution and accuracy ~ Expensive equipment [67-72]
melted by laser or electron Good surface finish Limited material selection
beam, layer by layer Ability to produce complex Slow printing speed
geometries High tensile residual stresses
Low porosity Poor surface roughness
Directed Energy Deposition Material is added using a High deposition rates Lower resolution and accuracy [73-76]
(DED) focused energy source, such  Ability to produce large com- compared to PBF
as a laser, to melt the material ~ ponents May require post-processing
as it is deposited High tensile residual stresses
Moderate surface roughness
Moderate porosity
Binder Jetting The powder is selectively Low-cost solution Poor surface finish [77,78]
deposited and held together ~ High printing speed Limited material selection
using a binding agent, layer  Ability to produce large com-  May require post-processing
by layer ponents High porosity
Material Extrusion Material is extruded through a  Relatively inexpensive Limited resolution and accu- [79-81]
nozzle, layer by layer Good for low-volume produc- racy
tion Not suitable for complex
geometries
High porosity
Cold Spray High-velocity solid particles High deposition efficiency Limited material selection [82, 83]
are accelerated and impact Ability to produce dense coat-  Limited ability to produce
a substrate, creating a dense ings with good mechanical complex geometries
coating properties
Good surface roughness
Low tensile residual stresses
Low to moderate porosity
Sheet Lamination Sheets of material are bonded  Low-cost solution Limited resolution and accu- [84-86]

together and then cut to
shape, layer by layer

Wide range of material selec-
tion

racy
May require post-processing
High porosity
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Directed Energy Deposition (DED): DED is a metal addi-
tive manufacturing process that involves depositing metal
powder or wire onto a substrate using a focused energy
source, such as a laser or an electron beam, which melts
the material as it is deposited (Fig. 5) [73]. The most
common types of DED are laser metal deposition (LMD)
and electron beam freeform fabrication (EBF3). LMD
uses a laser to melt metal powder or wire as it is depos-
ited on a substrate [74], while EBF3 uses an electron
beam to melt and fuse metal wire [75]. DED is known
for its ability to repair and modify existing parts, as well
as its ability to produce large parts, making it a popular
choice for aerospace and defense applications [76].
Binder Jetting: Binder jetting is a metal additive manu-
facturing process that involves selectively depositing a
liquid binder onto a bed of metal powder, layer by layer,
to form a part [77]. The part is then sintered in an oven to
fuse the metal particles (Fig. 6). Binder jetting is known
for its fast speed, low cost, and ability to produce large
parts, making it a popular choice for automotive and con-
sumer goods applications [78].

Material Extrusion: Material extrusion additive manufac-
turing of metal, also known as metal MEX, is an addi-
tive manufacturing process that has gained attention for
its simplicity and economic viability. It is similar to the
conventional metal injection molding (MIM) process,
involving feedstock preparation of metal powder and
polymer binders, layer-by-layer additive manufacturing
to create green parts, followed by debinding and sintering
to produce consolidated metallic parts. Metal MEX offers
potential advantages in terms of cost-effectiveness and
ease of use, making it a promising technology for various
applications in metal manufacturing [79, 80]. Overall,
metal MEX is an additive manufacturing process that
simplifies the production of metal parts by utilizing feed-
stock preparation, layer-by-layer printing, debinding, and
sintering, and it holds promise for a wide range of appli-
cations [81]. Figure 7 shows that the metal MEX process
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\direction
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5 Schematic of the printing process of Directed Energy Deposi-
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can be categorized into three different types based on the
feeding system of the printer [79, 81].

Cold Spray: Cold spray metal additive manufactur-
ing, also known as cold spray additive manufacturing
(CSAM), is a solid-state coating deposition technology
recently applied to fabricate individual components and
repair damaged components [82]. Unlike fusion-based
high-temperature additive manufacturing processes,
CSAM retains the original properties of the feedstock,
produces oxide-free deposits, and does not adversely
influence underlying substrate materials during manu-
facture. In CSAM, metal particles are accelerated to
high speeds using a high-pressure gas and deposited
onto a substrate, allowing for the build-up of solid metal
objects. CSAM has gained popularity in the last dec-
ade as a promising solid-state coating technique for the
mass production of high-quality metals, alloys, and metal
matrix composite coatings [83]. The schematic represen-
tation of both high-pressure and low-pressure cold spray
systems is depicted in Fig. 8 [82].

Sheet Lamination: Sheet lamination is a metal addi-
tive manufacturing process that involves bonding metal
sheets together to form a part. The most common type
of sheet lamination is ultrasonic additive manufactur-
ing (UAM), in which ultrasonic vibrations are used
to bond the sheets of metal together (Fig. 9) [84, 85].
Sheet lamination is known for its ability to produce
large parts with low material waste, making it a popular
choice for aerospace and defense applications [86].

Metal additive manufacturing is a game-changing tech-

nology for remanufacturing. With metal additive manufac-
turing, the process of restoring used products to their origi-
nal specifications can be accomplished with unprecedented
speed, efficiency, and precision. By leveraging digital mod-
els, metal additive manufacturing enables the creation of
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Roller ’ Powder bed
4
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z

Build platform

!

Powder supply
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)

Fig. 6 Schematic of the printing process of binder jetting
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complex metal parts with custom geometries that are not
achievable through traditional methods. Moreover, the tech-
nology allows for high-strength materials and production
parts with superior mechanical properties, such as increased
durability and wear resistance [70, 87].

Printing bed Printing bed

3.1 Metal Additive Manufacturing
for Remanufacturing

Metal additive manufacturing is becoming increasingly
popular in the remanufacturing industry, as it offers new
opportunities for extending the life of products and reducing
waste. For example, reverse-engineering and digitally mod-
eling a turbine engine part that is no longer in production can
be produced using metal additive manufacturing. Addition-
ally, metal additive manufacturing can be used to repair and
remanufacture high-value components in industries such as
aerospace and medical implants [70]. Additive manufactur-
ing technology provides several advantages when it comes
to remanufacturing:

e Design flexibility: AM allows for creating complex,
customized designs that are impossible with traditional
manufacturing methods. This means remanufactured
parts can be optimized for specific applications and tai-
lored to fit unique requirements.

e Reduced lead times: AM allows for faster production
times than traditional manufacturing methods, reducing
the time required for remanufacturing and getting parts
back into service more quickly.

e Reduced waste: AM generates less waste than traditional
manufacturing methods involving cutting or machining,
making it a more sustainable option for remanufacturing.

e Improved quality: AM can produce high-quality parts
with precise tolerances and surface finishes that meet
original equipment manufacturer (OEM) standards,
which is important for remanufacturing parts.

e Cost-effectiveness: Although the initial investment in
AM equipment can be high, the cost per part can be
lower than traditional manufacturing methods for small
production runs, making it a cost-effective option for
remanufacturing lower volume or specialized parts.

e In general, metal additive manufacturing is transform-
ing the remanufacturing industry by reducing waste,
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improving efficiency, and creating innovative products
with enhanced performance and durability. However,
the quality and safety of metal AM remanufactured parts
must be evaluated before they can be used [88]. There
are several evaluation technologies used to assess AM
parts, including non-destructive testing, microstructure
analysis, and mechanical testing.

e Non-destructive testing (NDT) methods are used to
detect surface and subsurface defects in AM parts with-
out damaging them. Examples of NDT methods include
ultrasonic testing, X-ray inspection, and eddy current
testing. These methods can detect defects such as cracks,
voids, and porosity, affecting the part’s structural integ-
rity.

e Microstructure analysis involves examining the micro-
scopic structure of the AM part to evaluate its quality.
Techniques such as optical and scanning electron micros-
copy can be used to examine the part’s microstructure
and detect any defects or irregularities.

e Mechanical testing is used to evaluate the mechanical
properties of the AM part, such as strength, toughness,
and fatigue resistance. In addition, testing methods such
as tensile, impact, and fatigue testing can be used to
assess the part’s performance under different conditions.

In addition to these evaluation technologies, some regu-
lations and standards govern the production and evaluation
of AM parts. For example, in the United States, the Fed-
eral Aviation Administration (FAA) and European Avia-
tion Safety Agency (EASA) have issued guidelines for the
certification of AM parts for use in aircraft [89]. These
guidelines include requirements for material properties,
manufacturing processes, and testing and evaluation pro-
cedures. Other regulatory bodies, such as the International
Organization for Standardization (ISO), have also devel-
oped standards for producing and evaluating AM parts.

Overall, additive manufacturing technology is a game-
changer for the remanufacturing industry. It offers a wide
range of advantages, including design flexibility, reduced
lead times, reduced waste, improved quality, and cost-
effectiveness. However, ensuring the quality and safety of
remanufactured parts is crucial. This requires the use of
evaluation technologies, such as non-destructive testing,
microstructure analysis, and mechanical testing, as well
as adherence to regulations and standards governing the
production and evaluation of AM parts. By incorporating
these measures, additive manufacturing can continue revo-
lutionizing the remanufacturing industry and help create
more sustainable and efficient products.
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4 Surface Treatment for Improving
Remanufactured Parts

Remanufacturing using metal additive manufacturing is a
process that can result in surfaces and dimensional quali-
ties that may not be suitable for some intended applica-
tions, requiring additional surface treatment post-process-
ing steps [90]. Surface treatment refers to any process that
modifies the surface of a material, such as metal, plas-
tic, or composite, to improve its performance or alter its
appearance.

4.1 Features of Surface Treatment

Surface treatment can involve a wide range of techniques,
including physical, chemical, or mechanical methods,
and it may be used to enhance the material’s corrosion
resistance, wear resistance, adhesion, or electrical con-
ductivity, among other properties [91]. Some common
surface treatment processes include coating [92, 93],
plating [94, 95], anodizing [96], polishing [97], etching
[98], blasting [99], and ultrasonic nanocrystal surface
modification (UNSM) [100, 101]. Surface treatment is
a crucial step in many industrial applications, such as
aerospace [102], automotive [103], electronics [104], and
medical devices [105-107]. Table 2 presents a detailed
overview of the advantages and disadvantages of the
different metal additive manufacturing techniques dis-
cussed in this study. While these techniques offer unique
benefits and drawbacks, they can be evaluated based on
factors such as resolution and accuracy, surface finish,
material selection, printing speed, ability to produce
complex geometries, cost of equipment, and post-pro-
cessing requirements.

The selection of a surface treatment method depends
on various factors, such as the material’s composition,
the desired properties, and the application requirements.
For example, a coating or plating method may be pre-
ferred if the material needs to be protected from envi-
ronmental damage or if a decorative finish is desired. On
the other hand, mechanical methods such as polishing or
blasting may be preferred if surface roughness or texture
needs to be modified. In high-value remanufacturing,
these technologies are particularly useful for restoring
and enhancing the surface properties of worn or damaged
components, which can extend their useful life.

For instance, surface treatments can add a layer of
material that is more wear-resistant or corrosion-resist-
ant than the original material, resulting in improved
performance and longevity of the component. Moreo-
ver, surface treatments can also customize remanu-
factured components to meet specific performance
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requirements, giving them a competitive advantage over
new components.

Common surface treatment processes in high-value
remanufacturing include electroplating, thermal spray-
ing, and plasma spraying, all of which deposit a layer of
material onto the component’s surface, either through a
chemical reaction or physical deposition. Here are some
advantages and processes of surface treatment technolo-
gies for high-value remanufacturing:

e Improved performance: Surface treatment technolo-
gies can significantly improve the performance of
remanufactured components. By enhancing the sur-
face properties of worn or damaged components, sur-
face treatments can improve their resistance to wear,
corrosion, and hardness. This leads to better perfor-
mance and longer service life, making them a viable
alternative to new components.

e Cost-effectiveness: Remanufacturing components
with surface treatments is often more cost-effective
than manufacturing new components from scratch.
Surface treatments can be applied to worn or damaged
components, which can be restored to their original
condition. This saves time and resources and reduces
the cost of production.

e Sustainability: Remanufacturing with surface treat-
ments is a sustainable approach as it reduces the need
for new raw materials and decreases waste. Instead of
throwing away worn or damaged components, surface
treatments can restore them to their original condi-
tion. This approach helps to reduce the environmental
impact of manufacturing and promotes the circular
economy.

e Improved aesthetics: Surface treatments can be used
to enhance the appearance of remanufactured com-
ponents. For example, electroplating can be used to
add a shiny, reflective surface to a worn metal compo-
nent, improving its appearance and value. This can be
particularly useful for components used in industries
where aesthetics are important, such as the automo-
tive or luxury goods industries.

e Improved functionality: Surface treatments can
be used to add or enhance specific functionality to
remanufactured components. For example, a com-
ponent may be coated with a material that makes it
resistant to extreme temperatures or chemicals, ena-
bling it to perform better in certain applications. This
can help improve the component’s overall efficiency
and suitability for a wider range of applications.

e Reduced friction: Surface treatments such as hard
coatings or diamond-like carbon can be used to reduce
friction in remanufactured components. This improves
their efficiency and reduces wear and tear, extend-

ing their service life. This is particularly useful for
components that experience a lot of friction during
operation, such as engine parts or bearings.

e Improved bonding: Surface treatments such as plasma
spraying or flame spraying can be used to improve the
bonding between two components. This can be espe-
cially useful in remanufacturing applications where
two components need to be joined together. Improving
the bond strength makes the remanufactured compo-
nent less likely to fail during use.

In summary, surface treatment is a crucial aspect of
materials engineering that can significantly improve a mate-
rial’s performance and appearance. Furthermore, it is a ver-
satile process that involves a wide range of techniques and
is essential in various industrial applications.

4.2 Recently Study for Surface Treatment

Recently, a lot of research has been done on surface treat-
ment processes based on heat treatment and UNSM pro-
cesses. Research has been conducted to improve hardness
and wear resistance through heat treatment processes. In
addition, various studies have been conducted, such as stud-
ying crack propagation through localized laser-based heat
treatment. First, the study of surface treatment processes
based on heat treatment processes is as follows.

In their research, Shim et al. [108] explored surface
hardening methods employing high-alloy tool steel pow-
ders, aiming to greatly enhance the performance of dies and
molds regarding wear resistance and toughness. The study
conducted a comparative analysis of the properties of sur-
face hardening using AISI M4, high-alloy tool steel, and
the conventional approach of quenching and tempering heat
treatment.

Furthermore, a wide array of research studies has been
conducted, including hybrid cladding investigations aimed
at enhancing surface strength and improving the inter-
nal mechanical properties using the UNSM (Ultrasonic
Nanocrystalline Surface Modification) process. Initially,
Jo et al. conducted a study on the tilting characteristics of
UNSM horns to regulate hardness through the UNSM pro-
cess [109]. The horn was precisely tilted from 0° to 45°,
and the subsequent analysis focused on assessing the impact
on surface hardness and shape alterations. The proposed
method facilitated the facile fabrication of angular incre-
ments in hardness ranging from 2 to 45% while achieving a
gradual hardness gradient in the tested specimens as shown
Fig. 10.

In another study, Kim et al. examined the metallurgical
and mechanical property changes induced by UNSM treat-
ment in DEDed M4 specimens [110]. The DEDed M4 mate-
rial was observed to transform from austenite to martensite
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after UNSM treatment, leading to grain size reduction and a
remarkable 24.1% improvement in hardness. Moreover, the
wear rate of the DEDed M4 material decreased by 85.7%
compared to heat-treated D2 material. The UNSM treatment
reduced surface roughness by up to 88.3% and the formation
of fine dimples on the DEDed M4 surface(Fig. 11). Addi-
tionally, Kim et al. investigated the effect of UNSM treat-
ment on DEDed AISI 316L [111, 112]. Following UNSM
treatment, waveform and surface roughness decreased by up
to 73.8% and 86.2%, respectively, with further reductions
observed at smaller UNSM spacing. The microstructure
exhibited grain refinement up to a depth of 92.13 mm from
the surface, with significant influence from the treatment
spacing. Hardness exhibited an improvement of up to 71.5%
after UNSM treatment, gradually decreasing from the sur-
face to the interior, with an improvement extending up to a
depth of 400 pm (Fig. 12).

Yu et al. employed AISI-H13, a highly wear-resistant
metal, for repairing gray cast iron, a challenging material
to weld [113]. They applied the UNSM treatment to the
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Fig. 12 Results of EBSD examination of the near-surface microstruc-
tures a before and b after UNSM treatment [112]

embedded region as a post-process to enhance its wear
resistance properties and induce compressive residual
stress. Experimental results revealed a reduction of up to
98.78% in wear rate compared to conventional gray cast
iron after UNSM surface treatment, with the wear rate in
the embedded region approaching 0% (Fig. 13).

Lastly, in a recent study, Jo et al. proposed and investi-
gated a novel hybrid cladding process that combines direct
energy deposition (DED) and ultrasonic nanocrystal sur-
face modification (UNSM) to control the mechanical prop-
erties of the inner metal-clad layer [114]. The relationship
between the direction of laminated beads and the direc-
tion of UNSM treatment was examined, indicating a 13.4%
hardness improvement when both were aligned and a
15.3% improvement when they were perpendicular to each
other. Furthermore, wear resistance tests of the hybrid
cladding process were performed at elevated temperatures
of 200 °C and 400 °C, demonstrating an enhanced wear
resistance of 25.4% and 14.4% for specimens with a per-
pendicular relationship, respectively (Fig. 14). The study
also analyzed the wear resistance characteristics with and
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AM specimen SENI(x40): : AISI-H13

(AISI-HI3 based in FC300)

AM process and SENI(x40): : AISI-H13
UNSNM processed specimen

(AISI-H13 based in FC300)

Fig. 13 The result after the friction wear test using the ball-on-disk
equipment (FC300, AM specimen, AM and UNSM specimen) [113]

without UNSM treatment in the DED process, success-
fully enhancing the internal mechanical properties of the
cladding layer with high controllability and repeatability.

5 Remanufacturing technologies using
the metal additive manufacturing process
and surface treatment

Additive manufacturing has become popular for remanu-
facturing due to its ability to produce customized parts
and complex geometries with less material waste than tra-
ditional methods. However, there are several drawbacks,
as outlined in Table 1, that can impact the overall per-
formance and durability of AM-produced parts. Common
drawbacks include:
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Fig. 14 Analysis of wear characteristics of the interface according to
grain refinement [114]

e Tensile residual stresses: Additive manufacturing pro-
cesses can generate tensile residual stresses on the sur-
face of the manufactured part. These stresses can lead
to premature failure of the part due to fatigue or stress
corrosion cracking [115]. Tensile residual stresses can
also reduce the part’s load-carrying capacity and frac-
ture toughness [116].

e Surface roughness: The surface of additive-manufac-
tured parts can be rough due to the layer-by-layer depo-
sition process [117]. This roughness can increase fric-
tion, wear, and stress concentration points, negatively
impacting the part’s performance and durability [118].

e Porosity: Additive manufacturing can produce parts
with high porosity, which can decrease their mechani-
cal strength and durability. Porosity can also affect the
part’s ability to hold a vacuum or maintain a seal [119].

The existence of these defects, such as porosity and
inhomogeneity, in the microstructure could also impact the
component’s functionality [90, 120]. Poor surface quality
and topography, which can lead to functional issues like
crack initiation and corrosion, are among the key concerns
[121, 122].
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To overcome the challenges associated with poor sur-
face quality, various surface modification methods have
been developed and employed in metal AM [123-125].
These methods can be broadly categorized into mechani-
cal, chemical, thermal, and coating methods. Each cat-
egory has advantages and disadvantages, and the choice of
method depends on the specific application requirements.
Table 2 summarizes various surface modification methods
for metal AM, including examples of their advantages and
disadvantages.

Mechanical surface modification methods include a
variety of techniques, such as blasting, grinding, polish-
ing, machining, shot peening, tumbling, and vibratory
finishing. These methods aim to improve surface rough-
ness, remove impurities, and achieve precise surface fea-
tures and tolerances. For instance, sandblasting effectively
removes impurities from the surface, while shot peening
can enhance the material’s fatigue life by introducing com-
pressive residual stresses. However, these methods can
also alter part dimensions and introduce new defects or
residual stresses, and some may not be effective for certain
surface defects.

Chemical surface modification methods are another
class of techniques, including electropolishing, anodizing,
etching, passivation, electrochemical polishing, pickling,
and chemical vapor deposition. These methods selectively
modify surface properties, improve corrosion resistance,
and achieve precise surface features. For instance, anodiz-
ing creates a hard, wear-resistant oxide layer on the surface,
while electropolishing can produce a smooth and shiny sur-
face finish. However, these methods may require toxic or
hazardous chemicals, specialized equipment, or controlled
environments, resulting in uneven or inconsistent surface
modification.

Thermal surface modification methods include heat treat-
ment, laser surface modification, plasma treatment, sintering,
and annealing. These methods improve surface hardness and
mechanical properties, remove surface defects, and improve
adhesion. Heat treatment is commonly used to enhance the
material’s mechanical properties, while laser surface modi-
fication can selectively change the surface properties. How-
ever, these methods can introduce residual stresses, alter part
dimensions, change material properties, and require special-
ized equipment or controlled environments.

Coating surface modification methods include physical
vapor deposition, chemical vapor deposition, electroplat-
ing, and spray coating. These methods deposit a uniform
and high-quality coating on complex geometries, provide
wear resistance and corrosion protection, and deposit vari-
ous materials and coatings. Physical vapor deposition is a
popular technique for coating metals, while chemical vapor
deposition is used for depositing ceramics and diamond-like
coatings. However, these methods can be expensive, require
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specialized equipment or controlled environments, alter part
dimensions, or introduce new defects.

Finally, hybrid methods combine different surface modi-
fication techniques, such as sandblasting, abrasive polish-
ing, and electropolishing. Other examples of hybrid methods
include grinding with drag-finished, blasting and electropol-
ishing, and chemical-abrasive flow polishing. These methods
aim to combine the advantages of different techniques while
minimizing their disadvantages, but they can also be com-
plex and require specialized equipment.

In conclusion, post-processing methods are essential in
metal additive manufacturing to achieve the desired surface
properties, features, and tolerances. Mechanical, chemical,
thermal, and coating surface modification techniques pro-
vide a range of options for surface treatment. However, each
method has advantages and disadvantages, and the selec-
tion depends on the specific requirements and constraints of
the application. Furthermore, hybrid approaches combining
two or more surface modification methods can provide bet-
ter results than a single method. Therefore, it is important
to choose the appropriate method carefully and to control
the process parameters to avoid introducing new defects or
residual stresses and to ensure consistent and reliable surface
modification.

6 Recent Progress in Remanufacturing
Technologies Using Metal Additive
Manufacturing Processes and Surface
Treatment

Remanufacturing processes are expanding in various indus-
tries, including aerospace, shipbuilding, mold, and automo-
tive. Recently, they have been applied to repair damage to
various parts, such as high-temperature blades and impel-
lers. In this case, AM-based repair processes are applied
to restore damaged parts and remanufacture products with
improved mechanical properties, and surface treatment pro-
cesses can be utilized to secure and maximize mechanical
properties. In particular, with the recent development of AM
process technology, technical research on remanufacturing
technology and surface treatment process using AM process
is expanding.

While surface modification methods applicable to addi-
tively manufactured metal components can also be used
for remanufactured components, their usage has yet to
be widespread and requires further development. In their
study, Zhang et al. developed a hybrid process incorporat-
ing reverse engineering, pretreatment, additive manufactur-
ing, and material testing to remanufacture parts made of
a cobalt—nickel alloy called Wallex 40 [126]. The process
began with 3D scanning of the part to be remanufactured to
determine the additive manufacturing process required. The
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part was then pretreated to address defects such as surface
impact damage, surface damage, and cracks. Subsequently,
additive manufacturing process-based remanufacturing was
carried out, and the mechanical properties of the remanufac-
tured parts were analyzed. Specifically, the tensile properties
of the Wallex 40+ H13 tool steel samples were compared,
with a UTS of 943.5 MPa for Wallex 40 samples and 908
MPa for samples that fractured in the H13 tool steel region.
The microstructural analysis and tensile testing demon-
strated a strong bonding along the interface between the
remanufactured part and the H13 tool steel (Fig. 15) [301].

Lu et al. proposed a hybrid process that integrates the
laser-based DED process with the Laser Shock Peening
(LSP) process, which was applied in layers [302]. Tensile
tests were conducted to assess the effectiveness of this pro-
cess (Fig. 16). The results indicated that the LDED-LSPed
specimen exhibited superior strength and ductility compared
to the LDED specimen, under the same conditions as the
as-built state. The UTS, YS, and uniform EI of the LDED-
LSPed specimens reached 1300 MPa, 1178 MPa, and 9.03%,

Fig. 15 Hybrid Process a Dam- h 1
aged blade; b 3D model of the
blade; ¢ point cloud in damaged
area; d convex hull of the point
cloud; e optimized contour

for machining; f blade after
machining [126]

Cracking

Fig. 16 The schematic dia-
gram of laser processing and
tensile specimen preparation.

a Detailed dimensions of the
groove, b the groove remanu-
factured by laser hybrid additive
manufacturing, and c the prepa-
ration and dimensions of tensile
specimen (unit: mm) [302]

2nd deposited layér

respectively, which were approximately 20.8%, 19.6%, and
67.2% higher than those of the LDED specimens (UTS-1076
MPa, YS-985 MPa, and uniform EI-5.4%). These findings
suggest that interlaminar LSP can effectively address the
drawbacks of LDED.

Zhu et al. investigated the remanufacturing of a broken 45
steel gear using H13 steel powder and laser cladding tech-
nology [303]. To ensure optimal parameters for the gear’s
unique geometry, various parameter-based studies were
conducted, such as the bead overlap rate, scanning strategy,
and Z-axis increment. Post-processing involved machining
to achieve a smooth surface finish for the remanufactured
parts. The remanufactured area exhibited a hardness of
570 Hv, while the HAZ part showed a hardness of 195 Hv.
Moreover, a wear test demonstrated an approximately 12.4%
improvement in wear resistance. Thus, it can be concluded
that the remanufacturing process resulted in improved wear
resistance over the original material. Figure 17 shows the
broken gear tooth repairing process.

Damaged area Cracking selection

Convex hull ?

Optimized contour
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Laser hybrid
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L

Fig. 17 Broken gear tooth repairing process: a slices of the broken
tooth model, b the shape of the first layer of the broken tooth model
slices, ¢ remanufactured tooth using laser cladding, d remanufactured
tooth after post-processing [303]

Barragan De Los Rios et al. proposed a hybrid manu-
facturing (HM) process that integrates DED and machin-
ing processes for remanufacturing purposes [118].
Injection molded parts made of AISI 1045 were remanu-
factured into AISI 316L stainless steel using laser-based
DED and high-speed machining (HSM) to enhance the
surface finish and dimensional accuracy. Surface rough-
ness analysis using Sa demonstrated that when manufac-
tured solely using the DED process, the roughness values
of the side and top regions were heavily influenced by
trajectory and semi-molten particles. However, the HSM
process was able to reduce the Sa value by approximately
90% in a relatively short amount of time compared to

Fig. 18 Workpiece after

a) final geometry not reached and high roughness values

other surface finishing techniques. Figure 18 shows the
workpiece after the remanufacturing process.

Shim et al. [303] studied repairing damaged SUS 630
parts using directed energy deposition (DED) and analyz-
ing variations in mechanical properties caused by post-
repair heat treatment. Substrates were first subjected to
different treatments before being repaired with SUS 630
powder. The repaired region had lower hardness than
the substrate, but post-repair heat treatment increased
it. However, cracks at the interface caused a decrease
in tensile strength and elongation. The study found that
post-repair heat treatment improved tensile characteris-
tics similar to the initial treatment. Figure 19 shows the
fractured specimens after the tensile test with different
treatments.

To further promote remanufacturing processes, contin-
ued research and development are needed to fully under-
stand and optimize the potential of metal AM and surface
treatment methods in improving the quality and reliability
of remanufactured parts. In addition, cost-effective and
scalable processing methods need to be developed, and
new materials need to be explored to increase the range
of applications of remanufacturing processes.

Another important aspect to consider is optimizing
process parameters for specific applications. This requires
a deep understanding of the relationships between mate-
rial properties, processing parameters, and the resulting
properties of the remanufactured parts. Developing reli-
able and repeatable surface modification processes that
produce consistent results is also essential for achieving
high-quality remanufactured parts.

Moreover, the potential of hybrid methods combin-
ing metal AM with surface treatment techniques must
be explored further, as they can offer even better results

on the same machine and

remanufacturing process. a
Visual and quantitative analysis
of roughness for the top and
side regions. b Results obtained
from roughness after milling
and final surface quality [118]

Remanufactured part

Side view

with % Sa reduction

DED Milling

Sa (pm)
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Fig. 19 a Fractured specimens after tensile test and (b) engineering
stress—strain curve of solution annealing (SA-wrought), SA-repaired,
SA-repaired-SA, and SA-repaired- treatment followed by precipita-
tion hardening (SA +PH) [303]

for remanufactured parts. However, these hybrid methods
may require specialized equipment and be complex, limit-
ing their widespread adoption.

When employing AM as the sole method for remanu-
facturing, certain limitations in part quality may arise
due to uneven finishes, increased porosity, compro-
mised dimensional accuracy, and inherent defects from

layering. However, incorporating surface treatment with
AM significantly enhances part quality. Surface treat-
ments like machining, polishing, or chemical treatments
improve surface finish by reducing roughness and poros-
ity. Post-processing methods can remove residual stress
and improve mechanical properties, resulting in higher-
quality remanufactured parts.

In terms of cost implications, using AM alone in
remanufacturing may be costly, especially for large-
scale production, considering support structures, post-
processing, and quality control measures. Conversely,
remanufacturing methods that combine AM with surface
treatment may initially incur some additional costs, but
they prove more cost-effective in the long run. Surface
treatments reduce the need for extensive post-processing,
decrease material waste, improve part reusability, and
lead to extended part lifespans, resulting in cost savings.

The ongoing expansion of remanufacturing processes,
particularly in aerospace, shipbuilding, mold, and auto-
motive industries, presents significant opportunities
to advance sustainability, reduce waste, and enhance
resource efficiency. However, fully unlocking this poten-
tial requires continuous research and development efforts
to enhance the quality and reliability of remanufactured
parts and broaden the scope of materials and applications
used in remanufacturing processes.

In summary, remanufacturing methods combining AM
with surface treatment offer notable benefits in terms of
improved part quality and cost-effectiveness, making
them a practical choice for sustainable manufacturing
practices. The selection of the most suitable approach
for each remanufacturing project hinges on a thorough
evaluation of project requirements and economic factors.
By leveraging these technologies effectively, industries
can make strides towards a more sustainable and efficient
future.

7 Conclusion

Additive manufacturing (AM) is increasingly used for
remanufacturing due to its ability to create custom parts
with complex geometries while minimizing material
waste compared to traditional methods. However, AM-
produced parts may have limitations affecting their
performance and durability. Surface modification tech-
niques, including mechanical, chemical, thermal, and
coating methods, have been developed to overcome these
challenges in metal AM. Hybrid approaches combining
different surface modification techniques can yield better
results, but they may require specialized equipment and
be complex.
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Selecting the appropriate surface modification method
and controlling process parameters are essential for
achieving consistent and reliable surface modification. In
addition, the ongoing advancements in AM process tech-
nology are expanding the field of remanufacturing tech-
nology and surface treatment processes using AM, which
promises a bright future for research and development.

The paper highlights the potential of metal AM and
surface treatment methods in improving the quality and
reliability of remanufactured parts. However, there are
still challenges to overcome, including the need for cost-
effective and scalable processing methods, the develop-
ment of new materials, and the optimization of process
parameters for specific applications. Therefore, contin-
ued research and development in this field are essential
to exploit the potential of remanufacturing technologies
fully.

Furthermore, remanufacturing technologies using
metal additive manufacturing processes and surface
treatment can promote sustainability, minimize waste,
and enhance resource efficiency in modern manufactur-
ing processes. Thus, the adoption of these technologies
can have a significant impact on the environment and the
economy. In conclusion, the future prospects of remanu-
facturing technologies using metal additive manufactur-
ing processes and surface treatment are promising, with
ample opportunities for research and development to
advance this field and address its challenges.
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