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Abstract
Remanufacturing has emerged as an effective strategy to promote sustainability, reduce waste, and enhance resource effi-
ciency in modern manufacturing processes. However, traditional remanufacturing methods have limitations in producing 
complex geometries and restoring parts to their original condition, leading to reduced performance and durability. Metal 
additive manufacturing (AM) methods have shown significant potential in overcoming these limitations and enhancing the 
quality and reliability of remanufactured parts. Metal AM enables the production of replacement parts with high geometrical 
complexity and tight tolerances. On the other hand, surface treatment techniques, such as polishing and coating, can improve 
the surface properties of additively manufactured parts. Recent advancements in metal AM have led to significant progress 
in manufacturing technologies, including the development of hybrid methods combining metal AM with a surface treatment 
to achieve superior surface finish and accuracy while reducing production time and cost. Despite progress, challenges such 
as the need for cost-effective and scalable processing methods, the development of new materials, and the optimization of 
process parameters for specific applications still need to be addressed. Moreover, although surface modification techniques 
suitable for metal components fabricated through additive manufacturing can be employed for remanufactured parts, their 
adoption needs to be improved and necessitates additional advancement. This paper provides an overview of recent progress 
in manufacturing and remanufacturing technologies using metal additive manufacturing processes and surface treatments, 
highlighting their potential to significantly improve the quality and reliability of remanufactured parts. The paper concludes 
with a discussion of the future prospects of this field and the need for continued research and development to fully realize 
the potential of remanufacturing technologies.
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1 Introduction

Remanufacturing has become a popular approach to promote 
sustainability, reduce waste, and increase resource efficiency 
in modern manufacturing processes. In addition, by recover-
ing materials and parts from finished products and extending 
their useful life, remanufacturing helps reduce the environ-
mental impact of producing new products.

In recent years, metal additive manufacturing (AM) tech-
niques have shown significant potential in remanufacturing 
due to their ability to produce complex geometries, optimize 
material usage, and enhance mechanical properties. Metal 
AM has enabled the production of replacement parts with 
high geometrical complexity and tight tolerances, allowing 
remanufacturers to restore components that may have been 
discarded. Additionally, surface treatment methods, such as 
polishing and coating, have emerged as effective ways to 
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improve the surface properties of remanufactured parts and 
restore them to their original condition.

Recent advancements in metal AM and surface treatment 
methods have significantly progressed in manufacturing 
technologies. Researchers have developed hybrid methods 
combining metal AM with a surface treatment to achieve 
superior surface finish and accuracy while reducing produc-
tion time and cost. Metal AM technologies such as powder 
bed fusion and directed energy deposition have been investi-
gated in remanufacturing various parts, including aerospace 
components and automotive parts. These technologies offer 
significant advantages, such as the ability to produce com-
plex geometries and increase the mechanical properties of 
the reconstructed parts. Surface treatment techniques, such 
as thermal spray coating and electroplating, have also been 
explored in manufacturing.

Overall, metal AM methods and surface treatment meth-
ods have the potential to improve the quality and reliability 
of remanufactured parts significantly. However, there are 
still challenges, such as the need for cost-effective and scal-
able processing methods, the development of new materi-
als, and the optimization of process parameters for specific 
applications.

This paper is divided into several sections to provide an 
overview of recent progress in remanufacturing technologies 
using metal additive manufacturing processes and surface 
treatments. Section 2 introduces the concept of remanufac-
turing, including its steps and technologies. Section 3 delves 
into the metal additive manufacturing process, explaining 
its basic principles and applications, with a specific focus 
on remanufacturing. Section  4 discusses surface treat-
ment techniques, their features, and recent studies, all of 
which are crucial in improving the properties and perfor-
mance of remanufactured parts. Section 5 provides a sum-
mary of surface treatment in metal additive manufacturing, 
addressing the challenges in remanufacturing using this 
process. It explores a range of surface modification meth-
ods, encompassing mechanical, chemical, thermal, and coat-
ing techniques, along with hybrid approaches. Section 6 is 
the paper’s main focus, providing an overview of recent 
advances in remanufacturing technologies using metal addi-
tive manufacturing processes and surface treatment. Finally, 
Sect. 7, the conclusion, summarizes the paper’s key findings 
and offers insights into the future prospects of this field.

2  What is the Remanufacturing Process?

Remanufacturing is repairing, refurbishing, and restoring 
a product to its original operating specifications. This pro-
cess typically involves disassembling a used or worn-out 
product, cleaning and repairing its parts, and then reassem-
bling it to work and new. Remanufacturing aims to extend a 

product’s life, reduce waste, and conserve natural resources 
while providing a cost-effective alternative to purchasing a 
brand-new product [1]. Product reuse is not a new concept 
and has been an increasingly common industrial practice 
since World War II, reflecting its potential to reduce waste 
and promote sustainable production [2–4]. Steinhilper and 
Hudelmaier coined the term “remanufacturing” in 1988 to 
describe an industrial process aimed at restoring used com-
ponents to a state that is “as good as new” [5]. In 2015, the 
Ellen MacArthur Foundation demonstrated that repaired 
parts could sometimes perform superior to newly manufac-
tured ones. They defined “refurbishment” as a process that 
involves repairing or replacing major components to restore 
products to their original condition [6].

Remanufacturing processes can be applied to various 
products, including electronics, automobiles, machinery, 
and many other industrial goods, such as:

• Gas-turbine blades: Gas turbines are used in power gen-
eration, aviation, and other applications where high-power, 
high-efficiency engines are needed. Remanufacturing gas 
turbine blades involves repairing cracks, restoring worn 
surfaces, and applying protective coatings to extend their 
lifespan [7, 8].

• Metal parts: Metal parts, such as engine blocks, crank-
shafts, and transmission cases, can also be remanufac-
tured. In many cases, remanufactured metal parts are just 
as good as new parts but cost less and use fewer resources 
to produce [9, 10].

• Printing equipment: Remanufactured printing equipment, 
such as toner cartridges, drums, and fusers, can be just as 
reliable and

• high-quality as new equipment. Remanufacturing these 
components also reduces waste and saves resources [11, 12].

• Electronic components: Remanufactured electronic com-
ponents, such as circuit boards and power supplies, are 
often used in industrial applications where reliability is 
critical. By remanufacturing these components, com-
panies can save money and reduce their environmental 
impact [13, 14].

• Heavy equipment: Remanufactured heavy equipment, 
such as bulldozers, excavators, and loaders, can be just as 
reliable and effective as new equipment but cost signifi-
cantly less. Remanufactured equipment also uses fewer 
resources to produce, which can help companies reduce 
their carbon footprint [15, 16].

The process often involves strict quality control proce-
dures to ensure the remanufactured product meets or exceeds 
the original specifications and standards. In Fig. 1, the three 
processes of repair, reconditioning, and remanufacturing 
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are presented hierarchically based on the amount of work 
content they typically require, the level of performance that 
should be achieved, and the value of the warranty they gen-
erally offer [17].

The emergence of academic interest in remanufacturing as 
a research topic can be traced back to the late 1970s and early 
1980s when Robert Lund conducted innovative studies of the 
remanufacturing industry [18]. Before Lund’s work, remanu-
facturing had received relatively little attention from academic 
researchers. However, interest in remanufacturing is rapidly 
increasing as its benefits become better understood, and it is 
increasingly recognized as having a potentially important role 
in our changing human life [19]. In the United States, an esti-
mated 70,000 remanufacturing businesses generate approxi-
mately $53 billion in revenue annually [20, 21]. Figure 2 
shows the role of manufacturing in the circular economy [22].

Remanufacturing can offer various benefits to both busi-
nesses and the environment. First, it can be a profitable busi-
ness venture, as material and energy savings can lead to cost 
savings compared to newly manufactured equivalents [23]. 

Furthermore, by extending a product’s lifecycle through 
remanufacturing, companies can create an additional profit 
when the remanufactured product is subsequently sold [24].

Also, Remanufacturing can play a vital role in waste 
reduction and environmental protection by utilizing fewer 
materials and energy than manufacturing new goods and 
by diverting used components from landfills [18, 25, 26]. 
Studies have demonstrated that remanufacturing.

can result in considerable environmental advantages, 
such as decreased greenhouse gas emissions, energy usage, 
and waste production [27, 28]. However, disposing of prod-
ucts after their services have been fulfilled contributes to 
the growing problem of waste in landfills. Waste Electrical 
and Electronic Equipment (WEEE) is a major and challeng-
ing waste stream due to its quantity and toxicity. In Europe 
alone, approximately 7 million tons of WEEE have gener-
ated annually [29], while China generates 1.1 million tons 
per year [30]. The rapid pace of technological innovation 
and shorter usage lifecycles of EEE mean that WEEE is 
growing faster than any other municipal waste stream [31]. 
To address this issue and keep the Earth cleaner, End-of-Life 
(EoL) recovery strategies are critical, and remanufacturing is 
seen as a "hidden green giant" and gaining increasing atten-
tion from researchers and practitioners [32–35].

Moreover, remanufacturing can help businesses meet 
increasingly stringent environmental legislation, particularly 
in Europe, as end-of-life directives such as WEEE (Waste 
electrical and electronic equipment) and ELV (End of Life 
Vehicle) become more widespread [36, 37]. Furthermore, 
remanufacturing can be considered superior to other end-
of-life strategies, such as repair and reconditioning; as a 
result, it is a higher quality product with a longer extended 
life, making it more commercially viable [38]. In addition to 
the benefits mentioned above, remanufacturing can provide 
many economic benefits, such as creating jobs, reducing the 
cost of goods, and boosting local economies.

2.1  Remanufacturing Steps

Remanufacturing is the process of restoring used or end-
of-life products to their original condition, or even better, 
through a series of steps. The specific steps involved in 
remanufacturing can vary depending on the type of reman-
ufactured product and the degree of complexity involved. 
However, some key steps in the remanufacturing process 
include (Fig. 3) [39–41]:

• Collection and Inspection of Used Products: The first 
step in the remanufacturing process is to collect used 
products suitable for

• Remanufacturing. This may involve collecting products 
from various sources, such as recycling centers or end-
of-life product disposal facilities. Once the products are 

Fig. 1  A hierarchy of product recovery processes

Fig. 2  Role of remanufacturing in the circular economy context
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collected, they are inspected to determine if they are 
suitable for remanufacturing.

• Disassembly of Products: After the products have been 
inspected, they are disassembled into their parts. This 
may involve using specialized tools and equipment to 
carefully remove each part from the product without 
damaging it.

• Cleansing and Surface Processing of Subparts: Once 
the parts have been removed, they are cleaned and pro-
cessed to remove any contaminants or surface damage. 
This may involve various cleaning and surface treat-
ment techniques, such as sandblasting, shot peening, 
or chemical treatments.

• Inspection and Sorting: After the parts have been 
cleaned and processed, they are inspected again to 
determine if they are suitable for remanufacturing. 
Parts that cannot be remanufactured are sorted and 
disposed of properly.

• Component Remanufacture and Replenishment by New 
Components: Parts that can be remanufactured are repaired 
or remanufactured to like-new condition using specialized 
equipment and techniques. In some cases, new components 
may replace parts that cannot be remanufactured.

• Product Reassembly: Once all the parts have been 
repaired, remanufactured, or replaced, they are reassem-
bled to form a complete product. This may involve using 
specialized tools and equipment to ensure all the parts 
are properly aligned and fitted.

• Final Testing: The remanufactured product is then sub-
jected to rigorous testing to ensure that it meets or exceeds 
the original performance and quality standards. This may 
involve various types of testing, such as functional testing, 
stress testing, and quality control inspections.

The remanufacturing process is highly technical and 
requires specialized equipment, knowledge, and expertise. 
However, it can result in high-quality, cost-effective, and 
environmentally friendly products when done correctly.

2.2  Remanufacturing Technologies

The remanufacturing process involves using various tech-
niques such as welding, electroplating, grinding, High-
Velocity Oxygen Fuel (HVOF) thermal spraying, and 
cladding to perform repairs. These methods are commonly 
utilized to restore damaged parts to their original condition 
and ensure the successful remanufacturing of products.

• Welding: Welding is a common method used in indus-
tries that employ large castings or in shipbuilding, espe-
cially when it is challenging to manufacture new parts. 
The repair process involves various welding techniques 
such as the Friction Stir Welding (FSW) process [42], 
Shielded Metal Arc Welding (SMAW) process [43], elec-
tro-spark deposition (ESD) [44], and arc welding process 
[45, 46]. These methods are widely used and applied to 
repair damaged products effectively.

• Electroplating: Electroplating is the most used technique 
for corrosion-resistant structural steel surfaces, machin-
ery, jewellery, and other applications, particularly for the 
repair of steam generator tubes [47–49]. It is an efficient 
method for increasing the corrosion resistance of surfaces.

• Grinding: Grinding has a long history of usage in indus-
tries such as shipbuilding, mold-making, and rail trans-
portation. It is frequently employed to address issues 
arising from wear and tear on products like rails and 
wheels used in the railroad industry. Grinding is gener-
ally effective in restoring such products’ distorted shape 
or rough surface [50–52]. Although it is primarily used 
to regulate roughness, grinding also tends to reduce the 
size of the products.

• HVOF thermal spraying: HVOF (High-Velocity Oxy-
gen Fuel) thermal spraying is a popular technique used 
in remanufacturing processes. It involves spraying a 
coating material onto the surface of a worn-out com-
ponent using a high-velocity stream of oxygen and fuel 
gas mixture [53]. This creates a very high-temperature 
flame that melts the coating material and propels it onto 
the component’s surface at high speeds. The result is a 
dense, uniform coating that provides excellent resistance 
to wear, corrosion, and erosion. HVOF thermal spray-
ing can be used to restore the surface of a wide range of 
components, including engine parts, pumps, valves, and 
hydraulic cylinders [54, 55].

• Cladding: Industries that manufacture high-value goods, 
such as shipbuilding, aerospace, and mold production, 
often employ cladding techniques. These processes typi-
cally involve the use of a heat source, such as laser clad-
ding [56–58], E-beam cladding [59], Directed Energy 
Deposition (DED) [58], and arc cladding [60]. These 
methods are the latest and most extensively researched 
processes for repair.

Fig. 3  Key steps of remanufacturing in a whole process
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3  Metal Additive Manufacturing Process

Metal additive manufacturing, also called metal 3D printing, 
is a burgeoning industry with diverse applications in fields 
such as aerospace, automotive, healthcare, and consumer 
goods. This process involves creating metal components, 
layer by layer, from a digital model utilizing a range of tech-
niques [61–66]. These techniques include powder bed fusion 
(PBF), directed energy deposition (DED), binder jetting, 
material extrusion, cold spray, and sheet lamination.

• Powder Bed Fusion (PBF): PBF is a metal additive 
manufacturing process that uses a laser or an electron 
beam to selectively melt and fuse the metal powder, layer 
by layer, to form a part [67]. The most common types 
of PBF are selective laser melting (SLM) and electron 
beam melting (EBM). SLM uses a high-power laser to 
selectively melt the metal powder [68], while EBM uses 
an electron beam to melt the metal powder, which is per-
formed in a vacuum to prevent oxidation [69]. PBF is 
known for its high accuracy, complex geometries, and 

ability to produce fully dense parts, making it a popu-
lar choice for aerospace and medical applications [70, 
71]. Figure 4 shows a schematic representation of PBF 
[72]. The basic information and advantages and disad-
vantages of each process are shown in Table 1.

Fig. 4  Schematic representation of the PBF system and process

Table 1  Overview of basic principles, advantages, and disadvantages of common metal AM techniques and their applications

Metal AM technique Basic principles Advantages Disadvantages References

Powder Bed Fusion (PBF) The powder is selectively 
melted by laser or electron 
beam, layer by layer

High resolution and accuracy
Good surface finish
Ability to produce complex 

geometries
Low porosity

Expensive equipment
Limited material selection
Slow printing speed
High tensile residual stresses
Poor surface roughness

[67–72]

Directed Energy Deposition 
(DED)

Material is added using a 
focused energy source, such 
as a laser, to melt the material 
as it is deposited

High deposition rates
Ability to produce large com-

ponents

Lower resolution and accuracy 
compared to PBF

May require post-processing
High tensile residual stresses
Moderate surface roughness
Moderate porosity

[73–76]

Binder Jetting The powder is selectively 
deposited and held together 
using a binding agent, layer 
by layer

Low-cost solution
High printing speed
Ability to produce large com-

ponents

Poor surface finish
Limited material selection
May require post-processing
High porosity

[77, 78]

Material Extrusion Material is extruded through a 
nozzle, layer by layer

Relatively inexpensive
Good for low-volume produc-

tion

Limited resolution and accu-
racy

Not suitable for complex 
geometries

High porosity

[79–81]

Cold Spray High-velocity solid particles 
are accelerated and impact 
a substrate, creating a dense 
coating

High deposition efficiency
Ability to produce dense coat-

ings with good mechanical 
properties

Good surface roughness
Low tensile residual stresses
Low to moderate porosity

Limited material selection
Limited ability to produce 

complex geometries

[82, 83]

Sheet Lamination Sheets of material are bonded 
together and then cut to 
shape, layer by layer

Low-cost solution
Wide range of material selec-

tion

Limited resolution and accu-
racy

May require post-processing
High porosity

[84–86]
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• Directed Energy Deposition (DED): DED is a metal addi-
tive manufacturing process that involves depositing metal 
powder or wire onto a substrate using a focused energy 
source, such as a laser or an electron beam, which melts 
the material as it is deposited (Fig. 5) [73]. The most 
common types of DED are laser metal deposition (LMD) 
and electron beam freeform fabrication (EBF3). LMD 
uses a laser to melt metal powder or wire as it is depos-
ited on a substrate [74], while EBF3 uses an electron 
beam to melt and fuse metal wire [75]. DED is known 
for its ability to repair and modify existing parts, as well 
as its ability to produce large parts, making it a popular 
choice for aerospace and defense applications [76].

• Binder Jetting: Binder jetting is a metal additive manu-
facturing process that involves selectively depositing a 
liquid binder onto a bed of metal powder, layer by layer, 
to form a part [77]. The part is then sintered in an oven to 
fuse the metal particles (Fig. 6). Binder jetting is known 
for its fast speed, low cost, and ability to produce large 
parts, making it a popular choice for automotive and con-
sumer goods applications [78].

• Material Extrusion: Material extrusion additive manufac-
turing of metal, also known as metal MEX, is an addi-
tive manufacturing process that has gained attention for 
its simplicity and economic viability. It is similar to the 
conventional metal injection molding (MIM) process, 
involving feedstock preparation of metal powder and 
polymer binders, layer-by-layer additive manufacturing 
to create green parts, followed by debinding and sintering 
to produce consolidated metallic parts. Metal MEX offers 
potential advantages in terms of cost-effectiveness and 
ease of use, making it a promising technology for various 
applications in metal manufacturing [79, 80]. Overall, 
metal MEX is an additive manufacturing process that 
simplifies the production of metal parts by utilizing feed-
stock preparation, layer-by-layer printing, debinding, and 
sintering, and it holds promise for a wide range of appli-
cations [81]. Figure 7 shows that the metal MEX process 

can be categorized into three different types based on the 
feeding system of the printer [79, 81].

• Cold Spray: Cold spray metal additive manufactur-
ing, also known as cold spray additive manufacturing 
(CSAM), is a solid-state coating deposition technology 
recently applied to fabricate individual components and 
repair damaged components [82]. Unlike fusion-based 
high-temperature additive manufacturing processes, 
CSAM retains the original properties of the feedstock, 
produces oxide-free deposits, and does not adversely 
influence underlying substrate materials during manu-
facture. In CSAM, metal particles are accelerated to 
high speeds using a high-pressure gas and deposited 
onto a substrate, allowing for the build-up of solid metal 
objects. CSAM has gained popularity in the last dec-
ade as a promising solid-state coating technique for the 
mass production of high-quality metals, alloys, and metal 
matrix composite coatings [83]. The schematic represen-
tation of both high-pressure and low-pressure cold spray 
systems is depicted in Fig. 8 [82].

• Sheet Lamination: Sheet lamination is a metal addi-
tive manufacturing process that involves bonding metal 
sheets together to form a part. The most common type 
of sheet lamination is ultrasonic additive manufactur-
ing (UAM), in which ultrasonic vibrations are used 
to bond the sheets of metal together (Fig. 9) [84, 85]. 
Sheet lamination is known for its ability to produce 
large parts with low material waste, making it a popular 
choice for aerospace and defense applications [86].

Metal additive manufacturing is a game-changing tech-
nology for remanufacturing. With metal additive manufac-
turing, the process of restoring used products to their origi-
nal specifications can be accomplished with unprecedented 
speed, efficiency, and precision. By leveraging digital mod-
els, metal additive manufacturing enables the creation of 

Fig. 5  Schematic of the printing process of Directed Energy Deposi-
tion Fig. 6  Schematic of the printing process of binder jetting
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complex metal parts with custom geometries that are not 
achievable through traditional methods. Moreover, the tech-
nology allows for high-strength materials and production 
parts with superior mechanical properties, such as increased 
durability and wear resistance [70, 87].

3.1  Metal Additive Manufacturing 
for Remanufacturing

Metal additive manufacturing is becoming increasingly 
popular in the remanufacturing industry, as it offers new 
opportunities for extending the life of products and reducing 
waste. For example, reverse-engineering and digitally mod-
eling a turbine engine part that is no longer in production can 
be produced using metal additive manufacturing. Addition-
ally, metal additive manufacturing can be used to repair and 
remanufacture high-value components in industries such as 
aerospace and medical implants [70]. Additive manufactur-
ing technology provides several advantages when it comes 
to remanufacturing:

• Design flexibility: AM allows for creating complex, 
customized designs that are impossible with traditional 
manufacturing methods. This means remanufactured 
parts can be optimized for specific applications and tai-
lored to fit unique requirements.

• Reduced lead times: AM allows for faster production 
times than traditional manufacturing methods, reducing 
the time required for remanufacturing and getting parts 
back into service more quickly.

• Reduced waste: AM generates less waste than traditional 
manufacturing methods involving cutting or machining, 
making it a more sustainable option for remanufacturing.

• Improved quality: AM can produce high-quality parts 
with precise tolerances and surface finishes that meet 
original equipment manufacturer (OEM) standards, 
which is important for remanufacturing parts.

• Cost-effectiveness: Although the initial investment in 
AM equipment can be high, the cost per part can be 
lower than traditional manufacturing methods for small 
production runs, making it a cost-effective option for 
remanufacturing lower volume or specialized parts.

• In general, metal additive manufacturing is transform-
ing the remanufacturing industry by reducing waste, 

Fig. 7  Types of material extru-
sion additive manufacturing 
classified by feeding system: a 
screw-based, b plunger-based, 
and c filament-based types [79]

Fig. 8  Schematic of high-pressure and low-pressure cold spray sys-
tems [82]

Fig. 9  Schematic of the UAM process
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improving efficiency, and creating innovative products 
with enhanced performance and durability. However, 
the quality and safety of metal AM remanufactured parts 
must be evaluated before they can be used [88]. There 
are several evaluation technologies used to assess AM 
parts, including non-destructive testing, microstructure 
analysis, and mechanical testing.

• Non-destructive testing (NDT) methods are used to 
detect surface and subsurface defects in AM parts with-
out damaging them. Examples of NDT methods include 
ultrasonic testing, X-ray inspection, and eddy current 
testing. These methods can detect defects such as cracks, 
voids, and porosity, affecting the part’s structural integ-
rity.

• Microstructure analysis involves examining the micro-
scopic structure of the AM part to evaluate its quality. 
Techniques such as optical and scanning electron micros-
copy can be used to examine the part’s microstructure 
and detect any defects or irregularities.

• Mechanical testing is used to evaluate the mechanical 
properties of the AM part, such as strength, toughness, 
and fatigue resistance. In addition, testing methods such 
as tensile, impact, and fatigue testing can be used to 
assess the part’s performance under different conditions.

In addition to these evaluation technologies, some regu-
lations and standards govern the production and evaluation 
of AM parts. For example, in the United States, the Fed-
eral Aviation Administration (FAA) and European Avia-
tion Safety Agency (EASA) have issued guidelines for the 
certification of AM parts for use in aircraft [89]. These 
guidelines include requirements for material properties, 
manufacturing processes, and testing and evaluation pro-
cedures. Other regulatory bodies, such as the International 
Organization for Standardization (ISO), have also devel-
oped standards for producing and evaluating AM parts.

Overall, additive manufacturing technology is a game-
changer for the remanufacturing industry. It offers a wide 
range of advantages, including design flexibility, reduced 
lead times, reduced waste, improved quality, and cost-
effectiveness. However, ensuring the quality and safety of 
remanufactured parts is crucial. This requires the use of 
evaluation technologies, such as non-destructive testing, 
microstructure analysis, and mechanical testing, as well 
as adherence to regulations and standards governing the 
production and evaluation of AM parts. By incorporating 
these measures, additive manufacturing can continue revo-
lutionizing the remanufacturing industry and help create 
more sustainable and efficient products.

4  Surface Treatment for Improving 
Remanufactured Parts

Remanufacturing using metal additive manufacturing is a 
process that can result in surfaces and dimensional quali-
ties that may not be suitable for some intended applica-
tions, requiring additional surface treatment post-process-
ing steps [90]. Surface treatment refers to any process that 
modifies the surface of a material, such as metal, plas-
tic, or composite, to improve its performance or alter its 
appearance.

4.1  Features of Surface Treatment

Surface treatment can involve a wide range of techniques, 
including physical, chemical, or mechanical methods, 
and it may be used to enhance the material’s corrosion 
resistance, wear resistance, adhesion, or electrical con-
ductivity, among other properties [91]. Some common 
surface treatment processes include coating [92, 93], 
plating [94, 95], anodizing [96], polishing [97], etching 
[98], blasting [99], and ultrasonic nanocrystal surface 
modification (UNSM) [100, 101]. Surface treatment is 
a crucial step in many industrial applications, such as 
aerospace [102], automotive [103], electronics [104], and 
medical devices [105–107]. Table 2 presents a detailed 
overview of the advantages and disadvantages of the 
different metal additive manufacturing techniques dis-
cussed in this study. While these techniques offer unique 
benefits and drawbacks, they can be evaluated based on 
factors such as resolution and accuracy, surface finish, 
material selection, printing speed, ability to produce 
complex geometries, cost of equipment, and post-pro-
cessing requirements.

The selection of a surface treatment method depends 
on various factors, such as the material’s composition, 
the desired properties, and the application requirements. 
For example, a coating or plating method may be pre-
ferred if the material needs to be protected from envi-
ronmental damage or if a decorative finish is desired. On 
the other hand, mechanical methods such as polishing or 
blasting may be preferred if surface roughness or texture 
needs to be modified. In high-value remanufacturing, 
these technologies are particularly useful for restoring 
and enhancing the surface properties of worn or damaged 
components, which can extend their useful life.

For instance, surface treatments can add a layer of 
material that is more wear-resistant or corrosion-resist-
ant than the original material, resulting in improved 
performance and longevity of the component. Moreo-
ver, surface treatments can also customize remanu-
factured components to meet specific performance 
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requirements, giving them a competitive advantage over 
new components.

Common surface treatment processes in high-value 
remanufacturing include electroplating, thermal spray-
ing, and plasma spraying, all of which deposit a layer of 
material onto the component’s surface, either through a 
chemical reaction or physical deposition. Here are some 
advantages and processes of surface treatment technolo-
gies for high-value remanufacturing:

• Improved performance: Surface treatment technolo-
gies can significantly improve the performance of 
remanufactured components. By enhancing the sur-
face properties of worn or damaged components, sur-
face treatments can improve their resistance to wear, 
corrosion, and hardness. This leads to better perfor-
mance and longer service life, making them a viable 
alternative to new components.

• Cost-effectiveness: Remanufacturing components 
with surface treatments is often more cost-effective 
than manufacturing new components from scratch. 
Surface treatments can be applied to worn or damaged 
components, which can be restored to their original 
condition. This saves time and resources and reduces 
the cost of production.

• Sustainability: Remanufacturing with surface treat-
ments is a sustainable approach as it reduces the need 
for new raw materials and decreases waste. Instead of 
throwing away worn or damaged components, surface 
treatments can restore them to their original condi-
tion. This approach helps to reduce the environmental 
impact of manufacturing and promotes the circular 
economy.

• Improved aesthetics: Surface treatments can be used 
to enhance the appearance of remanufactured com-
ponents. For example, electroplating can be used to 
add a shiny, reflective surface to a worn metal compo-
nent, improving its appearance and value. This can be 
particularly useful for components used in industries 
where aesthetics are important, such as the automo-
tive or luxury goods industries.

• Improved functionality: Surface treatments can 
be used to add or enhance specific functionality to 
remanufactured components. For example, a com-
ponent may be coated with a material that makes it 
resistant to extreme temperatures or chemicals, ena-
bling it to perform better in certain applications. This 
can help improve the component’s overall efficiency 
and suitability for a wider range of applications.

• Reduced friction: Surface treatments such as hard 
coatings or diamond-like carbon can be used to reduce 
friction in remanufactured components. This improves 
their efficiency and reduces wear and tear, extend-

ing their service life. This is particularly useful for 
components that experience a lot of friction during 
operation, such as engine parts or bearings.

• Improved bonding: Surface treatments such as plasma 
spraying or flame spraying can be used to improve the 
bonding between two components. This can be espe-
cially useful in remanufacturing applications where 
two components need to be joined together. Improving 
the bond strength makes the remanufactured compo-
nent less likely to fail during use.

In summary, surface treatment is a crucial aspect of 
materials engineering that can significantly improve a mate-
rial’s performance and appearance. Furthermore, it is a ver-
satile process that involves a wide range of techniques and 
is essential in various industrial applications.

4.2  Recently Study for Surface Treatment

Recently, a lot of research has been done on surface treat-
ment processes based on heat treatment and UNSM pro-
cesses. Research has been conducted to improve hardness 
and wear resistance through heat treatment processes. In 
addition, various studies have been conducted, such as stud-
ying crack propagation through localized laser-based heat 
treatment. First, the study of surface treatment processes 
based on heat treatment processes is as follows.

In their research, Shim et  al. [108] explored surface 
hardening methods employing high-alloy tool steel pow-
ders, aiming to greatly enhance the performance of dies and 
molds regarding wear resistance and toughness. The study 
conducted a comparative analysis of the properties of sur-
face hardening using AISI M4, high-alloy tool steel, and 
the conventional approach of quenching and tempering heat 
treatment.

Furthermore, a wide array of research studies has been 
conducted, including hybrid cladding investigations aimed 
at enhancing surface strength and improving the inter-
nal mechanical properties using the UNSM (Ultrasonic 
Nanocrystalline Surface Modification) process. Initially, 
Jo et al. conducted a study on the tilting characteristics of 
UNSM horns to regulate hardness through the UNSM pro-
cess [109]. The horn was precisely tilted from 0° to 45°, 
and the subsequent analysis focused on assessing the impact 
on surface hardness and shape alterations. The proposed 
method facilitated the facile fabrication of angular incre-
ments in hardness ranging from 2 to 45% while achieving a 
gradual hardness gradient in the tested specimens as shown 
Fig. 10. 

In another study, Kim et al. examined the metallurgical 
and mechanical property changes induced by UNSM treat-
ment in DEDed M4 specimens [110]. The DEDed M4 mate-
rial was observed to transform from austenite to martensite 



642 International Journal of Precision Engineering and Manufacturing-Green Technology (2024) 11:625–658

1 3

after UNSM treatment, leading to grain size reduction and a 
remarkable 24.1% improvement in hardness. Moreover, the 
wear rate of the DEDed M4 material decreased by 85.7% 
compared to heat-treated D2 material. The UNSM treatment 
reduced surface roughness by up to 88.3% and the formation 
of fine dimples on the DEDed M4 surface(Fig. 11). Addi-
tionally, Kim et al. investigated the effect of UNSM treat-
ment on DEDed AISI 316L [111, 112]. Following UNSM 
treatment, waveform and surface roughness decreased by up 
to 73.8% and 86.2%, respectively, with further reductions 
observed at smaller UNSM spacing. The microstructure 
exhibited grain refinement up to a depth of 92.13 mm from 
the surface, with significant influence from the treatment 
spacing. Hardness exhibited an improvement of up to 71.5% 
after UNSM treatment, gradually decreasing from the sur-
face to the interior, with an improvement extending up to a 
depth of 400 μm (Fig. 12).

Yu et al. employed AISI-H13, a highly wear-resistant 
metal, for repairing gray cast iron, a challenging material 
to weld [113]. They applied the UNSM treatment to the 

embedded region as a post-process to enhance its wear 
resistance properties and induce compressive residual 
stress. Experimental results revealed a reduction of up to 
98.78% in wear rate compared to conventional gray cast 
iron after UNSM surface treatment, with the wear rate in 
the embedded region approaching 0% (Fig. 13).

Lastly, in a recent study, Jo et al. proposed and investi-
gated a novel hybrid cladding process that combines direct 
energy deposition (DED) and ultrasonic nanocrystal sur-
face modification (UNSM) to control the mechanical prop-
erties of the inner metal-clad layer [114]. The relationship 
between the direction of laminated beads and the direc-
tion of UNSM treatment was examined, indicating a 13.4% 
hardness improvement when both were aligned and a 
15.3% improvement when they were perpendicular to each 
other. Furthermore, wear resistance tests of the hybrid 
cladding process were performed at elevated temperatures 
of 200 °C and 400 °C, demonstrating an enhanced wear 
resistance of 25.4% and 14.4% for specimens with a per-
pendicular relationship, respectively (Fig. 14). The study 
also analyzed the wear resistance characteristics with and 

Fig. 10  Measurement data of hardness distribution: a hardness 
change on a surface by processing angle Φ [109]

Fig. 11  Differences in surface roughness for DEDed M4 samples 
under different UNSM conditions [110]

Fig. 12  Results of EBSD examination of the near-surface microstruc-
tures a before and b after UNSM treatment [112]
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Fig. 13  The result after the friction wear test using the ball-on-disk 
equipment (FC300, AM specimen, AM and UNSM specimen) [113]

• Tensile residual stresses: Additive manufacturing pro-
cesses can generate tensile residual stresses on the sur-
face of the manufactured part. These stresses can lead 
to premature failure of the part due to fatigue or stress 
corrosion cracking [115]. Tensile residual stresses can 
also reduce the part’s load-carrying capacity and frac-
ture toughness [116].

• Surface roughness: The surface of additive-manufac-
tured parts can be rough due to the layer-by-layer depo-
sition process [117]. This roughness can increase fric-
tion, wear, and stress concentration points, negatively 
impacting the part’s performance and durability [118].

• Porosity: Additive manufacturing can produce parts 
with high porosity, which can decrease their mechani-
cal strength and durability. Porosity can also affect the 
part’s ability to hold a vacuum or maintain a seal [119].

The existence of these defects, such as porosity and 
inhomogeneity, in the microstructure could also impact the 
component’s functionality [90, 120]. Poor surface quality 
and topography, which can lead to functional issues like 
crack initiation and corrosion, are among the key concerns 
[121, 122].

without UNSM treatment in the DED process, success-
fully enhancing the internal mechanical properties of the 
cladding layer with high controllability and repeatability.

5  Remanufacturing technologies using 
the metal additive manufacturing process 
and surface treatment

Additive manufacturing has become popular for remanu-
facturing due to its ability to produce customized parts 
and complex geometries with less material waste than tra-
ditional methods. However, there are several drawbacks, 
as outlined in Table 1, that can impact the overall per-
formance and durability of AM-produced parts. Common 
drawbacks include:

Fig. 14  Analysis of wear characteristics of the interface according to 
grain refinement [114]
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To overcome the challenges associated with poor sur-
face quality, various surface modification methods have 
been developed and employed in metal AM [123–125]. 
These methods can be broadly categorized into mechani-
cal, chemical, thermal, and coating methods. Each cat-
egory has advantages and disadvantages, and the choice of 
method depends on the specific application requirements. 
Table 2 summarizes various surface modification methods 
for metal AM, including examples of their advantages and 
disadvantages.

Mechanical surface modification methods include a 
variety of techniques, such as blasting, grinding, polish-
ing, machining, shot peening, tumbling, and vibratory 
finishing. These methods aim to improve surface rough-
ness, remove impurities, and achieve precise surface fea-
tures and tolerances. For instance, sandblasting effectively 
removes impurities from the surface, while shot peening 
can enhance the material’s fatigue life by introducing com-
pressive residual stresses. However, these methods can 
also alter part dimensions and introduce new defects or 
residual stresses, and some may not be effective for certain 
surface defects.

Chemical surface modification methods are another 
class of techniques, including electropolishing, anodizing, 
etching, passivation, electrochemical polishing, pickling, 
and chemical vapor deposition. These methods selectively 
modify surface properties, improve corrosion resistance, 
and achieve precise surface features. For instance, anodiz-
ing creates a hard, wear-resistant oxide layer on the surface, 
while electropolishing can produce a smooth and shiny sur-
face finish. However, these methods may require toxic or 
hazardous chemicals, specialized equipment, or controlled 
environments, resulting in uneven or inconsistent surface 
modification.

Thermal surface modification methods include heat treat-
ment, laser surface modification, plasma treatment, sintering, 
and annealing. These methods improve surface hardness and 
mechanical properties, remove surface defects, and improve 
adhesion. Heat treatment is commonly used to enhance the 
material’s mechanical properties, while laser surface modi-
fication can selectively change the surface properties. How-
ever, these methods can introduce residual stresses, alter part 
dimensions, change material properties, and require special-
ized equipment or controlled environments.

Coating surface modification methods include physical 
vapor deposition, chemical vapor deposition, electroplat-
ing, and spray coating. These methods deposit a uniform 
and high-quality coating on complex geometries, provide 
wear resistance and corrosion protection, and deposit vari-
ous materials and coatings. Physical vapor deposition is a 
popular technique for coating metals, while chemical vapor 
deposition is used for depositing ceramics and diamond-like 
coatings. However, these methods can be expensive, require 

specialized equipment or controlled environments, alter part 
dimensions, or introduce new defects.

Finally, hybrid methods combine different surface modi-
fication techniques, such as sandblasting, abrasive polish-
ing, and electropolishing. Other examples of hybrid methods 
include grinding with drag-finished, blasting and electropol-
ishing, and chemical-abrasive flow polishing. These methods 
aim to combine the advantages of different techniques while 
minimizing their disadvantages, but they can also be com-
plex and require specialized equipment.

In conclusion, post-processing methods are essential in 
metal additive manufacturing to achieve the desired surface 
properties, features, and tolerances. Mechanical, chemical, 
thermal, and coating surface modification techniques pro-
vide a range of options for surface treatment. However, each 
method has advantages and disadvantages, and the selec-
tion depends on the specific requirements and constraints of 
the application. Furthermore, hybrid approaches combining 
two or more surface modification methods can provide bet-
ter results than a single method. Therefore, it is important 
to choose the appropriate method carefully and to control 
the process parameters to avoid introducing new defects or 
residual stresses and to ensure consistent and reliable surface 
modification.

6  Recent Progress in Remanufacturing 
Technologies Using Metal Additive 
Manufacturing Processes and Surface 
Treatment

Remanufacturing processes are expanding in various indus-
tries, including aerospace, shipbuilding, mold, and automo-
tive. Recently, they have been applied to repair damage to 
various parts, such as high-temperature blades and impel-
lers. In this case, AM-based repair processes are applied 
to restore damaged parts and remanufacture products with 
improved mechanical properties, and surface treatment pro-
cesses can be utilized to secure and maximize mechanical 
properties. In particular, with the recent development of AM 
process technology, technical research on remanufacturing 
technology and surface treatment process using AM process 
is expanding.

While surface modification methods applicable to addi-
tively manufactured metal components can also be used 
for remanufactured components, their usage has yet to 
be widespread and requires further development. In their 
study, Zhang et al. developed a hybrid process incorporat-
ing reverse engineering, pretreatment, additive manufactur-
ing, and material testing to remanufacture parts made of 
a cobalt–nickel alloy called Wallex 40 [126]. The process 
began with 3D scanning of the part to be remanufactured to 
determine the additive manufacturing process required. The 
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part was then pretreated to address defects such as surface 
impact damage, surface damage, and cracks. Subsequently, 
additive manufacturing process-based remanufacturing was 
carried out, and the mechanical properties of the remanufac-
tured parts were analyzed. Specifically, the tensile properties 
of the Wallex 40 + H13 tool steel samples were compared, 
with a UTS of 943.5 MPa for Wallex 40 samples and 908 
MPa for samples that fractured in the H13 tool steel region. 
The microstructural analysis and tensile testing demon-
strated a strong bonding along the interface between the 
remanufactured part and the H13 tool steel (Fig. 15) [301].

Lu et al. proposed a hybrid process that integrates the 
laser-based DED process with the Laser Shock Peening 
(LSP) process, which was applied in layers [302]. Tensile 
tests were conducted to assess the effectiveness of this pro-
cess (Fig. 16). The results indicated that the LDED-LSPed 
specimen exhibited superior strength and ductility compared 
to the LDED specimen, under the same conditions as the 
as-built state. The UTS, YS, and uniform EI of the LDED-
LSPed specimens reached 1300 MPa, 1178 MPa, and 9.03%, 

respectively, which were approximately 20.8%, 19.6%, and 
67.2% higher than those of the LDED specimens (UTS-1076 
MPa, YS-985 MPa, and uniform EI-5.4%). These findings 
suggest that interlaminar LSP can effectively address the 
drawbacks of LDED.

Zhu et al. investigated the remanufacturing of a broken 45 
steel gear using H13 steel powder and laser cladding tech-
nology [303]. To ensure optimal parameters for the gear’s 
unique geometry, various parameter-based studies were 
conducted, such as the bead overlap rate, scanning strategy, 
and Z-axis increment. Post-processing involved machining 
to achieve a smooth surface finish for the remanufactured 
parts. The remanufactured area exhibited a hardness of 
570 Hv, while the HAZ part showed a hardness of 195 Hv. 
Moreover, a wear test demonstrated an approximately 12.4% 
improvement in wear resistance. Thus, it can be concluded 
that the remanufacturing process resulted in improved wear 
resistance over the original material. Figure 17 shows the 
broken gear tooth repairing process.

Fig. 15  Hybrid Process a Dam-
aged blade; b 3D model of the 
blade; c point cloud in damaged 
area; d convex hull of the point 
cloud; e optimized contour 
for machining; f blade after 
machining [126]

Fig. 16  The schematic dia-
gram of laser processing and 
tensile specimen preparation. 
a Detailed dimensions of the 
groove, b the groove remanu-
factured by laser hybrid additive 
manufacturing, and c the prepa-
ration and dimensions of tensile 
specimen (unit: mm) [302]
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Barragan De Los Rios et al. proposed a hybrid manu-
facturing (HM) process that integrates DED and machin-
ing processes for remanufacturing purposes [118]. 
Injection molded parts made of AISI 1045 were remanu-
factured into AISI 316L stainless steel using laser-based 
DED and high-speed machining (HSM) to enhance the 
surface finish and dimensional accuracy. Surface rough-
ness analysis using Sa demonstrated that when manufac-
tured solely using the DED process, the roughness values 
of the side and top regions were heavily influenced by 
trajectory and semi-molten particles. However, the HSM 
process was able to reduce the Sa value by approximately 
90% in a relatively short amount of time compared to 

other surface finishing techniques. Figure 18 shows the 
workpiece after the remanufacturing process.

Shim et al. [303] studied repairing damaged SUS 630 
parts using directed energy deposition (DED) and analyz-
ing variations in mechanical properties caused by post-
repair heat treatment. Substrates were first subjected to 
different treatments before being repaired with SUS 630 
powder. The repaired region had lower hardness than 
the substrate, but post-repair heat treatment increased 
it. However, cracks at the interface caused a decrease 
in tensile strength and elongation. The study found that 
post-repair heat treatment improved tensile characteris-
tics similar to the initial treatment. Figure 19 shows the 
fractured specimens after the tensile test with different 
treatments.

To further promote remanufacturing processes, contin-
ued research and development are needed to fully under-
stand and optimize the potential of metal AM and surface 
treatment methods in improving the quality and reliability 
of remanufactured parts. In addition, cost-effective and 
scalable processing methods need to be developed, and 
new materials need to be explored to increase the range 
of applications of remanufacturing processes.

Another important aspect to consider is optimizing 
process parameters for specific applications. This requires 
a deep understanding of the relationships between mate-
rial properties, processing parameters, and the resulting 
properties of the remanufactured parts. Developing reli-
able and repeatable surface modification processes that 
produce consistent results is also essential for achieving 
high-quality remanufactured parts.

Moreover, the potential of hybrid methods combin-
ing metal AM with surface treatment techniques must 
be explored further, as they can offer even better results 

Fig. 18  Workpiece after 
remanufacturing process. a 
Visual and quantitative analysis 
of roughness for the top and 
side regions. b Results obtained 
from roughness after milling 
and final surface quality [118]

Fig. 17  Broken gear tooth repairing process: a slices of the broken 
tooth model, b the shape of the first layer of the broken tooth model 
slices, c remanufactured tooth using laser cladding, d remanufactured 
tooth after post-processing [303]
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for remanufactured parts. However, these hybrid methods 
may require specialized equipment and be complex, limit-
ing their widespread adoption.

When employing AM as the sole method for remanu-
facturing, certain limitations in part quality may arise 
due to uneven finishes, increased porosity, compro-
mised dimensional accuracy, and inherent defects from 

layering. However, incorporating surface treatment with 
AM significantly enhances part quality. Surface treat-
ments like machining, polishing, or chemical treatments 
improve surface finish by reducing roughness and poros-
ity. Post-processing methods can remove residual stress 
and improve mechanical properties, resulting in higher-
quality remanufactured parts.

In terms of cost implications, using AM alone in 
remanufacturing may be costly, especially for large-
scale production, considering support structures, post-
processing, and quality control measures. Conversely, 
remanufacturing methods that combine AM with surface 
treatment may initially incur some additional costs, but 
they prove more cost-effective in the long run. Surface 
treatments reduce the need for extensive post-processing, 
decrease material waste, improve part reusability, and 
lead to extended part lifespans, resulting in cost savings.

The ongoing expansion of remanufacturing processes, 
particularly in aerospace, shipbuilding, mold, and auto-
motive industries, presents significant opportunities 
to advance sustainability, reduce waste, and enhance 
resource efficiency. However, fully unlocking this poten-
tial requires continuous research and development efforts 
to enhance the quality and reliability of remanufactured 
parts and broaden the scope of materials and applications 
used in remanufacturing processes.

In summary, remanufacturing methods combining AM 
with surface treatment offer notable benefits in terms of 
improved part quality and cost-effectiveness, making 
them a practical choice for sustainable manufacturing 
practices. The selection of the most suitable approach 
for each remanufacturing project hinges on a thorough 
evaluation of project requirements and economic factors. 
By leveraging these technologies effectively, industries 
can make strides towards a more sustainable and efficient 
future.

7  Conclusion

Additive manufacturing (AM) is increasingly used for 
remanufacturing due to its ability to create custom parts 
with complex geometries while minimizing material 
waste compared to traditional methods. However, AM-
produced parts may have limitations affecting their 
performance and durability. Surface modification tech-
niques, including mechanical, chemical, thermal, and 
coating methods, have been developed to overcome these 
challenges in metal AM. Hybrid approaches combining 
different surface modification techniques can yield better 
results, but they may require specialized equipment and 
be complex.

Fig. 19  a Fractured specimens after tensile test and (b) engineering 
stress–strain curve of solution annealing (SA-wrought), SA-repaired, 
SA-repaired-SA, and SA-repaired- treatment followed by precipita-
tion hardening (SA + PH) [303]
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Selecting the appropriate surface modification method 
and controlling process parameters are essential for 
achieving consistent and reliable surface modification. In 
addition, the ongoing advancements in AM process tech-
nology are expanding the field of remanufacturing tech-
nology and surface treatment processes using AM, which 
promises a bright future for research and development.

The paper highlights the potential of metal AM and 
surface treatment methods in improving the quality and 
reliability of remanufactured parts. However, there are 
still challenges to overcome, including the need for cost-
effective and scalable processing methods, the develop-
ment of new materials, and the optimization of process 
parameters for specific applications. Therefore, contin-
ued research and development in this field are essential 
to exploit the potential of remanufacturing technologies 
fully.

Furthermore, remanufacturing technologies using 
metal additive manufacturing processes and surface 
treatment can promote sustainability, minimize waste, 
and enhance resource efficiency in modern manufactur-
ing processes. Thus, the adoption of these technologies 
can have a significant impact on the environment and the 
economy. In conclusion, the future prospects of remanu-
facturing technologies using metal additive manufactur-
ing processes and surface treatment are promising, with 
ample opportunities for research and development to 
advance this field and address its challenges.
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