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Abstract
The dwell time algorithm is one of the most important techniques within the deterministic optical surfacing technologies. The 
existing dwell time algorithms are generally based on non-negative least squares (NNLS) without considering the dynamic 
performance constraints of machine tools. This is a circumstance that leads to poor convergence accuracy. In this paper, a 
dwell time algorithm, based on bounded constrained least-squares (BCLS) under dynamic performance constraints of the 
machine tool, has been developed. The upper and lower constraints of the dwell time model could be derived through the 
acceleration and deceleration mechanism of the CNC (Computer Numerical Control) machine tools. A two-metric projec-
tion Newton iteration algorithm was used to solve the large-scale dwell time model, which greatly improved the computa-
tion efficiency. The results of the experiments and simulations showed that the proposed algorithm will give a very high 
convergence accuracy for optical finishing with machine tools with different dynamic performances. When the machine 
acceleration was set to a value as low as 0.1 g, the accuracies of the surface figures PV (Peak-to-Valley) and RMS (Root 
Mean Square) till improved by 40.8% and 55.2%, respectively, when using the BCLS algorithm. The influences of different 
dynamic performances of the machine tools on the dwell time solutions have also been investigated, which will provide a 
good guidance in the design of deterministic polishing machine tools.

Keywords Magnetorheological finishing · Deterministic polishing technologies · Dwell time algorithm · Bounded 
constrained total least squares

1 Introduction

With the rapid increase of requirements for the fabrication of 
high-precision optical elements in advanced optical systems, 
several advanced deterministic optical finishing technologies 
have been developed over the past decades (e.g., computer 
controlled optical surface finishing (CCOS) [1], magnetor-
heological finishing (MRF) [2, 3], ion beam figuring (IBF) 
[4, 5], bonnet polishing (BP) [6, 7] and other polishing 
technologies [8–11]). These technologies make use of the 

controllable removal characteristics of polishing tools, to 
accurately control the dwell time distribution and thereby 
ensuring a high convergence accuracy of the full-range band 
surface error of the optics.

In order to obtain nano-level polishing accuracy, machine 
tool designers always try to improve the machine tool accu-
racy of deterministic polishing equipment as high as possi-
ble. However, too high machine tool accuracy will not only 
greatly increase the machine tool cost, but may not be of 
much significance to improve the polishing accuracy. It is 
mainly because, for ultra-precision polishing equipment, 
the polishing accuracy is not directly related to the motion 
accuracy of the machine tool, but the control performance of 
dwell time is the most important factor. Thus, the dwell time 
algorithm is one of the most important techniques in modern 
optical manufacturing technologies [12, 13].

In deterministic optical finishing technologies, the 
amount of material removal can be expressed as discrete 
two-dimensional convolution operations of the dwell time 
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function and the removal function [14]. The dwell time 
algorithm is used to solve the deconvolution process and 
to ensure that the calculated dwell time not only meets the 
performance of machine tools, but also has high surface 
error convergence efficiency. Various dwell time algorithms 
have earlier been proposed, including the Fourier transform 
method [15], the numerical iteration method [16–18], the 
matrix equation method [19, 20], and other algorithms [21, 
22]. The dwell time algorithm being based on the matrix 
equation is the most widely adopted one. It transforms the 
two-dimensional deconvolution model of the dwell time into 
a simple form of a matrix equation, which is more flexible 
than the discrete deconvolution model. In addition, it is not 
limited by the polishing spot shape and polishing path [23].

A variety of matrix equation-based dwell time algorithm 
models have been proposed, to continuously improve the 
comprehensive performances and to promote applications 
of the dwell time algorithm. Carnal et al. firstly established 
a dwell time model based on the matrix equation, which 
utilized a least square QR decomposition (LSQR) method in 
obtaining a theoretical solution [19]. However, the solution 
could not satisfy the non-negative constraints and needed 
further post-processing, which would reduce the conver-
gence efficiency. Lee et al. described a dwell time algorithm 
which was based on Non-Negative Least-Squares (NNLS) 
for the polishing of small-sized axis-symmetrical aspheric 
surfaces. The non-negative constraint conditions of the dwell 
time was then considered to minimize the residual surface 
errors [24]. The non-negative constrained optimization 
algorithm has a remarkably high theoretical convergence 
accuracy of surface errors and is a promising algorithm. 
Meanwhile, the common problems of the matrix equation-
based dwell time algorithm have also been recognized (e.g., 
ill-conditioned characteristics, low computational efficiency 
and low convergence accuracy in engineering, and restric-
tions in the polishing of large-aperture or irregularly shaped 
workpieces).

By focusing on the control of the ill-conditioned matrix 
equation, Wu et al. [23], Deng et al. [25], and Dong et al. 
[26] did independently explore the Tikhonov regulariza-
tion method with the purpose to control the ill-condition of 
the matrix equation. Different damped factor optimization 
methods were then given. Zhou et al. verified that optimal 
removal can be determined at the corner of the curve in the 
figure showing the process times vs. residual figure errors 
(of type RMS) [27], which gives an excellent performance 
in balancing the process time with the residual figure error. 
By focusing on an improved computational efficiency, Li 
et al. proposed an algorithm for the solution of a large scale 
and sparse matrix equation, which was based on the Sub-
sapzilai and Borwein method for processing large aperture 
optical elements [28]. In addition, Dong et al. proposed a 
constrained LSQR method (based on the sparse matrix) to 

largely reduce the memory cost and to improve the compu-
tational efficiency [29]. By focusing on an improved con-
vergence accuracy, Song et al. established a constrained 
non-linear optimization model by treating the limitations of 
the dynamic performances of the machine as constraint con-
ditions [30]. Both the 2-norm of the residual surface error, 
and the dwell time gradient, were then taken into considera-
tion as objective functions. This algorithm has theoretically 
resulted in a much high convergence accuracy and adapt-
ability to machine tools. Nevertheless, the non-linear version 
of the optimization algorithm is far too complex. Not only is 
the dynamic performance of the machine difficult to model, 
but the computational efficiency of the non-linear optimiza-
tion model can also be low (especially for large-aperture 
optical elements).

After more than a decade of development, the matrix 
equation-based dwell time algorithm, with non-negative 
constraints, has been proven to be efficient in reducing ill-
conditioning and to improve the computational efficiency. 
However, the algorithm does not consider the dynamic 
performances of machine tools, and this doesn´t make the 
convergence accuracy large enough. It also limits the uni-
versality. Thus, designers must continue working with the 
improvement of the accuracy of the equipment.

To improve the polishing accuracy of the surface error, 
and the adaptability to any machine tool, a Bounded Con-
strained Least-Square (BCLS)-based dwell time algorithm 
is here being proposed. The dynamic performance con-
straints of machine tools are thereby considered. The upper 
and lower constraints of the dwell time model have then, 
through the acceleration and deceleration mechanisms, been 
derived. Thus, the dwell time solution will automatically sat-
isfy the special requirements by different machine tools. In 
addition, the Tikhonov regularization has also been applied 
to solve the ill-posed problem [31, 32]. Also, the regulari-
zation parameter has, without any prior knowledge, been 
determined by using an adaptive method. The numerically 
calculation method of the BCLS-based dwell time model 
makes use of the sparse characteristics of the removal factor 
matrix. It greatly improves the computational efficiency, as 
well as reduces the storage cost. Simulations and experimen-
tal verifications confirm that the algorithm has an exceed-
ingly high convergence accuracy, to be used for optical fin-
ishing machine tools with different dynamic performances.

2  Dwell Time Model

2.1  BCLS‑Based Dwell Time Algorithm Model

In the process of deterministic polishing for optical ele-
ments, the polishing tool does continuously scan the work-
piece surface along a certain polishing path (e.g., raster, 
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spiral, etc.) [33]. This is demonstrated in Fig. 1). The total 
amount of removed material in any given surface area can be 
obtained as the summary of removed material from polish-
ing at all path points.

The amount of material removed at every control point is 
shown as follows [30]:

where t(xi, yi) denotes the dwell time at the ith path point, 
h(xk, yk) is the desired amount of removed material at the 
kth figure-control point, Nt is the total number of the path 
points, Nh is the total number of the figure-control points, 
and r(xk-xi, yk-yi) is the amount of removed material at the 
kth figure-control point (when the center of the polishing 
tool dwells at the ith path point).

From here on, t(xi, yi), h(xk, yk), and r(xk- ξi, yk-ηi) will be 
denoted as ti, hk, rki, respectively. Moreover, the dwell time 
vector, material removal vector, and removal factor matrix 

(1)h(xk, yk) =

Nt∑
i=1

r
(
xk − xi, yk − yi

)
t
(
xi, yi

)
k = 1, ...,Nh

will be denoted as t, h, and R, respectively. Equation (1) can 
thereby be obtained as [31]:

In Eq. (2),

The desired material removal vector, h0, at the figure-
control points can be obtained through the initial surface 
error of the workpiece. Based on the polishing spot and path, 
the removal factor matrix, R, can also be calculated. Let us 
now assume that h = h0, and that the dwell time function can 
be deduced by solving Eq. (2).

In general, Eq. (2) is an overdetermined equation with no 
exact solution. The dwell time is realized by controlling the 
speed of the movable axis, which is limited by the accelera-
tion of the machine tool. When the calculated dwell time 
does not match the acceleration and speed of the machine 
tool, the convergence accuracy will decrease, or even dete-
riorate. Thus, the dwell time needs to meet the dynamic con-
straint conditions of the machine tool [34].

The existing dwell time algorithms only consider the non-
negative constraints of the dwell time and ignore the upper 
and lower bound constraints of the speed and accelerations 
of the machine tool. To improve the convergence efficiency 
of the dwell time algorithm and resolve the matching prob-
lems between the algorithm and the dynamic performance 
of the machine tool, a BCLS-based dwell time model is here 
proposed:
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Fig. 1  Diagram of polishing path and figure-control point distribu-
tion. a Raster path, and (b) spiral path

Fig. 2  Speed interpolation algorithms at different stages. a Speed 
increase stage, and (b) speed reduction stage
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In Eq. (4), β is the Tikhonov regularization factor, and tl 
and tp are the upper and lower limit constraints of the solu-
tions of the dwell time, t, respectively. These limits are based 
on the dynamic limitations of the machine. Moreover, ‖•‖2 
is the definition of the 2-norm of a vector.

The model described by Eq.  (4) considers the sparse 
characteristics of the removal factor matrix, with the pur-
pose to improve the efficiency of the computations. It also 
introduces a damping factor to reduce ill-conditioning and 
applies bound constraints on the dynamic performance con-
straints of the machine tools. Thus, this model has a much 
high accuracy and accessibility for computational solutions.

2.2  Dynamic Performance Constraints of Machine 
Tools

When the movable axis moves from one point to another 
along the path, it will, at first, be accelerated (or decelerated) 
and then reach a steady speed. Speed interpolation algo-
rithms may be different for different CNC systems. However, 
the speed interpolation process can be simplified to become 
linear for the acceleration stage [35] (as illustrated in Fig. 2).

When the machine tool moves from path point  Pk-1 to  Pk, 
the motion-related velocities and durations can be written:

Here, t1 is the acceleration duration (or deceleration), t2 
is the duration in the constant speed segment, and tk is the 
dwell time. Moreover, vk-1 and vk are the previous and cur-
rent speeds at the path point, Sk is the distance between  Pk-1 
and  Pk,, and a is the acceleration of the machine tool. Let 
us now assume that a =|a|. It then follows that a = a in the 
acceleration stage, and that a = -a in the deceleration stage.

In solving Eq. (5), the result will be given as follows:

Since vk needs to meet the constraint conditions at the 
upper and lower speed limits, it can be written as:

(4)
min

1

2
���� − ��

��22 + 1

2
𝛽‖�‖2

2
(𝛽 > 0)

s.t. �� ≤ � ≤ ��

(5)
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Since the speed at the previous path point is unknown 
prior to the dwell time calculations, Eq.  (7) cannot be 
directly used to obtain the dwell time. At the acceleration 
stage, to ensure that the machine tool will have enough time 
to accelerate, the sufficient condition should be:

In this case, a = a. In solving Eq. (8), the calculated dwell 
time, tk, should meet the following condition:

Assuming that Eq. (9) is valid when vk-1 = vmin, then it will 
also be valid for any vk-1. This gives:

We have thereafter to ensure that the speed, vk,, satisfies 
Eq. (7) even after the acceleration stage. Within this stage, 
if Eq. (7) is valid for vk-1 = vmin, then it should be valid for 
any other value of vk-1. The machine tool should otherwise 
decelerate. Therefore, the sufficient conditions for Eq. (7) 
are as follows:

Here, the constraints of the dwell time, tk, can be simpli-
fied as:

In the deceleration stage, to ensure that the machine 
tool has enough time to decelerate, the sufficient condition 
should be satisfied as follows:

In this case, a = -a. In solving Eq. (13), the calculated 
dwell time, tk, should meet the following condition:

Let us now assume that Eq. (14) is valid when vk-1 = vmin, 
then Eq. (14) will always be valid for any vk-1. This gives:
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It is now important to ensure that the speed, vk. satisfies 
Eq. (7) after deceleration. In the deceleration stage, if Eq. 
(7) is valid when vk-1 = vmax, then Eq. (7) should always be 
valid for any value of vk-1. The machine tool should other-
wise accelerate. Therefore, the sufficient conditions for Eq. 
(7) can be simplified as:

However, it is not known whether the current path points 
are in the acceleration, or deceleration, stage in the process 
of dwell time calculation. To ensure that the dwell time 
meets all necessary requirements, the dwell time constraint 
conditions can be uniformly expressed as:

In Eq. (17), the upper and lower limits of dwell time 
should satisfy the relative relationship as follows:

Eq. (18) can thereafter be simplified to:

Moreover, the characteristic speed can be defined as:

where f is the modulation ratio of the minimum-to-maxi-
mum speed, and vmin = f·vmax. The maximum speed cannot 
be larger than the characteristic speed to ensure the validity 
of the dwell time constraint conditions.

Eq. (17) is thereafter substituted into the dwell time 
model described by Eq.(4), and, thus, a complete dwell time 
mathematical model has been established.

3  Numerical Calculation Method

3.1  Algorithm Implementation

In addition to the proposed dwell time model, a dwell time 
algorithm has also been developed in the present study. A 
sketch over the corresponding flow chart is shown in Fig. 3. 
At first, paths have been planned with discretized control 
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(20)v∗ =
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1 − f 2

points. The coordinates of these path points, and of sur-
face error-control points, have thereafter been determined. 
Secondly, the dwell time optimization model (based on 
BCLS) was established based on the initial surface error 
of the workpiece, the polishing spot, and the dynamic con-
straint performance parameters of the machine tool. Thirdly, 
a BCLS solver was included for the implementation of the 
model, with the presentation of the resulting dwell time dis-
tribution. During the calculation process, the dwell time was 
automatically converted into the speed of the axis in the 
machine. This was made to judge whether the speed meets 
the dynamic performance constraints of the machine tool, or 
not. If this is not the case, the boundary conditions should be 
modified with a following re-calculation of the dwell time. If 
successful, a surface figure prediction should be done with 
a following generation of an NC program for machining.

3.2  BCLS Solver

The model proposed in Eq. (4) involves a least-square opti-
mization problem with bound constraints. To facilitate the 
numerical solving of this model, a general form of the algo-
rithm could be mathematically described as shown below:

where A is an m × n matrix that is equivalent to the removal 
factor matrix, R. Furthermore, x is an n × 1 vector, being 
equivalent to the dwell time vector, t. Finally, b is the m × 1 
vector that is equivalent to the target removal vector, h, at 
the control points.

There are many numerical calculation algorithms by 
which it is possible to solve the algorithm model described 
by Eq. (21). However, most of them cannot meet the 
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Fig. 3  Flow chart of the dwell time algorithm
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large-scale solving requirements of a sparse matrix, and 
therefore leads to a low computation efficiency. In the pre-
ferred algorithm, a mature two-metric projection Newton 
iteration algorithm has been used to guarantee both accuracy 
and efficiency. After that the parameters A, b, xl, xu, β have 
been obtained, a mathematical model for solving the dwell 
time can be established. The flow chart for the numerical 
dwell time calculation algorithm is shown in Fig. 4.

The stability of the solution is strongly correlated with β. 
However, a larger value of β will decrease the convergence 
accuracy of the solution. Hence, to find the optimal β value, 
the method must use the square of the 2-norm of the residual 
surface error, Rt-h0, as an abscissa. In addition, the method 
must also use the square of the 2-norm of the dwell time, t, 
as the ordinate, as well as the Tikhonov regularization, β, as 
a variable. As a result, the β parameter will form a curve, 
which is named the L-curve [36]. The optimal value of β 
can then be chosen from the most pronounced curvature of 
the L-curve.

4  Validation and Discussion

4.1  Experiments

4.1.1  Validation of the BCLS‑Based Algorithm

To validate the reliability of the BCLS-based dwell time 
algorithm, some polishing experiments on a 200 × 200 mm2 
fused silica workpiece have been conducted by using the 
MRF technology. The measured initial surface error of the 

workpiece and the MRF spot (i.e., the removal function) 
are shown in Fig. 5. The initial surface error was 0.452 λ 
(of type PV) (λ is a wavelength unit, being equal to approxi-
mately 0.6328 μm), and 0.0663 λ (of type RMS). The spot 
had a dimension of 13.89 mm in length, and 6.86 mm in 
width. Also, the peak removal rate (PRR) was 6.63 λ/min, 
and the volume removal rate (VRR) was 0.193 mm3/min.

The experiments were carried out on an in house-
developed MRF machine (as shown in Fig. 6). It has two 
combined polishing heads and can finish an aspheric lens 
with an aperture as large as 1.2 m. The maximum allowed 
acceleration of the main movable axis is 0.3 g (≈ 2.94 m/
s2, g is the gravitational acceleration), with a speed range of 
200–4000 mm/min.

The raster line was chosen to be a tool path, and the man-
ufactured control points were evenly separated with 1 mm 
spacing. The horizontal and longitudinal spaces in the raster 
line were of size 1.5 mm and 2.09 mm, respectively. Based 
on Eq. (17), the constraint condition of any dwell point was 
within the following range:

The dwell time calculations were performed by using the 
self-developed MRF software. The theoretically predicted 
values of dwell time distribution and speed distribution are 
shown in Fig. 7. The distribution of the dwell times was 

(22)0.04157s ≤ tk ≤ 0.4222s

Fig. 4  Flow chart showing the numerical dwell time calculation algo-
rithm

Fig. 5  a Initial surface error of the workpiece. b MRF spot

Fig. 6  Self-developed MRF machine
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observed to coincide with the distribution of the initial sur-
face error (with longer dwell times close to the boundaries 
and shorter in the central area). On the contrary, the speed 
distribution was just the opposite with lower speeds closer 
to the boundaries and higher speeds in the center.

By chosing an arbitrary slice in the respective distribu-
tion (in parallell with either the x- or y-axis), the follow-
ing pattern can be observed (see Fig. 8). It can be seen 
that the dwell time distribution is strictly bound by Eq. 

(22) (Fig. 8a), and that the calculated speed is located 
within the range 200–4000 mm/min (see Fig. 8b). The 
result is consistent with the expectation from the dwell 
time algorithm.

MRF polishing experiments, on a workpiece, have also 
been carried out in the present study. The design of these 
experiments was based on the results from the numerical 
calculations of the dwell time, which were, furthermore, 
verified by theoretical simulations. The predicted residual 
surface error is shown in Fig. 9a, with a flat surface error 
of 0.0349 λ (of type PV) and 0.00142 λ (of type RMS). 
The duration of the polishing process was approximately 
32 min. The residual surface error of the experimental 
result is shown in Fig. 9b. The surface figure accuracy 
was improved to 0.099 λ (of type PV) and 0.012 λ (of 
type RMS), with the convergence efficiency remarkably 
increased by a factor of 4.57 and 5.52, respectively. These 
results are indications on the feasibility of the proposed 
dwell time algorithm. However, there still exists a certain 
difference between the predicted residual surface error and 
that of the experiment results. This is mainly due to the 
characterization error and fluctuation of the removal func-
tion in the actual polishing process.

Fig. 7  Results from dwell time and speed distribution calculations. a 
Dwell time distribution, and (b) speed distribution

Fig. 8  Calculated results of the (a) dwell time and (b) speed for an 
arbitrary slice through the x- or y-axis

Fig. 9  Residual surface errors of (a) predicted results (0.034944  λ 
of type PV; 0.00142  λ of type RMS), and (b) experimental results 
(0.099 λ of type PV; 0.01199 λ of type RMS)
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4.1.2  Validation of the Convergence Accuracy 
of the BCLS‑Based Dwell Time Algorithm

In order to verify that the proposed algorithm also has a high 
convergence efficiency for low-precision machine tools, the 
allowed maximum acceleration of the main movable axis 
(i.e., of the MRF machine tool) was set to 0.03 g, which is 
only one-tenth of normal conditions. The other parameters 
remained unchanged. A φ 285 mm fused silica plane was 
selected, with an initial surface figure accuracy of 0.394 λ 
(of type PV) and 0.0922 λ (of type RMS) (as shown in 
Fig. 10).

The raster line was chosen to be a tool path, and the 
manufactured control points were evenly distributed with 
1 mm spacing. The horizontal and longitudinal spaces in 
the raster line were of size 1.5 mm and 2.4975 mm, respec-
tively. After 40.56 min’ polishing, the surface error of the 
workpiece was improved to 0.104 λ (of type PV) and 0.0111 
λ (of type RMS), with the convergence efficiencies remark-
ably increased by a factor of 3.78 and 8.30, respectively (as 
shown in Fig. 11). These experimental results show that 
the algorithm proposed in the present paper also has high 
convergence accuracy for machine tools with extremely low 
dynamic performances.

4.1.3  Repetitive Performance Verification 
of the BCLS‑Based Dwell Time Algorithm.

In addition to the development of a dwell time algorithm, 
the author has also developed an MRF process software. It 
runs on different types of MRF machine tools and can suc-
cessfully process several optics with different aperture and 
shape. The convergence efficiency may, though, be different 
from the experimental ones. This is most probably, due to 
different material characteristics, and initial surface errors 
of workpieces, in practical engineering applications. The 
convergence efficiency of the dwell time algorithm has been 
shown to be between 2.5 and 4.8 (by using RMS), with an 
averaged convergence efficiency of up to 3.3. Therefore, the 
convergence performance of the algorithm has been fully 
verified and has an excellent repeatability.

4.2  Comparison and Discussion

Theoretically, the BCLS-based dwell time algorithm auto-
matically satisfies the speed and acceleration constraints 
without any subsequent post-processing. Thus, it has a 
higher convergence efficiency and there are no special 
requirements for the performance of machine tools. To ver-
ify the convergence accuracy of the BCLS-algorithm, some 
comparable simulations have been conducted in analyzing 
the computational performance of this algorithm, as com-
pared with that of the classical NNLS algorithm. In addition, 
the influence of different acceleration and speed on the con-
vergence accuracy of the surface error was also investigated. 
In these simulations, the initial surface error, polishing spot, 
path parameters, and speed range were all identical to the 
parameters in the experiment we intended to compare with.

4.2.1  Convergence Accuracy of the BCLS‑Based Dwell Time 
Algorithm

To obtain the convergence accuracy of the BCLS-based 
dwell time algorithm, five dwell time calculations, with dif-
ferent machine acceleration limitations, were selected. These 
results were compared with corresponding results obtained 
by using the classical NNLS algorithm. The NNLS algo-
rithm has a post-processing step (i.e., after that the dwell 
time has been calculated) to guarantee that the speed and 
acceleration can meet the machine tool constraints. In the 
simulations, the acceleration of the machine tool was set to 
increase from 0.05 g to 0.8 g (g is acceleration constant of 
gravity—9.8 m/s2). In addition, the speed constraint condi-
tion was set to 0.8 v*, and the Tikhonov regulation factor 
was set to 0. The simulation results, obtained by using dif-
ferent dwell time algorithms, is shown in Table 1.

As can be seen in Table 1, the convergence accuracy 
obtained by using the BCLS dwell time algorithm was found 

Fig. 10  Initial surface error of the workpiece

Fig. 11  Experimental results for the φ285mm workpiece
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to be higher than that of the NNLS algorithm. This is the 
situation for both surface error models. When accelerating 
to a value a ≥ 0.4 g, the surface figure accuracy PV and RMS 
of BCLS-algorithm was found to be 3.60% and 4.71% lower 
than that of the NNLS algorithm, respectively. This indi-
cates that the convergence accuracy obtained by the BCLS 
algorithm is slightly higher than the accuracy obtained by 
the NNLS algorithm.

Figure 12 shows the proportion of the convergence accu-
racy improvement of the BCLS algorithm, in relation to the 
NNLS algorithm, in improving the accuracy of the surface 
error. The smaller the acceleration, the higher the conver-
gence efficiency of the BCLS-algorithm. When a is down to 
0.1 g, the surface accuracies (of types PV and RMS) increase 
by as much as 40.8% and 55.2%, respectively, when using 
the BCLS algorithm, which is not the case with the NNLS 
algorithm. This result demonstrates that the convergence 

accuracy of the BCLS algorithm is apparently better than 
that of the NNLS algorithm, especially when the accelera-
tion is exceptionally low.

The reason that the convergence accuracy of the BCLS-
based algorithm is higher than that of the NNLS-algorithm, 
is that the former algorithm takes into account the influence 
of acceleration and deceleration of the movable axis in cal-
culating the dwell time, while the latter do not. There is just 
a small difference between the dwell time calculated by the 
BCLS-based algorithm and the engineering practice. On the 
contrary, the dwell time calculated by the NNLS-algorithm 
is quite different. The reason is that the dwell time needs 
extra correction in the post-processing to meet the actual 
demand, and this will reduce the convergence accuracy.

4.2.2  Influence of Acceleration on the Convergence 
Accuracy of Surface Error

The acceleration of the machine axis has been set to 
0.8 g, 0.4 g, 0.2 g, 0.1 g, 0.05 g, 0.025 g, and 0.0125 g. 
In addition, the speed has been set to be within the range 
200 ~ 4000 mm/min. The influence of acceleration on the 
total dwell time, the calculated maximum speed, and the 
surface figure accuracy (of types PV and RMS) are shown 
in Fig. 13. As can be seen in Fig. 13a, the lower the accel-
eration, the longer the total dwell time. When the accelera-
tion is larger than 0.1 g (≈ 0.98 m/s2), the total dwell time 
will just slightly change. However, when the acceleration 
is less than 0.1 g, the total dwell time increases sharply 
with a decrease in acceleration. As shown in Fig. 13b, the 
lower the acceleration, the lower the calculated maximum 
speed. Moreover, when the acceleration is larger than 0.2 g 
(≈ 1.96 m/s2), the calculated maximum speed stays at the 
restricted upper speed. Also, when the acceleration is less 
than 1.96 m/s2, the calculated speed depends on the accel-
eration. It is close to the characteristic speed, which is con-
sistent with Eq. (19). This indicates that the convergence 
accuracy of the surface error can only be guaranteed when 
the speed of the axis falls within the restricted range, even 

Table 1  Comparison of simulation results for different dwell time algorithms

Index Main simulation parameters BCLS-based dwell time algorithm Simulation 
results

NNLS-based dwell time algorithm Simu-
lation results

Acceleration (g) Surface error PV (λ) Surface error 
RMS (λ)

Surface error PV (λ) Surface 
error RMS 
(λ)

1 0.05 0.029571 0.003906 0.106895 0.026035
2 0.1 0.026082 0.002746 0.044123 0.006126
3 0.2 0.026051 0.002058 0.039592 0.002596
4 0.4 0.023020 0.002008 0.024158 0.002083
5 0.8 0.022324 0.001980 0.025399 0.002010

Fig. 12  Comparison of dwell time simulations by using BCLS and 
NNLS algorithms. a Surface accuracy; (b) convergence accuracy
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if the acceleration performance is poor. Figure 13c, d dem-
onstrate that the machine axis acceleration has little effect 
on the convergence accuracy of the surface error (of type 
PV and RMS). This indicates that a lower acceleration 
performance can still achieve a high convergence accuracy.

The simulation results showed that the reduction 
in machine tool acceleration has a little effect on the 
machining accuracy but brings a large influence on the 
total polishing time. When the acceleration decreases 
to 0.1 g (which can be easily realized by using ordinary 
CNC machine tools), the polishing machine possesses a 
remarkably high machining accuracy and efficiency. Mean-
while, a too high machine tool accuracy has little effect on 
the machining accuracy and efficiency. On the contrary, 
it would largely increase the cost of the machine tools. 
Therefore, when using the proposed algorithm, a moderate 
machine tool performance will ensure a good machine tool 
convergence accuracy and machining efficiency.

4.2.3  Influence of Machine Axis Speed on the Convergence 
Accuracy of the Surface Error

The machine axis acceleration was set to 0.3 g and, thus, 
the calculated characteristic speed v* was 6675.6 mm/
min. Moreover, the maximum speeds were set to 1.2v*, 
1.0v*, 0.8v*, 0.6v*, 0.4v*, 0.3v*, and 0.2v*. The modula-
tion ratio of maximum to minimum speed was 20.0. The 
influence of the axis speed on the maximum speed, total 
dwell time, and surface figure accuracy (of types PV and 
RMS), are shown in Fig. 14. As can be seen in Fig. 14b, 
the total dwell time increases with a decrease in axis 
speed. When the set speed is not higher than the charac-
teristic speed, the calculated maximum speed is close to 
the characteristic speed (as shown in Fig. 14a). Further-
more, when the set speed is reduced to 0.7v*, the surface 
errors (of types PV and RMS) show minima values, and 
the surface errors would slightly increase if the speed is 
further reduced (which is shown in Fig. 14c, d). While 
the set speed exceeds the characteristic speed, the maxi-
mum speed would not exceed the characteristic speed (see 
Fig. 14a). Also, when the set speed is too small, it would 
result in a deterioration of surface figure accuracy and a 
reduction in machining efficiency.

The results from the speed simulations demonstrate that 
a too high axis speed is meaningless due to the limita-
tion of the characteristic speed. Also, a too low speed will 
result in a longer polishing time and lower convergence 
efficiency. Therefore, the set speed is generally advised to 
be set as 0.6–0.8 times of the characteristic speed, which 
ensures high convergence accuracy and a relatively shorter 
polishing time.

Fig. 13  Influence of the acceleration on the (a) total dwell time, (b) 
calculated maximum speed, (c) surface accuracy (of type PV), and 
(d) surface accuracy (of type RMS)
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5  Conclusions

To improve the convergence accuracy of the surface 
error, a novel BCLS-based dwell time algorithm, under 
dynamic performance constraints of the machine tool, 
has been developed in the present work. Computational 
methods have dealt with the boundary constraints, which 
are all included in the algorithm that handles the numeri-
cal calculations of the dwell time model. The high preci-
sion convergence efficiency of the BCLS-algorithm has 
been validated by using both simulations and experiments. 
Moreover, the influence of different machine tool dynamic 
performances on the dwell time solution has also been 
discussed. The main conclusions are as follows:

(1) The proposed BCLS-algorithm shows remarkably high 
convergence accuracy, in addition to a strong adapt-
ability to machine tools with different dynamic perfor-
mances. Also, the dwell time solution automatically 
satisfies the special requirements of different machine 
tools. For the polishing machine tool with excellent 
machine tool performances, the convergence accuracy 
of the BCLS-algorithm may be slightly higher than that 
of the common dwell time algorithm. However, for pol-
ishing machine tools whose machine performance is 
not excellent enough, the BCLS-algorithm also ensures 
high convergence accuracy.

(2) The machine tool acceleration was shown to have little 
effect on the machining accuracy, but it greatly affects 
the total polishing time. Moderate machine tool accu-
racy will ensure high machine tool convergence accu-
racy and machining efficiency.

(3) When the machine axis speed is too small, it leads to 
a deterioration of the surface figure accuracy and a 
decrease in machining efficiency. The maximum speed 
is generally advised to be set to 0.6–0.8 times of the 
characteristic speed, to ensure a high convergence accu-
racy and a relatively short polishing time.

The research on the dwell time algorithm under 
dynamic performance constraints of machine tool, not 
only ensures the machining accuracy, but also reduces the 
machine tool accuracy and saves resources, which is of 
great significance for the development of green technology 
in the field of ultra-precision machining.
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Fig. 14  Influence of speed on (a) calculated maximum speed, (b) 
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accuracy RMS
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