
Vol.:(0123456789)

International Journal of Precision Engineering and Manufacturing-Green Technology (2020) 7:657–668 
https://doi.org/10.1007/s40684-020-00219-1

1 3

REGULAR PAPER

On the Sensing, Actuating and Energy Harvesting Properties 
of a Composite Plate with Piezoelectric Patches

G. Piliposian1 · A. Hasanyan2 · G. Piliposyan1 · H. Jilavyan3

Received: 14 September 2019 / Revised: 17 February 2020 / Accepted: 15 April 2020 / Published online: 30 April 2020 
© The Author(s) 2020

Abstract
The paper investigates how the energy input/output of a composite plate with piezoelectric patches, acting as a sensor, 
actuator, or energy harvester, can be regulated by changing the parameters of the piezoelectric patches, the external vibrat-
ing frequency and the boundary conditions imposed on the host plate-layer. It is shown that for any size of the piezoelectric 
patches there is always one location where the energy input/output reaches a maximum, whether the process is very low 
frequency or higher frequency. Furthermore, for a dynamic vibrational loading the energy input/output is highly sensitive 
whether the operating frequency is below or above the system’s resonance frequency. For the operating frequency close to 
but below the resonance frequency, the location for the maximum energy input/output is considerably different from the 
optimal location when the operating frequency is just above the systems resonance frequency. That is to say, a slight change 
in the operating frequency around the resonance frequency can make a considerable difference to the optimal locations for 
the piezoelectric patches for maximum energy input/output.

Keywords Energy harvesting · Sensor · Actuator · Piezoelectric patch · Composite plate

1 Introduction

The ability of piezoelecric materials to convert mechanical 
stresses into an electric field, and vice versa has found exten-
sive applications in sensors, actuators, and energy harvest-
ers. For example, new developments in wireless and micro-
electro-mechanical systems have increased the demand for 
portable electronics and wireless sensors, making power 
supply of these portable devices a crucial issue. Harvesting 

ambient energy from external sources by using piezoelectric 
materials can become one of the solutions of this problem 
[1–3]. Since piezoelectric devices have the highest energy 
density and more flexibility to be integrated into a system, 
energy harvesting, sensing and actuating with piezoelectric 
materials are the most widely used and investigated both 
theoretically [4–8] and experimentally [9–11].

There have been different approaches for maximizing the 
energy input/output including the choice of piezoelectric 
material and the configuration [12]. One of the solutions is 
frequency tuning of the piezoelectric element with the exter-
nal source and maximizing the converted energy using the 
concept of resonance [13]. This can be achieved by changing 
the thickness ratio of the piezoelectric patch and the host 
element  [14].

The energy output/input can be extremely sensitive to the 
length and location of the piezoelectric patches. Optimal 
placement of piezoelectric material for cantilever beams 
for power harvesting efficiency are considered in [15, 16]. 
Controlling the shape of a laminated beam by an optimally 
placed piezo actuator for minimizing the maximum deflec-
tion is studied in   [17–19]. For thin plates the problem 
from various perspectives has been investigated in [20–22] 
and  [23]. A discussion of different optimization criteria 
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used by researchers for optimal placement of piezoelectric 
sensors and actuators on a smart structure has been carried 
out in a comprehensive technical review [24].

It is known that energy input/output can be maximum/
minimum when the structure is in the resonance condi-
tion [25, 26]. The patches length and location in this case 
can hugely affect the energy input/output depending on how 
close the external vibration frequency is to resonance fre-
quencies corresponding to the length and position of the 
patches. This paper investigates the effect of the location 
and size of piezoelectric patches in a composite multilayer 
plate on the energy input/output around the resonance fre-
quency when the plate acts as a sensor, actuator, or an energy 
harvester.

2  Statement of the Problem

A composite piezoelectric structure is considered which 
consists of a plate-layer substrate of length L in x1 direction, 
a unit width in x2 direction assuming that all the unknown 
functions are independent of x2 and two piezoelectric 
patches of length lp <= L running the full width of the plate, 
perfectly bonded to its top and bottom surfaces (Fig. 1). The 
substrate can be a conductor for generating charge. The posi-
tion of the patches is defined by a and b = a + lp and hp∕2 
and hm are the thicknesses of the piezoelectric patches and 
the substrate.

The top and bottom surfaces of the piezoelectric patches 
are metalized to form electrodes that can be wired in series. 
To achieve this they are poled in opposite directions so that 
they produce electric fields in the same direction (Fig. 1). 
In the case of a parallel connection, piezoelectric layers are 
poled in the same direction and produce electric fields in 
opposite directions. The electrodes covering the opposite 
faces of the piezoelectric layers are assumed to be thin com-
pared to the overall thicknesses of the structure so that their 
contribution to the thickness can be neglected.

The poling directions of the piezoelectric patches are per-
pendicular to the planar direction, which is the most con-
venient way to polarize piezoelectric elements when fabri-
cated. Piezoelectric elements described above are operating 
in the (31) mode, where 3 is the polarization direction of the 
piezoelectric layer and 1 is the stress direction. This mode 

corresponds to the piezoelectric charge constant d31 , describ-
ing the induced polarization in the poled direction per unit 
stress applied in stress direction. Since in (31) mode the 
stress is not applied along the polar axis of the piezoelec-
tric material d31 is always smaller than d33 . However the 
system in d31 mode is much more compliant and therefore 
larger strains can be produced with smaller input forces and 
also, the resonant frequency is much lower [3]. These make 
the use of a piezoelectric element operating in (31) mode 
preferable.

Assuming a driving harmonic force q0ei�t , where � is the 
frequency, the transverse displacements in the regions 
0 ≤ x1 ≤ a , a ≤ x1 ≤ b and b ≤ x1 ≤ L can be written in the 
form Wi(x1, t) = Wi(x1)e

i�t , with i = 1, 2, 3 corresponding to 
each region. Introducing dimensionless parameters x =

x1

L
 , 

wi =
Wi

L
 , hm =

hm

L
 and hp =

hp

L
 the equations describing 

forced vibrations of a mid-plane transverse deflections of a 
Kirchhoff plate-layer take the following form:

where i =
√
−1, � =

a

L
, � =

b

L
, �̄�4

k
=

2𝜌khm,(p)𝜔
2L2

Dk

, �k are 

the mass densities, �k the damping coefficients, Dk the stiff-

ness constants, ( k = 1, 2, 3 ), for regions 0 ≤ x ≤ � , 

� ≤ x ≤ �  , � ≤ x ≤ 1 , with D1 =
2

3(1 − �2
1
)
Em

(
hm

2

)3

 , 

D2 =
2

3(1 − �2
2
)

[
Ep

((
hp +

hm

2

)3

−

(
hm

2

)3
)

+ Em

(
hm

2

)3
]
 

and �3 ≡ �1 , �3 ≡ �1 . Em and Ep are the Young’s moduli for 
the substrate and the piezoelectric patches, and �1 ≡ �3 and 
�2 the Poisson ratios.

The constitutive equations for the piezoelectric patches 
and the substrate are [13]

(1)
d4w1

dx4
− �̄�4

1

(
1 −

𝜀1i

2𝜌1hmL
3𝜔

)
w1 =

q0

D1

, 0 ≤ x ≤ 𝛼

(2)
d4w2

dx4
− �̄�4

2

(
1 −

𝜀2i

2𝜌2hpL
3𝜔

)
w2 =

q0

D2

, 𝛼 ≤ x ≤ 𝛽

(3)
d4w3

dx4
− �̄�4

3

(
1 −

𝜀3i

2𝜌3hmL
3𝜔

)
=

q0

D1

, 𝛽 ≤ x ≤ 1,

T
p

1
= Ep(S

p

1
− d31E3), D3 = d31T

p

1
+ �s

33
E3, S

p

1
= −x3

d2w2

dx2
,

(4)

T
m

1
= E

m
S
m

1
, S

m

1
= −x3

d
2
w1

dx2
,

0 ≤ x ≤ �, S
m

1
= −x3

d
2
w3

dx2
, � ≤ x ≤ 1,Fig. 1  Schematic of the plate-layer with two piezoelectric patches 

perfectly bonded to the top and bottom surfaces
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where the subscripts 1 and 3 represent the direction along 
which the corresponding parameter is measured, Tp

1
 and Tm

1
 

are the stresses, Sp
1
 and Sm

1
 are the strains (superscripts p 

and m indicating the piezoelectric patches and the plate), 
d31 is the piezoelectric constant coefficient, E3 the electric 
field, D3 the electric displacement and �s

33
 the permittivity 

at constant strain.
Three different boundary conditions will be considered 

at x = 0 and x = 1 : 

1. Simply supported: 

2. Simply supported at one end and clamped on the other: 

3. Cantilevered plate-layer: 

Continuous bending moments and shear forces are 
assumed at x = � and x = �:

where

Note that for the formulated boundary value problem there 
can be two sources of excitation. One is mechanical such as 
external wind and gas flow, which appears in the right hand 
side of Eqs.  (1)–(3). In this case the system will act as an 
energy harvester or a sensor. The second source of excita-
tion can be through boundary conditions (9)–(10) due to an 
external applied voltage or an electrical field which appears 
in the expression of Mp

2
 in (10). In this case the system can 

act as an actuator.

(5)w1(0) = 0, D1

d
2
w1

dx2
= 0, w3(1) = 0, D3

d
2
w3

dx2
= 0.

(6)

w1(0) = 0, D1

d2w1

dx2
= 0, w3(1) = 0,

dw3

dx
= 0.

(7)

w1(0) = 0,
dw1

dx
= 0, Mm

3
(1) = 0, Qm

3
(1) = 0.

(8)

w1(�) = w2(�), w2(�) = w3(�),

w
�
1
(�) = w

�
2
(�), w

�
2
(�) = w

�
3
(�),

(9)

M
m

1
(�) = M

p

1
(�), M

m

2
(�) = M

p

3
(�),

Q
m

1
(�) = Q

p

1
(�), Q

m

2
(�) = Q

p

3
(�),

(10)

Mm
i
= − D1

d2wi

dx2
, (i = 1, 3),

M
p

2
= − D2

d2w2

dx2
− C1E0, E0 = E3,

Qm
i
= − Di

d3wi

dx3
, (i = 1, 3), Q

p

2
= −D2

d3w2

dx3
,

C1 =
d31Ep

2

[(
hp +

hm

2

)2

−

(
hm

2

)2
]
.

2.1  The Solution of the Problem

The solutions of (1)–(3) in three regions are

where for each value of i , �̃�(j)
(i)

 ( j = 1, 2, 3, 4 ) are the four roots 

of �̃�4
i
= �̄�4

i

(
1 −

𝜀ii

2𝜌ihm(p)L
3𝜔

)
 . Satisfying corresponding 

boundary conditions in (5)–(7) leads to the solution of the 
following system of equations for finding the unknown coef-
ficients ai, bi, ci, di, (i = 1, 2, 3)

where B =
D1

D2

�̃�4
1

�̃�2
2

 . The matrix � is given in the Appendix 

a n d  �
T  i s  t h e  t r a n s p o s e  o f  t h e  ve c t o r 

� = (a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3).

For boundary conditions (5) and (6) �T
1
 and �T

2
 are the 

transposes of the vectors

and for a cantilevered plate-layer (7) the vector �1 changes to

After introducing vectors �1(x
(1)

1
, x

(1)

2
,… , x

(1)

12
) and 

�2(x
(2)

1
, x

(2)

2
,… , x

(2)

12
) such that ��T

1
= �

T
1
 and ��T

2
= �

T
2
 it 

follows from (12) that the solutions can be written in the 
following form

where

(11)

wi = aie
�̃�
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i
x + bie
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i
x + cie
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i
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(12)��
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1
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4

1
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1
+ C1E0B�

T
2

)
,

(13)
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(
1, 0, 1 −

�̃�4
1

�̃�4
2

D1

D2

, 0, 0, 0,−1 +
�̃�4
1

�̃�4
2

D1

D2

, 0, 0, 0, 0, 1

)

(14)�2 = (0, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0),

(15)

�1 =

(
1, 0, 1 −

�̃�4
1

�̃�4
2

D1

D2

, 0, 0, 0,−1 +
�̃�4
1

�̃�4
2

D1

D2

, 0, 0, 0, 0, 0

)
.

(16)

⎧⎪⎨⎪⎩

w1(x)

w2(x)

w3(x)

⎫
⎪⎬⎪⎭
=

1

D1�̃�
4

1

⎛
⎜⎜⎜⎝
q0

⎧
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The functions v12(x), v22(x) and v32(x) in (16) are given 
by similar equations to (17), (18) and (19) with x(1)

i
 being 

replaced by x(2)
i

 , ( i = 1, 2,… , 12).
The solutions written in the form (16) show the piezo-

electric coupling in the middle term of the right hand side 
and are especially useful in investigating the total energy of 
the system:

where

and ∗ indicates the complex conjugate. Using constitutive 
equations (4) the total energy of the system can be expressed 
via the displacements:

where � =
�33E

2

0

D1

(1 − k2
1
)hp(� − �) and k2

1
= d2

31
∕(S

p

11
�33) is 

the dimensionless electro-mechanical coupling factor. For 
the following discussion expression (22) is more convenient 
to write as:

Note that U is a function of parameters � , � , the vibration 
frequencies �̃�1 , �̃�2 and the material properties of the struc-
ture. Further, in (23)

(17)v11(x) = x
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2
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∫
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−
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2
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1
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�
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−
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−
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2
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Updzdx +
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2
+
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2

∫
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2
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,

(21)
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1

2
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1
)∗Tm

1
) Up =

1

2
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p

1
)∗T

p

1
) +

1

2
Re(D∗

3
E0),

(22)

U =
D1L

2

2

[
� +

D2

D1
∫

�

�

d2w2

dx2

d2w2

dx2
dx + ∫

�

0

d2w1

dx2
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dx2
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1

�
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dx2
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]
,

(23)

U =
D1L

2

2

(
1

D1�̃�
4

1

)2(
E2

0
C2

1
Q1 + q2

0
Q2 + 2BC1E0q0Q3

)
.

In (23) following [4, 5] we define Q1 , Q2 and Q3 as the coef-
ficients of actuating, sensing and energy harvesting respec-
tively. Hence the expression for the total energy in (23) can 
be used to analyze the structure (Fig. 1) as an actuator, sen-
sor and an energy harvester.

Analogous to a parallel plate capacitance the generated 
charge can be expressed as Q(t) = �U(t)

�V0(t)
, where V0(t) is the 

voltage, Q(t) is the charge. Writing E0(t) = V0(t)∕hp for the 
uniform electric field in terms of the electric potential differ-
ence, the generated charge can be calculated from (23) as 
follows:

The first term inside the brackets in (27) is the amplitude of 
the charge QV

gen
 generated by the applied voltage V0 = Vei�t, 

and the second term describes the amplitude of the charge 
Q

q0
gen generated by the applied force q = q0e

i�t ∶

The first expression in (28) can be used to investigate the 
sensing properties of the structure. In order words 
Qs(t) =

�U(t)

�V0(t)

||||q0=0
 describes the structure as a sensor. On 

the other hand the middle term in (23) with the coefficient 
Q2 can be used for investigating the system as an actuator (
Qa(t) =

�U(t)

�q0(t)

||||E0=0

)
 . In the following discussion we will 

(24)

Q1 =
𝜀33D1

L3C2

1

�̃�8
1
(1 − k2

1
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𝛽

∫
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𝛼

∫
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1
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,
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D2
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�

∫
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∫
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|v��
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(27)Q(t) = D1L
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(
1
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)2
(
V
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1

L2

Q1

h2
p
�̃�8
1

+ q0
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L
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1

Q3

)
.

(28)QV
gen

=
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V , Q
q0
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L4

D1

C1
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focus on the second expression in (28) describing energy 
harvesting properties of the structure and investigate 
Q̃3 = max(𝛼,𝛽,𝜔)∈DQ3 , where D is the domain of (�, �,�).

3  Discussion

Piezoelectric ceramics are often chosen for energy harvest-
ing devices because apart from good piezoelectric properties 
they have low cost and are easy to be built in into an energy 
harvesting structure. PZT is the most frequently used piezo-
electric ceramic due to its excellent piezoelectric properties 
and high Curie temperature. It has been expanded into a 
large family of ceramics, including PZT-5H, able to exhibit 
a broad range of properties. Although piezoelectric ceram-
ics are rigid and brittle and less capable of sustaining large 
strain, overall, they can provide a higher power output than 
naturally flexible piezoelectric polymers.

Material parameters of silicon (Si) for the host plate 
( Em = 1.6 × 1011N∕m2, �1 = 2.3 × 103kg∕m3 ) and the piezo-
electric PZT-5H ( Ep = 2.3 × 1010N∕m2, �2 = 7.5×103kg∕m3, 
d31 = −274 × 10−12C∕N, �33 = 277 × 10−10F∕m ) have been 
used for numerical calculations. The Poisson’s ratios are 
taken 0.3, hm + hp = 0.02 and L = 1 , the dimensionless 
length of the parches is l = b − a

L
= � − �. Mass propor-

tional damping of 1% is taken. The numerical calculations 
have been carried out for the amplitudes of the generated 
charge which from the second equation in (28) can be writ-
ten in the following dimensionless form:

The dependence of the harvested charge on the position of 
the piezoelectric patches at very low frequencies ( � → 0 ) 
shows that there is always a position where the harvester 

(29)Q̃
q0
gen =

D1

L4
1

C1

1

q0
Q

q0
gen =

B

2�̃�8
1
hp

Q3.

generates a maximum charge (Fig. 2a, b). The increase 
between minimum and maximum harvested charge can be 
significant. For a simply supported host plate (Fig. 2a), when 
l = 0.2 the increase can be up to 160% depending on the 
position of the patches. For l = 0.4 the increase can be up 
to 66% , and for l = 0.5 up to 42% . For the host plate simply 
supported at one end and clamped on the other these differ-
ences are more dramatic, the energy output is declining rap-
idly as the patches move beyond the position of maximum 
harvesting (Fig. 2b). For a cantilevered host plate the stress 
induced during bending is always concentrated near the 
clamped edge [12]. Depending on the length of the piezo-
electric patches the maximum harvested charge can change 
by up to 100% increasing from 0.81 for l = 0.2 to 1.72 for 
l = 0.8 (Fig. 2c).

For a particular length of the piezoelectric patches, the 
dimensionless displacements (Fig. 3)

show that the maximum charge is not necessarily harvested 
when the patches are at the position where the maximum 
displacement has its highest value. For example, in the case 
of simply supported plate with l = 0.4, the maximum charge 
is harvested when the patches are located at � = 0.3 (Fig. 2a) 
whereas the maximum displacement has its highest value 
when � = 0 (Fig. 3a) as shown. A similar picture is observed 
when the host structure is simply supported at one end and 
clamped on the other (Fig. 3a) as shown. The maximum 
charge for the case l = 0.4 is harvested at � = 0.25 but the 
maximum displacement is reached at � = 0.5 . For a cantile-
vered plate (Fig.  3c) as it would be expected for any position 
of the piezoelectric patches the maximum displacement is 
reached at the free end of the host plate and the harvesting 
energy is maximum at the clamped end.

(30)w(x, �, �,�) =

⎧⎪⎨⎪⎩

w1, 0 ≤ x ≤ �,

w2, � ≤ x ≤ �,

w3, � ≤ x ≤ 1

Fig. 2  Generated charge at very 
low frequencies ( � → 0 ) for dif-
ferent lengths of the piezoelec-
tric patches ( hm = hp = 0.01 ) 
and boundary conditions on the 
host plate: a simply supported, 
b simply supported at one end 
and clamped on the other, c)
cantilevered

(a) (b) (c)
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Thus even at off-resonance frequencies there is always 
a position for the piezoelectric patches where the system 
generates maximum charge. This means that the depend-
ence of the harvested charge on the position of the piezo-
electric patches exists even at off-resonance frequencies. 
However it is important to know resonance frequencies to 
estimate the distribution of dynamic stress more accurately. 
The main goal here is to calculate energy harvesting due 
to dynamic stresses arising from external excitations. The 
external excitations produce displacements (4) which have 
been used in (21) to calculate the total energy (22) of the 
system. Knowledge of the resonance frequencies allows one 
to calculate displacements more accurately. Figure 4 shows 
first resonance frequencies �(l, �) for different positions and 
lengths of the piezoelectric patches.

The dependence of dynamic displacements on the fre-
quency of the external excitation around the first resonance 
frequencies is shown in Fig. 5. It is clear that there is a sharp 
change in the shape of the displacements around resonance 
frequencies. It is well known that around higher resonance 
frequencies the amplitude of the change is at least an order 
of magnitude lower than around the first resonance.

In practice the mode shape will experience charge can-
cellation as some regions are in compression while others 

in tension. In applications there are very well-developed 
approaches to overcome this problem and maximise the 
energy achieved by energy harvesting performances. One 
effective approach is including diode-based components 
that can guarantee one directional voltage. For example, 
the Schottky diode offers low forward voltage and high 
switching speed and is considered as an ideal component 
for energy harvesting applications [27].

For a simply supported host plate (Fig.  4a) and the 
piezoelectric patches of length l = 0.4 attached at � = 0.3 
where the corresponding resonance frequency is � = 2.87 , 
the generated charge has a well-defined maximum value 
for the external vibrating frequency � = 2.86 just under the 
minimum resonance frequency (Fig. 6a). When the exter-
nal vibrating frequency is � = 2.90 , just above the corre-
sponding resonance frequency, the generated charge at the 
same location � = 0.3 receives a minimum value, also well 
demonstrated in Fig. 6b. On the other hand this frequency 
is resonant for two locations (due to the symmetry of the 
boundary conditions in this case) of the patches hence there 
are two maximum peaks for the harvested charge.

Since the pattern of the first resonance frequencies 
(Fig.  4a) change for the piezoelectric harvesters with length 
l ≥ 0.5 , the effect of the change in vibrating frequency at 

Fig. 3  Dimensionless displace-
ments at very low frequen-
cies (� → 0) for piezoelectric 
patches at different locations x 
for l = 0.4 . Boundary conditions 
on the host plate are: a simply 
supported, b simply supported 
at one end and clamped on the 
other, c cantilevered

(a) (b) (c)

Fig. 4  First resonance frequen-
cies for different positions and 
lengths of the piezoelectric 
patches, hp∕hm = 1 , a simply 
supported host, b simply sup-
ported at one end and clamped 
on the other

(a) (b)
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the maximum of the harvested charge changes as well. For 
piezoelectric patches with l = 0.5 (Fig. 7) the harvested 
charge is minimised when the vibrating frequency is just 
below the resonance frequency � = 2.92 corresponding to 
the location of patches � = 0.26 . At this same location the 
harvested charge changes into maximum with slight change 
in the external vibrating frequency becoming just above the 
resonance frequency.

Figure 8a, b confirm the results for l ≥ 0.5 in the case 
l = 0.7 . The first resonance frequency at � = 0.15 is 
� = 3.02 . When the vibrating frequency is below the reso-
nance frequency ( � = 3 ) the generated charge has a mini-
mum value and when the vibrating frequency exceeds the 
resonance frequency ( � = 3.08 ) the generated charge has 
a maximum value at the same location of the harvester 
� = 0.15.

The dynamic displacements around second and third 
resonance frequencies in Fig. 9 show that there is no shape 

change around the second resonance frequency � = 6.056 
but there is an abrupt shape change around the third reso-
nance frequency � = 11.02 . This means that only around 
odd resonance frequencies the generated charge will change 
from maximum to minimum or vice versa. It is also worth 
mentioning that compared to the displacements around the 
fundamental resonance frequency the displacements around 
higher resonance frequencies are two orders of magnitude 
smaller. This will obviously be reflected in the amount 
of generated charge around second and third resonance 
frequencies.

Cantilevered plates and beams are more commonly used 
for energy harvesting with piezoelectric energy harvest-
ers because of the much larger mechanical strains they 
produce within the piezoelectric harvester. Also, as can 
be seen by comparing Figs. 4 and 10a, the resonance fre-
quencies of the fundamental flexural modes in this case are 
lower compared to the corresponding length and position 

Fig. 5  The dynamic displacements around first resonance frequencies a � = 2.87 for the piezoelectric patch with l = 0.4,� = 0.3 , b � = 3.02 for 
l = 0.7 , � = 0.15

Fig. 6  a The generated charge at 
two near-resonance frequencies. 
b The generated charge as a 
function of frequency and posi-
tion of the piezoelectric patches 
( l = 0.4)

(a) (b)
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of the piezoelectric patches in other vibration modes. 
Although as expected the maximum resonance frequencies 
are at x = 0 regardless of the lengths of the piezoelectric 
patches, the value of the maximum resonance frequen-
cies vary for different lengths of the harvester, reaching 
a maximum of around l = 0.45 and minimum for l = 0.9 
(Fig. 10b).

3.1  The Effect of the Thickness Ratio 
on the Harvested Charge

The amount of the power produced by piezoelectric energy 
harvesters (between nano-watts to milli-watts) depends on 
both intrinsic features such as piezoelectric and mechani-
cal properties of materials, the resonance frequency of the 
piezoelectric patches, the design of the piezoelectric ele-
ment and the circuitry and extrinsic factors such as the input 

Fig. 7  a The generated charge 
for two near-resonance frequen-
cies. b The generated charge 
as a function of frequency and 
position of the piezoelectric 
patches ( l = 0.5)

(a) (b)

Fig. 8  a The generated charge 
for two near-resonance frequen-
cies. b The generated charge 
as a function of frequency and 
the position of the piezoelectric 
patches ( l = 0.7)

(a) (b)

Fig. 9  The dynamic displace-
ments for around a second and 
b third resonance frequencies 
for the piezoelectric patch with 
l = 0.4 , � = 0.3
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frequency and the amplitude of the excitation. Increasing the 
hp∕hm ratio adds stiffness and mass to the structure chang-
ing its intrinsic properties and thus changing the dynamic 
response.

As already mentioned power density of a piezoelectric 
vibrational energy harvesting device is strongly frequency 
dependent as the piezoelectric generates maximum power 
at its resonance frequency. Therefore, the fundamental fre-
quency of the host determines the size of the piezoelectric 
element in a piezoelectric energy harvesting structure. Since 
most of the vibrations from commonly occurring sources are 
low frequency vibrations, low frequency fundamental mode 
are normally targeted when designing the energy harvesting 
structure. Figure 11 shows the fundamental resonance fre-
quencies at different positions of the piezoelectric patches on 
a simply supported plate for different values of the thickness 
ratio. For hp∕hm < 1 these frequencies decrease for longer 
piezoelectric patches and always have a minimum point (Fig.  
11a). It is clear from the earlier discussion that the harvest-
ing coefficient will have maximum values for operating 

frequencies below the resonance frequency and minimum 
value above the resonance frequencies (Fig. 6).

For hp∕hm ≥ 1 , although the overall resonance frequen-
cies decrease, they increase with the length of the piezoelec-
tric patches and have maximum values for l ≥ 0.5 (Fig. 11b, 
c). This means that the qualitative picture of the outcome 
energy will be similar to that described in the previous sec-
tion. The generated charge will have minimum values for 
operating frequencies below the maximum resonance fre-
quency and maximum value above the maximum resonance 
frequencies (Fig.  7b).

4  Conclusion

The investigation carried out in this paper allows to determine 
a position for piezoelectric patches hosted by a non-piezoelec-
tric plate-layer to maximize the performance of piezoelectric 
sensors, actuators and energy harvesters. The expression of 
the total energy has been derived investigating the converted 

Fig. 10  a First resonance 
frequencies of the cantilevered 
harvester for different positions 
and lengths of the piezoelectric 
patches, for hm = hp = 0.01 . b 
Maximum resonance frequen-
cies for different lengths of the 
piezoelectric patches

(a) (b)

Fig. 11  First resonance frequen-
cies for different positions and 
lengths of the piezoelectric 
patches for simply supported 
host for a hp∕hm = 0.1 , b 
hp∕hm = 2, c hp∕hm = 10

(a) (b) (c)
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energy for any length of the piezoelectric patches. The discus-
sion carried out for energy harvesting can be extended for a 
piezoelectric sensor and an actuator.

It is shown that at very low frequencies for any specified 
size of the piezoelectric patches there is only one location on 
the host plate where the patches generate a maximum energy 
input/output. In a dynamic vibrational loading the same loca-
tion corresponds to the piezoelectric patches’ location where 
the system’s resonance frequency reaches its extremum value 
as a function of the position of the patches on the host plate.

As expected in the case of a dynamic vibrational loading 
the maximum charge can be harvested at the resonance fre-
quency, which varies for different positions and lengths of the 
piezoelectric patches. However in this case the energy input/
output is extremely sensitive to the operating frequency. If the 
operating frequency is below the systems resonant frequency 
corresponding to the length and position of the patches, the 
location for maximum energy input/output is drastically dif-
ferent from the best location when the operating frequency is 
just above the systems resonant frequency. In other words, if 
the systems operating frequency is close to the resonant fre-
quency the composite does not necessarily generate maximum 
energy input/output. Depending on the length of the piezoelec-
tric patches the maximum energy output can be achieved if the 
operating frequency is just under or just above the correspond-
ing resonance frequency.

The discussion carried out for energy harvesting can be 
extended for sensing and actuating properties of the structure. 
As expressions (24) and (25) for the sensing and actuating 
coefficients Q1 and Q2 suggest, the results are qualitatively 
similar to those for the harvesting coefficient Q3 in (26) and 
the same discussion can be applied to sensing and actuating 
properties of the structure.

These theoretical results show that when tuning the energy 
harvesting structure to the ambient vibrating frequency care 
should be taken as to how to approach to the resonance fre-
quency. The energy outcome will strongly depend on not only 
the length and position of the piezoelectric harvesters but to a 
very large extend how the resonance frequency is approached: 
from below or from above.
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Appendix 1

Matrix � written in the block-matrix form has the follow-
ing matrix entries:

where for a simply supported plate-layer

For a plate-layer simply supported at one end and clamped 
on the other:
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For a cantilevered plate-layer
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