Skip to main content
Log in

Removal of Contaminant Nanoparticles with \(\hbox {CO}_2\) Nanobullets at Atmospheric Conditions

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

As the feature size of semiconductor chips is decreasing down to nanometric scales, cleaning of nanoscale contaminant particles without damaging the fine features puts forth severe technological challenges. Here we introduce a design methodology of a nozzle to generate a beam of supersonic \(\hbox {CO}_2\) solid nanobullets into the air at atmospheric pressure, which dislodge the contaminant particles by colliding with them. The dry cleaning scheme proposed here does not resort to the chillers, vacuum chamber, and carrier-gas handling system, which conventional dry cleaning systems often required and thus hampered their practical applications. We provide a theoretical framework to select key design parameters, such as the area ratio of the nozzle throat and exit and the supply gas pressure. We experimentally verify the superior capability of our nozzle in generating a \(\hbox {CO}_2\) aerosol beam under the atmospheric back pressure condition. Additional process parameters including the stand-off distance and the incident angle of the \(\hbox {CO}_2\) beam are optimized to maximize the cleaning efficiency and minimize the pattern damages. Our work suggests a practical nanoparticle cleaning scheme that is faster and simpler than the conventional dry cleaning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Busnaina, A. A., Lin, H., Moumen, N., Feng, J. W., & Taylor, J. (2002). Particle adhesion and removal mechanisms in post-CMP cleaning processes. IEEE Transactions on Semiconductor Manufacturing, 15, 374.

    Article  Google Scholar 

  2. Association, S. I. (2003). International Technology Roadmap for Semiconductors

  3. Menon, V. B. (1990). Particle control for semiconductor manufacturing. New York: Marcel Dekker.

    Google Scholar 

  4. Kern, W. (Ed.). (1993). Handbook of semiconductor wafer cleaning technology. Park Ridge: Noyes.

    Google Scholar 

  5. Rimai, D. S., & Quesnel, D. J. (2001). Fundamentals of particle adhesion. Moorhead: Global Press.

    Google Scholar 

  6. Takahashi, M., Liu, Y. L., Narita, H., & Kobayashi, H. (2008). Si cleaning method without surface morphology change by cyanide solutions. Applied Surface Science, 254, 3715.

    Article  Google Scholar 

  7. Kim, W., Kim, T. H., Choi, J., & Kim, H. Y. (2009). Mechanism of particle removal by megasonic waves. Applied Physics Letters, 94, 081908.

    Article  Google Scholar 

  8. Reinhardt, K. A. (2011). Handbook of cleaning for semiconductor manufacturing. Hoboken: Wiley.

    Google Scholar 

  9. Kern, W. (1990). The evolution of silicon wafer cleaning technology. Journal of the Electrochemical Society, 137, 1887.

    Article  Google Scholar 

  10. Mastrangelo, C. H., & Hsu, C. H. (1993). Mechanical stability and adhesion of microstructures under capillary forces-part I: Basic theory. Journal of Microelectromechanical Systems, 2, 33.

    Article  Google Scholar 

  11. Mastrangelo, C. H., & Hsu, C. H. (1993). Mechanical stability and adhesion of microstructures under capillary forces-part II: Experiments. Journal of Microelectromechanical Systems, 2, 44.

    Article  Google Scholar 

  12. Kim, T. H., Kim, J., & Kim, H. Y. (2016). Evaporation-driven clustering of microscale pillars and lamellae. Physics of Fluids, 28, 022003.

    Article  Google Scholar 

  13. Hwang, K. S., Lee, K. H., Kim, I. H., & Lee, J. W. (2011). Removal of 10-nm contaminant particles from Si wafers using argon bullet particles. Journal of Nanoparticle Research, 13, 4979.

    Article  Google Scholar 

  14. Hwang, K. S., Lee, M. J., Yi, M. Y., & Lee, J. W. (2009). Removing 20 nm ceramic particles using a supersonic particle beam from a contoured laval nozzle. Thin Solid Films, 517, 3866.

    Article  Google Scholar 

  15. Pereira, O., Rodriguez, A., Barreiro, J., Fernandez-Abia, A. I., & de Lacalle, L. N. L. (2017). Nozzle design for combined use of MQL and cryogenic gas in machining. International Journal of Precision Engineering and Manufacturing Green Tech, 4, 87.

    Article  Google Scholar 

  16. Liewald, M., Tovar, G.E.M., Woerz, C., & Umlauf, G. (2019). “Tribological conditions using \(\text{CO}_{2}\) as volatile lubricant in dry metal forming”, Int. J. Precis. Eng. Manuf.-Green Tech. pp. 1–9

  17. Kim, I., Hwang, K., & Lee, J. (2012). Removal of 10-nm contaminant particles from Si wafers using \(\text{ CO }_{2}\) bullet particles. Nanoscale Research Letters, 7, 211.

    Article  Google Scholar 

  18. Kim, M. S., Kim, T., & Park, J. G. (2015). Removal of nano-sized particles using carbon dioxide (\(\text{ CO }_{2}\)) gas cluster cleaning without pattern damage. Particulate Science and Technology, 33, 558.

    Article  Google Scholar 

  19. Choi, H., Kim, H., Yoon, D., Lee, J. W., Kang, B. K., Kim, M. S., et al. (2013). Development of \(\text{ CO } _2\) gas cluster cleaning method and its characterization. Microelectronic Engineering, 102, 87.

    Article  Google Scholar 

  20. Sinha, S., Wyslouzil, B. E., & Wilemski, G. (2009). Modeling of \(\text{ H }_{2}\text{ O }/\text{ D }_{2}\text{ O }\) condensation in supersonic nozzles. Aerosol Science and Technology, 43, 9.

    Article  Google Scholar 

  21. Yang, Y., Walther, J. H., Yan, Y., & Wen, C. (2017). CFD modeling of condensation process of water vapor in supersonic flows. Applied Thermal Engineering, 115, 1357.

    Article  Google Scholar 

  22. Anderson, J. D, Jr. (1991). Fundamentals of aerodynamics (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  23. Xu, J., & Zhao, C. (2007). Two-dimensional numerical simulations of shock waves in micro convergent-divergent nozzles. International Journal of Heat and Mass Transfer, 50, 2434.

    Article  Google Scholar 

  24. Raman, S. K., & Kim, H. D. (2018). Solutions of supercritical \(\text{ CO }_{2}\) flow through a convergent-divergent nozzle with real gas effects. International Journal of Heat and Mass Transfer, 116, 127.

    Article  Google Scholar 

  25. Norman, M. L., & Winkler, K. H. A. (1985). Supersonic jets. Los Alamos Sci., 12, 38.

  26. Vukalovich, M. P., & Altunin, V. V. (1968). Thermophysical properties of carbon dioxide. London: Collet’s Ltd.

    Google Scholar 

  27. Fox, R. W., McDonald, A. T., & Pritchard, P. J. (2004). Introduction to fluid mechanics (6th ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  28. Hill, P. G. (1966). Condensation of water vapour during supersonic expansion in nozzles. Journal of Fluid Mechanics, 25, 593.

    Article  Google Scholar 

  29. Saad, M. A. (1992). Compressible fluid flow (2nd ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  30. Toscano, C., & Ahmadi, G. (2003). Particle removal mechanisms in cryogenic surface cleaning. Journal of Adhesion, 79, 175.

    Article  Google Scholar 

  31. Zhang, F., Busnaina, A. A., Fury, M. A., & Wang, S. Q. (2000). The removal of deformed submicron particles from silicon wafers by spin rinse and megasonics. Journal of Electronic Materials, 29, 199.

    Article  Google Scholar 

  32. Banerjee, S., & Campbell, A. (2005). Principles and mechanisms of sub-micrometer particle removal by \(\text{ CO }_{2}\) cryogenic technique. Journal of Adhesion Science and Technology, 19, 739.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (Grant No. 2018052541) and SEMES Co., Ltd. via SNU IAMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Young Kim.

Ethics declarations

Conflict of interest

Patent concerning the \(\hbox {CO}_2\) cleaning at atmospheric condition is pending (USA patent # 15/769, 367, 2018, China patent # 201680063511.5, 2018, Korea patent # PCT/KR2016/011816, 2016).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Kim, J., Kim, S. et al. Removal of Contaminant Nanoparticles with \(\hbox {CO}_2\) Nanobullets at Atmospheric Conditions. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 929–938 (2020). https://doi.org/10.1007/s40684-019-00176-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00176-4

Keywords

Navigation