Skip to main content
Log in

3D Printing of Bioinspired Structural Materials with Fibers Induced by Doctor Blading Process

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Fiber is a crucial element in biological micro-structural materials. Replication of fiber-reinforced composites with analogous architectures of their natural counterparts has caused widespread academic concern. Recent researches indicate 3D printing technology has the potential to produce biomimetic structural materials. The aim of this study is to develop a process to fabricate fiber-reinforced composites with ordered yet spatially tunable fiber arrangement. Specifically, we present a method to align fibers during the 3D printing of fiber-reinforced composites. A modified slurry-based stereolithography process was developed, and the fibers in the fiber–resin mixture were aligned by Shear force produced during the spreading of slurry. We investigated the influence of relative factors on fiber orientation, and two models were used to uncover the internal mechanism. By controlling the speed and the direction of the moving blade, the patterns that fibers were arranged can be freely programmed. Therefore, we have extracted bioinspired sinusoidal and zigzag design motifs to analyze their mechanical properties compared with non-bioinspired motifs. The proposed method is relatively material agnostic, more efficient and more facile. It thus provides a promising route to fabricate fiber-reinforced composites, and has potential to be adopted in biological structures researches and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14(1), 23–36.

    Article  Google Scholar 

  2. Naleway, S. E., Porter, M. M., Mckittrick, J., & Meyers, M. A. (2015). Structural design elements in biological materials: Application to bioinspiration. Advanced Materials, 27(37), 5455–5476.

    Article  Google Scholar 

  3. Grunenfelder, L. K., Suksangpanya, N., Salinas, C., Milliron, G., Yaraghi, N., Herrera, S., et al. (2014). Bio-inspired impact-resistant composites. Acta Biomaterialia, 10(9), 3997–4008.

    Article  Google Scholar 

  4. Kim, J. H., Shim, B. S., Kim, H. S., Lee, Y. J., Min, S. K., Jang, D., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213.

    Article  Google Scholar 

  5. Weaver, J. C., Milliron, G. W., Miserez, A., Evans-Lutterodt, K., Herrera, S., Gallana, I., et al. (2012). The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science, 336(6086), 1275.

    Article  Google Scholar 

  6. Tanner, K. E. (2012). Small but extremely tough. Science, 336(6086), 1237–1238.

    Article  Google Scholar 

  7. Amini, S., Tadayon, M., Idapalapati, S., & Miserez, A. (2015). The role of Quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nature Materials, 14(9), 943.

    Article  Google Scholar 

  8. Amini, S., Masic, A., Bertinetti, L., Teguh, J. S., Herrin, J. S., Zhu, X., et al. (2014). Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nature Communications, 5(1), 3187.

    Article  Google Scholar 

  9. Patek, S. N., Korff, W. L., & Caldwell, R. L. (2004). Biomechanics: Deadly strike mechanism of a mantis shrimp. Nature, 428(6985), 819.

    Article  Google Scholar 

  10. Lim, Y., Park, J., & Park, K. (2018). Automatic design of 3D conformal lightweight structures based on a tetrahedral mesh. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 499–506.

    Article  Google Scholar 

  11. Martin, J. J., Fiore, B. E., & Erb, R. M. (2015). Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Communications, 6, 8641.

    Article  Google Scholar 

  12. Yang, Y., Chen, Z., Song, X., Zhang, Z., Zhang, J., Shung, K. K., et al. (2017). Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Advanced Materials, 29, 1605750.

    Article  Google Scholar 

  13. Collino, R. R., Ray, T. R., Fleming, R. C., Sasaki, C. H., Haj-Hariri, H., & Begley, M. R. (2015). Acoustic field controlled patterning and assembly of anisotropic particles. Extreme Mechanics Letters, 5, 37–46.

    Article  Google Scholar 

  14. Walther, A., Bjurhager, I., Malho, J. M., Pere, J., Ruokolainen, J., Berglund, L. A., et al. (2010). Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Letters, 10(8), 2742–2748.

    Article  Google Scholar 

  15. Mirkhalaf, M., & Barthelat, F. (2016). Nacre-like materials using a simple doctor blading technique: Fabrication, testing and modeling. Journal of the Mechanical Behavior of Biomedical Materials, 56, 23–33.

    Article  Google Scholar 

  16. Christ, S., Schnabel, M., Vorndran, E., Groll, J., & Gbureck, U. (2015). Fiber reinforcement during 3D printing. Materials Letters, 139, 165–168.

    Article  Google Scholar 

  17. Yaraghi, N. A., Guarín Zapata, N., Grunenfelder, L. K., Hintsala, E., Bhowmick, S., Hiller, J. M., et al. (2016). A sinusoidally architected helicoidal biocomposite. Advanced Materials, 28(32), 6835–6844.

    Article  Google Scholar 

  18. Tsai, P. J., Ghosh, S., Wu, P., & Puri, I. K. (2016). Tailoring material stiffness by filler particle organization. ACS Applied Materials & Interfaces, 8(41), 27449–27453.

    Article  Google Scholar 

  19. Mahajan, C., Cormier, D. (2015). 3D printing of carbon fiber composites with preferentially aligned fibers. In IIE Annual Conference Proceedings Institute of Industrial Engineers, Inc. (IIE)

  20. Shah, A. U. R., Prabhakar, M. N., & Song, J. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites—A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 247–262.

    Article  Google Scholar 

  21. Jeffery, G. B. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society A, 102(715), 161–179.

    Article  MATH  Google Scholar 

  22. Moses, K. B., Advani, S. G., & Reinhardt, A. (2001). Investigation of fiber motion near solid boundaries in simple shear flow. Rheologica Acta, 40(3), 296–306.

    Article  Google Scholar 

  23. Ranganathan, S., & Advani, S. G. (1991). Fiber–fiber interactions in homogeneous flows of nondilute suspensions. Journal of Rheology, 35(35), 1499–1522.

    Article  Google Scholar 

  24. Guell, D., & Bénard, A. (1997). Flow-induced alignment in composite materials: Current applications and future prospects. In Flow-Induced Alignment in Composite Materials (pp. 1–42).

  25. Cox, R. G. (2006). The motion of long slender bodies in a viscous fluid. Part 1. General theory. Journal of Fluid Mechanics, 45(4), 625–657.

    Article  MathSciNet  Google Scholar 

  26. Kim, J. W., & Lee, D. G. (2014). Study on the fiber orientation during compression molding of reinforced thermoplastic composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 335–339.

    Article  MathSciNet  Google Scholar 

  27. Studart, A. R. (2013). Biological and bioinspired composites with spatially tunable heterogeneous architectures. Advanced Functional Materials, 23(36), 4423–4436.

    Article  Google Scholar 

  28. Liu, Z., Zhu, Y., Jiao, D., Weng, Z., Zhang, Z., & Ritchie, R. O. (2016). Enhanced protective role in materials with gradient structural orientations: Lessons from nature. Acta Biomaterialia, 44, 31–40.

    Article  Google Scholar 

  29. Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M. K., Gladman, A. S., Neels, A., et al. (2017). Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials, 27(12), 1604619.

    Article  Google Scholar 

  30. Le, H. F., Bouville, F., Niebel, T. P., & Studart, A. R. (2015). Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Materials, 14(11), 1172–1179.

    Article  Google Scholar 

  31. Neagu, R. C., Gamstedt, E. K., & Lindström, M. (2005). Influence of wood-fibre hygroexpansion on the dimensional instability of fibre mats and composites. Composites Part A Applied Science and Manufacturing, 36(6), 772–788.

    Article  Google Scholar 

  32. Carman, G. P., & Reifsnider, K. L. (1992). Micromechanics of short-fiber composites. Composites Science and Technology, 43(2), 137–146.

    Article  Google Scholar 

  33. Omidi, M., Hossein, R. D. T., Milani, A. S., Seethaler, R. J., & Arasteh, R. (2010). Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon, 48(11), 3218–3228.

    Article  Google Scholar 

  34. Martone, A., Faiella, G., Antonucci, V., Giordano, M., & Zarrelli, M. (2011). The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix. Composites Science and Technology, 71(8), 1117–1123.

    Article  Google Scholar 

  35. Agarwal, B. D., & Broutman, L. J. (1980) Analysis and performance of fiber composites. Journal of Applied Mechanics, 48(1), 213.

    Article  Google Scholar 

  36. Allred, R. E., & Schuster, D. M. (1973). The impact toughness of discontinuous boron-reinforced epoxy composites. Journal of Materials Science, 8(2), 245–250.

    Article  Google Scholar 

  37. Cottrell, A. H. (1964). Strong solids. Proceedings of the Royal Society of London, 282(1388), 2–9.

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Key R&D Program of China (2018YFB1105100), the Key Scientific and Technological Project of Jilin Province (No. 20170204061GX) and The Provincial Academic Joint Construction Project of Jilin Province (No. SXGJQY2017-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingping Liu or Lei Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Li, B., Song, Z. et al. 3D Printing of Bioinspired Structural Materials with Fibers Induced by Doctor Blading Process. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 89–99 (2019). https://doi.org/10.1007/s40684-019-00030-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00030-7

Keywords

Navigation