Skip to main content
Log in

Emerging Technologies and Wearables for Monitoring and Managing Sleep Disorders in Patients with Cardiovascular Disease

  • REVIEW
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Wearable technologies, both clinical and consumer devices, have gained tremendous popularity in recent years. They can monitor various parameters including sleep. Sleep physicians are now commonly presented with data from these devices. In this paper, we review the available technologies and the evidence behind their validity to detect sleep disorders associated with cardiovascular diseases.

Recent Findings

Newer-generation consumer wearables utilize accelerometry and photoplethysmography (PPG) to estimate sleep duration and sleep staging. Studies have found that these devices frequently overestimate sleep duration, particularly in poor sleepers. Technologies used to detect sleep apnea, including PPG, convolutional neural network (CNN), heart rate variability (HRV), and acoustic sensing, among others, show promising results. There is limited data about wearables for the diagnosis of restless leg syndrome and circadian disorders.

Summary

Wearable consumer and clinical devices that detect sleep parameters using a variety of newer technologies are being produced at a staggering rate. A wealth of literature can be found about the validity of the generated data against gold standard methods. This body of knowledge aids clinicians in interpreting information from these devices. Longitudinal data generated by wearables holds transformative potential for sleep medicine practice and research. Nevertheless, caution is crucial, especially as consumer devices lack validation for diagnosing and monitoring sleep disorders in clinical settings, particularly among patients with cardiovascular diseases. While judicious use may enhance sleep health involvement and enable longitudinal disease monitoring, further research is needed before routinely integrating these devices into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Manolis TA, Manolis AA, Apostolopoulos EJ, Melita H, Manolis AS. Cardiovascular complications of sleep disorders: a better night’s sleep for a healthier heart / from bench to bedside. Curr Vasc Pharmacol. 2021;19(2):210–32.

    Article  CAS  PubMed  Google Scholar 

  2. Korostovtseva L, Bochkarev M, Sviryaev Y. Sleep and cardiovascular risk. Sleep Med Clin. 2021;16(3):485–97.

    Article  PubMed  Google Scholar 

  3. Han H, Wang Y, Li T, Feng C, Kaliszewski C, Su Y, et al. Sleep duration and risks of incident cardiovascular disease and mortality among people with type 2 diabetes. Diabetes Care. 2023;46(1):101–10.

    Article  PubMed  Google Scholar 

  4. Covassin N, Singh P. Sleep duration and cardiovascular disease risk: epidemiologic and experimental evidence. Sleep Med Clin. 2016;11(1):81–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cappuccio FP, Miller MA. Sleep and cardio-metabolic disease. Curr Cardiol Rep. 2017;19(11):110.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017;136(19):1840–50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol. 2017;69(7):841–58.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017;74(Pt B):321–9.

    Article  PubMed  Google Scholar 

  9. Bertisch SM, Pollock BD, Mittleman MA, Buysse DJ, Bazzano LA, Gottlieb DJ, et al. Insomnia with objective short sleep duration and risk of incident cardiovascular disease and all-cause mortality: sleep heart health study. Sleep. 2018;41(6):zsy047.

  10. Domínguez F, Fuster V, Fernández-Alvira JM, Fernández-Friera L, López-Melgar B, Blanco-Rojo R, et al. Association of sleep duration and quality with subclinical atherosclerosis. J Am Coll Cardiol. 2019;73(2):134–44.

    Article  PubMed  Google Scholar 

  11. Lee S, Chu Y, Ryu J, Park YJ, Yang S, Koh SB. Artificial intelligence for detection of cardiovascular-related diseases from wearable devices: a systematic review and meta-analysis. Yonsei Med J. 2022;63(Suppl):S93-s107.

    Article  PubMed  PubMed Central  Google Scholar 

  12. U.S. Food and Drug Administration. General wellness: policy for low risk devices. Guidance for industry and food and drug administration staff 2019. Available from: https://www.fda.gov/media/90652/download. Accessed 1 Jan 2024.

  13. Lloyd-Jones DM, Allen NB, Anderson CAM, Black T, Brewer LC, Foraker RE, et al. Life’s essential 8: updating and enhancing the American Heart Association’s construct of cardiovascular health: a presidential advisory from the American Heart Association. Circulation. 2022;146(5):e18–43.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smith MT, McCrae CS, Cheung J, Martin JL, Harrod CG, Heald JL, et al. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2018;14(7):1231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miller DJ, Sargent C, Roach GD. A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults. Sensors (Basel). 2022;22(16):6317.

  16. Roberts DM, Schade MM, Mathew GM, Gartenberg D, Buxton OM. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep. 2020;43(7):zsaa045.

  17. Dong X, Yang S, Guo Y, Lv P, Wang M, Li Y. Validation of Fitbit Charge 4 for assessing sleep in Chinese patients with chronic insomnia: a comparison against polysomnography and actigraphy. PLoS ONE. 2022;17(10):e0275287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hathorn T, Byun YJ, Rosen R, Sharma A. Clinical utility of smartphone applications for sleep physicians. Sleep Breath. 2023;6:2371–7. A recent review assessing currently available smartphone applications for sleep and their marketed uses.

    Article  Google Scholar 

  19. Ferguson T, Olds T, Curtis R, Blake H, Crozier AJ, Dankiw K, et al. Effectiveness of wearable activity trackers to increase physical activity and improve health: a systematic review of systematic reviews and meta-analyses. Lancet Digit Health. 2022;4(8):e615–26.

    Article  CAS  PubMed  Google Scholar 

  20. Berryhill S, Morton CJ, Dean A, Berryhill A, Provencio-Dean N, Patel SI, et al. Effect of wearables on sleep in healthy individuals: a randomized crossover trial and validation study. J Clin Sleep Med. 2020;16(5):775–83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aji M, Glozier N, Bartlett DJ, Grunstein RR, Calvo RA, Marshall NS, et al. The effectiveness of digital insomnia treatment with adjunctive wearable technology: a pilot randomized controlled trial. Behav Sleep Med. 2022;20(5):570–83.

    Article  PubMed  Google Scholar 

  22. Nobre B, Rocha I, Morin CM, Cruz MME. Insomnia and circadian misalignment: an underexplored interaction towards cardiometabolic risk. Sleep Sci. 2021;14(1):55–63.

    PubMed  PubMed Central  Google Scholar 

  23. Depner CM, Cheng PC, Devine JK, Khosla S, de Zambotti M, Robillard R, et al. Wearable technologies for developing sleep and circadian biomarkers: a summary of workshop discussions. Sleep. 2020;43(2):zsz254.

  24. Darwent D, Zhou X, van den Heuvel C, Sargent C, Roach GD. The validity of temperature-sensitive ingestible capsules for measuring core body temperature in laboratory protocols. Chronobiol Int. 2011;28(8):719–26.

    Article  PubMed  Google Scholar 

  25. Cheng P, Walch O, Huang Y, Mayer C, Sagong C, Cuamatzi Castelan A, et al. Predicting circadian misalignment with wearable technology: validation of wrist-worn actigraphy and photometry in night shift workers. Sleep. 2021;44(2):zsaa180.

  26. Huang Y, Mayer C, Cheng P, Siddula A, Burgess HJ, Drake C, et al. Predicting circadian phase across populations: a comparison of mathematical models and wearable devices. Sleep. 2021;44(10):zsab126.

  27. Puranik S, Morales A. Heart rate estimation of PPG signals with simultaneous accelerometry using adaptive neural network filtering. IEEE Trans Consum Electron. 2019;66(1):69–76.

    Article  Google Scholar 

  28. Kinnunen H, Rantanen A, Kenttä T, Koskimäki H. Feasible assessment of recovery and cardiovascular health: accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol Meas. 2020;41(4):04nt1.

    Article  Google Scholar 

  29. Wang S, Xuan W, Chen D, Gu Y, Liu F, Chen J, et al. Machine learning assisted wearable wireless device for sleep apnea syndrome diagnosis. Biosensors (Basel). 2023;13(4):483.

  30. Hayano J, Barros AK, Kamiya A, Ohte N, Yasuma F. Assessment of pulse rate variability by the method of pulse frequency demodulation. Biomed Eng Online. 2005;4:62.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Al-Naggar NQ, Al-Hammadi HM, Al-Fusail AM, Al-Shaebi ZA. Design of a remote real-time monitoring system for multiple physiological parameters based on smartphone. J Healthcare Eng. 2019;2019:5674673.

    Article  Google Scholar 

  32. Massie F, Mendes de Almeida D, Dreesen P, Thijs I, Vranken J, Klerkx S. An evaluation of the NightOwl home sleep apnea testing system. J Clin Sleep Med. 2018;14(10):1791–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gu W, Leung L, Kwok KC, Wu IC, Folz RJ, Chiang AA. Belun Ring Platform: a novel home sleep apnea testing system for assessment of obstructive sleep apnea. J Clin Sleep Med. 2020;16(9):1611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Younes M, Soiferman M, Thompson W, Giannouli E. Performance of a new portable wireless sleep monitor. J Clin Sleep Med. 2017;13(2):245–58.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen X, Jin X, Zhang J, Ho KW, Wei Y, Cheng H. Validation of a wearable forehead sleep recorder against polysomnography in sleep staging and desaturation events in a clinical sample. J Clin Sleep Med. 2023;19(4):711–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Williams RJ, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1989;1(2):270–80.

    Article  Google Scholar 

  37. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

    Article  Google Scholar 

  38. Wang L, Lin Y, Wang J. A RR interval based automated apnea detection approach using residual network. Comput Methods Programs Biomed. 2019;176:93–104.

    Article  PubMed  Google Scholar 

  39. Urtnasan E, Park JU, Joo EY, Lee KJ. Identification of sleep apnea severity based on deep learning from a short-term normal ECG. J Korean Med Sci. 2020;35(47):e399.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marcos JV, Hornero R, Alvarez D, Nabney IT, Del Campo F, Zamarrón C. The classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome. Physiol Meas. 2010;31(3):375–94.

    Article  CAS  PubMed  Google Scholar 

  41. Luo J, Liu H, Gao X, Wang B, Zhu X, Shi Y, et al. A novel deep feature transfer-based OSA detection method using sleep sound signals. Physiol Meas. 2020;41(7):075009.

    Article  PubMed  Google Scholar 

  42. Kwon S, Kim HS, Kwon K, Kim H, Kim YS, Lee SH, et al. At-home wireless sleep monitoring patches for the clinical assessment of sleep quality and sleep apnea. Sci Adv. 2023;9(21):eadg9671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bazoukis G, Bollepalli SC, Chung CT, Li X, Tse G, Bartley BL, et al. Application of artificial intelligence in the diagnosis of sleep apnea. J Clin Sleep Med. 2023;19(7):1337–63. Review summarizing existing data about the role of ML techniques in the diagnosis of sleep-related breathing disorders.

    Article  PubMed  Google Scholar 

  44. Ucak S, Dissanayake HU, Sutherland K, de Chazal P, Cistulli PA. Heart rate variability and obstructive sleep apnea: current perspectives and novel technologies. J Sleep Res. 2021;30(4):e13274.

    Article  PubMed  Google Scholar 

  45. Fang SC, Wu YL, Tsai PS. Heart rate variability and risk of all-cause death and cardiovascular events in patients with cardiovascular disease: a meta-analysis of cohort studies. Biol Res Nurs. 2020;22(1):45–56.

    Article  PubMed  Google Scholar 

  46. Zarei A, Asl BM. Automatic classification of apnea and normal subjects using new features extracted from HRV and ECG-derived respiration signals. Biomed Signal Process Control. 2020;59:101927.

    Article  Google Scholar 

  47. Rahman MJ, Mahajan R, Morshed BI. Severity classification of obstructive sleep apnea using only heart rate variability measures with an ensemble classifier. IEEE EMBS Int Conf Biomed Health Inform (BHI). 2018;2018:33–6.

    Google Scholar 

  48. Devani N, Pramono RXA, Imtiaz SA, Bowyer S, Rodriguez-Villegas E, Mandal S. Accuracy and usability of AcuPebble SA100 for automated diagnosis of obstructive sleep apnoea in the home environment setting: an evaluation study. BMJ Open. 2021;11(12):e046803.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu Y, Ou Q, Cheng Y, Lao M, Pei G. Comparative study of a wearable intelligent sleep monitor and polysomnography monitor for the diagnosis of obstructive sleep apnea. Sleep Breath. 2023;27(1):205–12.

    Article  PubMed  Google Scholar 

  50. Martinot JB, Cuthbert V, Le-Dong NN, Coumans N, De Marneffe D, Letesson C, et al. Clinical validation of a mandibular movement signal based system for the diagnosis of pediatric sleep apnea. Pediatr Pulmonol. 2022;57(8):1904–13.

    Article  PubMed  Google Scholar 

  51. Raphelson JR, Ahmed IM, Ancoli-Israel S, Ojile J, Pearson S, Bennett N, et al. Evaluation of a novel device to assess obstructive sleep apnea and body position. J Clin Sleep Med. 2023;19(9):1643–9.

    Article  PubMed  Google Scholar 

  52. Khalil C, Zarabi S, Kirkham K, Soni V, Li Q, Huszti E, et al. Validity of non-contact methods for diagnosis of obstructive sleep apnea: a systematic review and meta-analysis. J Clin Anesth. 2023;87:111087. Systematic review and meta-analysis of to evaluate validity and accuracy of portable, non contact devices in the diagnosis of OSA.

    Article  PubMed  Google Scholar 

  53. Garrigue S, Pépin JL, Defaye P, Murgatroyd F, Poezevara Y, Clémenty J, et al. High prevalence of sleep apnea syndrome in patients with long-term pacing: the European Multicenter Polysomnographic Study. Circulation. 2007;115(13):1703–9.

    Article  PubMed  Google Scholar 

  54. Moubarak G, Bouzeman A, de Geyer DT, Bouleti C, Beuzelin C, Cazeau S. Variability in obstructive sleep apnea: analysis of pacemaker-detected respiratory disturbances. Heart Rhythm. 2017;14(3):359–64.

    Article  PubMed  Google Scholar 

  55. Ben Messaoud R, Khouri C, Pepin JL, Cracowski JL, Tamisier R, Barbieri F, et al. Implantable cardiac devices in sleep apnoea diagnosis: a systematic review and meta-analysis. Int J Cardiol. 2022;348:76–82. Systematic review and meta-analysis to evaluate the performance of implantable cardiac devices for sleep apnea diagnosis.

    Article  PubMed  Google Scholar 

  56. Defaye P, de la Cruz I, Martí-Almor J, Villuendas R, Bru P, Sénéchal J, et al. A pacemaker transthoracic impedance sensor with an advanced algorithm to identify severe sleep apnea: the DREAM European study. Heart Rhythm. 2014;11(5):842–8.

    Article  PubMed  Google Scholar 

  57. Defaye P, Mendelson M, Tamisier R, Jacon P, Venier S, Arnol N, et al. Validation of an apnea and hypopnea detection algorithm implemented in implantable cardioverter defibrillators. AIRLESS Stud Sci Rep. 2019;9(1):9597.

    Google Scholar 

  58. D’Onofrio A, La Rovere MT, Emdin M, Capucci A, Sinagra G, Bianchi V, et al. Implantable cardioverter-defibrillator-computed respiratory disturbance index accurately identifies severe sleep apnea: The DASAP-HF study. Heart Rhythm. 2018;15(2):211–7.

    Article  PubMed  Google Scholar 

  59. Linz D. Longitudinal sleep apnea burden monitoring: Implications for future smart wearable- and implantable- devices. Int J Cardiol. 2022;357:46–7.

    Article  PubMed  Google Scholar 

  60. Linz D, Baumert M, Desteghe L, Kadhim K, Vernooy K, Kalman JM, et al. Nightly sleep apnea severity in patients with atrial fibrillation: potential applications of long-term sleep apnea monitoring. Int J Cardiol Heart Vasc. 2019;24:100424.

    PubMed  PubMed Central  Google Scholar 

  61. Linz D, Brooks AG, Elliott AD, Nalliah CJ, Hendriks JML, Middeldorp ME, et al. Variability of sleep apnea severity and risk of atrial fibrillation: the VARIOSA-AF study. JACC Clin Electrophysiol. 2019;5(6):692–701.

    Article  PubMed  Google Scholar 

  62. Desteghe L, Hendriks JML, McEvoy RD, Chai-Coetzer CL, Dendale P, Sanders P, et al. The why, when and how to test for obstructive sleep apnea in patients with atrial fibrillation. Clin Res Cardiol. 2018;107(8):617–31.

    Article  PubMed  Google Scholar 

  63. Allen RP, Picchietti DL, Garcia-Borreguero D, Ondo WG, Walters AS, Winkelman JW, et al. Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria–history, rationale, description, and significance. Sleep Med. 2014;15(8):860–73.

    Article  PubMed  Google Scholar 

  64. Eguchi K, Nambu M, Ueshima K, Kuroda T. Prototyping of smart wearable socks for periodic limb movement home monitoring system. J Fiber Sci Technol. 2017;73:284–93.

    Article  Google Scholar 

  65. Brooks J, Feltch C, Lam J, Earley C, Robucci R, Agarwal S, et al. RestEaze: an emerging technology to characterize leg movements during sleep. J Med Devices. 2022;16(2):021010.

  66. de Zambotti M, Cellini N, Goldstone A, Colrain IM, Baker FC. Wearable sleep technology in clinical and research settings. Med Sci Sports Exerc. 2019;51(7):1538–57. Review of advances made in sleep wearable technologies and critical factors to consider when evaluating the use of these devices in clinical and research settings.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dhingra LS, Aminorroaya A, Oikonomou EK, Nargesi AA, Wilson FP, Krumholz HM, et al. Use of wearable devices in individuals with or at risk for cardiovascular disease in the US, 2019 to 2020. JAMA Netw Open. 2023;6(6):e2316634.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Huarng K-H, Yu T, Lee C. Adoption model of healthcare wearable devices. Technol Forecast Soc Chang. 2022;174:121286.

    Article  Google Scholar 

  69. O’Keeffe N, Scheid JL, West SL. Sedentary behavior and the use of wearable technology: an editorial. Int J Environ Res Public Health. 2020;17(12):4181.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jackson CL, Redline S, Emmons KM. Sleep as a potential fundamental contributor to disparities in cardiovascular health. Annu Rev Public Health. 2015;36:417–40.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165(9):1217–39.

    Article  PubMed  Google Scholar 

  72. Lévy P, Kohler M, McNicholas WT, Barbé F, McEvoy RD, Somers VK, et al. Obstructive sleep apnoea syndrome. Nat Rev Dis Primers. 2015;1:15015.

    Article  PubMed  Google Scholar 

  73. O’Mahony AM, Garvey JF, McNicholas WT. Technologic advances in the assessment and management of obstructive sleep apnoea beyond the apnoea-hypopnoea index: a narrative review. J Thorac Dis. 2020;12(9):5020–38.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–98.

    Article  PubMed  PubMed Central  Google Scholar 

  75. McNicholas WT, Bonsigore MR. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2007;29(1):156–78.

    Article  CAS  PubMed  Google Scholar 

  76. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):479–504.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chinoy ED, Cuellar JA, Huwa KE, Jameson JT, Watson CH, Bessman SC, et al. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep. 2021;44(5):zsaa291.

  78. Lyne CJ, Hamilton GS, Turton ARE, Stupar D, Mansfield DR. Validation of a single-use and reusable home sleep apnea test based on peripheral arterial tonometry compared to laboratory polysomnography for the diagnosis of obstructive sleep apnea. J Clin Sleep Med. 2023;19(8):1429–35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Drs. Sung, Hassan and Allam wrote the main manuscript. Dr. Hassan prepared Table 1, Dr. Sung prepared Table 2 and 3.

Corresponding author

Correspondence to J. Shirine Allam.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

Ee Rah Sung, Zakaa Hassan, and J. Shirine Allam declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, E.R., Hassan, Z. & Allam, J.S. Emerging Technologies and Wearables for Monitoring and Managing Sleep Disorders in Patients with Cardiovascular Disease. Curr Sleep Medicine Rep 10, 158–168 (2024). https://doi.org/10.1007/s40675-024-00280-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-024-00280-1

Keywords

Navigation