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Abstract

Purpose of Review Obstructive sleep apnoea (OSA) is increasingly found to have an impact on neurodegeneration. In this
review, we summarise recent findings on the association between OSA and brain morphology, cognition, and processes related
to Alzheimer’s dementia (AD) and Parkinson’s disease (PD).

Recent Findings Associations between OSA and alterations in grey and white matter, brain diffusivity, and deficits in memory,
attention, and executive control were reported. Furthermore, OSA was correlated with higher risks of developing AD and PD and
associated pathophysiology. Treatment was found to alleviate but not reverse some of the damage.

Summary There are strong indications that OSA plays a major role in neurodegenerative processes. The broad picture however
remains elusive, likely due to insufficient sample sizes, heterogeneous outcomes, and OSA definitions failing to quantify the
disorder’s sub-processes. While studies resolving these issues are required, the available evidence shows OSA to be a promising
target to slow neurodegeneration and delay the onset of related disorders.
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Introduction

Obstructive sleep apnoea (OSA) is a common form of sleep-
disordered breathing affecting around one-seventh of the
world’s population [1]. The disorder is characterised by recur-
rent obstruction of the upper airway, resulting in periods of
reduced or absent breathing (intermittent hypoxia) and sleep
fragmentation. While often asymptomatic, symptoms can in-
clude among others excessive daytime sleepiness, loud snor-
ing, and mood changes such as depression or irritability and
morning headaches [2]. The gold standard in diagnosing OSA
is through overnight polysomnography performed either in a
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sleep lab or at home, with the primary metric being the
apnoea-hypopnea index (AHI), which quantifies multiple
characteristics such as absence or reductions in airflow, oxy-
gen desaturations, or arousal [2—4]. Treatments typically in-
clude lifestyle changes to counteract risk factors such as obe-
sity, alcohol intake, lack of exercise or smoking, and contin-
uous positive airway pressure (CPAP) during the night, which
keeps the airways open [2]. Alternatively, oral devices or, in
extreme cases, surgical procedures are available [2]. A grow-
ing body of evidence has shown the impact of OSA on re-
duced cognition [5-9], brain morphology [3, 10-13], and neu-
rodegenerative pathophysiology [11, 14—18]. Furthermore, it
has been shown that the treatment of OSA mitigates some of
its negative consequences [13, 16, 19-21], suggesting that,
with readily available treatment options, OSA is a promising
target to delay the onset of neurodegenerative disorders such
as dementia, Alzheimer’s disease (AD), or Parkinson’s dis-
ease (PD). The present review summarises findings based on
adult populations published between 2018 and 2021 (see
Tables 1 and 2) regarding the effect of obstructive sleep ap-
noea on brain morphology, cognition, and the two most com-
mon neurodegenerative disorders: Alzheimer’s dementia and
Parkinson’s disease.
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(FA) or WM hyperintensity volume, while subjects with mod-
erate to severe OSA showed lower axonal diffusivity in the
corpus callosum (CC) [13]. A similar result has also been
reported by Zhang et al. (2019) (N = 44), where subjects with
moderate-severe OSA exhibited significant lower FA and
higher mean and radial diffusivity in the anterior CC [25].
Furthermore, Koo et al. (2020) (N = 79, male only) found
OSA to be associated with lower FA in the bilateral anterior
thalamic radiations and the right uncinated fasciculus [26].
Low FA is considered to be an indication of poor WM integ-
rity, while low diffusivity has been observed in acute patho-
logical processes associated with restricted water movement
in cells, such as reactive gliosis, axonal damage, or cytotoxic
oedema [13]. Together, it was hypothesised that increased
GM may represent pre-symptomatic stages of OSA-caused
brain degeneration characterised by cerebral oedema, in-
creased amyloid deposition, and reactive gliosis, which could
eventually lead to reduced GM and WM integrity as the dis-
ease progresses [11, 21]. Indeed, signs of OSA-related brain
degeneration were detected by Weihs et al. (2021) (N = 690),
who found that OSA severity, defined by both AHI and ODI,
is associated with age-related local brain atrophy [3]. While no
studies regarding treatment were published recently, previous
studies found indications that treatment of OSA was able to
alleviate OSA-associated damage to the brain [13, 20, 26].

Sleep Apnoea and Cognition

Sleep apnoea has been associated with cognitive dysfunction.
In a meta-analysis based on 19,940 subjects, those with OSA
were 2.44 times more likely to develop mild cognitive impair-
ment (MCI), with women being at a higher risk (RR = 2.06)
than men (RR = 1.18) [27]. Similarly, Beaudin et al. (2020) (N
= 1084) found OSA presence and nocturnal hypoxia to be
associated with higher cognitive impairment and the presence
of moderate-severe OSA with higher odds of having MCI [5].
Interestingly, according to a study performed on 101 subjects
by Gagnon et al. (2019), subjects with OSA and MCI seem to
be less aware of their cognitive deficits than subjects without
OSA [28]. There are two prevalent schools of thought in
which OSA is believed to impact cognition, which likely act
simultaneously. In the short term, cognitive impairment can be
a cause of OSA-induced sleep fragmentation and daytime
sleepiness. Non-rapid eye movement (NREM) sleep for ex-
ample plays an important role in memory processing and con-
solidation [29]. In an experiment performed by Djonlagic
et al. (2020) (N = 53), subjects were asked to perform a motor
sequence test in the evening and again in the morning to assess
motor memory consolidation [6]. Subjects suffering from
OSA during rapid eye movement (REM) and NREM sleep
showed significantly lower improvements in the morning tests
compared to subjects with no OSA or OSA exclusively during

@ Springer

REM sleep [6]. In the long term, the impact of OSA could be
the result of hypoxia and sleep fragmentation-induced brain
changes (see above), resulting in cognitive dysfunction. This
area was investigated by most of the recent studies, but due to
the wide variety of different cognitive tests, comparing the
results is complicated. An attempt to resolve this was pro-
posed by D’Rozario et al. (2018), who developed a brief 30-
min assessment which evaluates neurobehavioural function
[7]. Overall, associations were found between OSA and de-
creased attention [5, 7, 8, 30, 31], memory [5, 26, 32], and
executive function [7, 8], which are generally in line with
previous findings. The same can be seen in the results of
analyses studying OSA-associated severity markers such as
AHI or ODI, where the results often fail to replicate the asso-
ciations between the cognitive markers and the presence of
OSA [5, 7, 30, 31]. Specifically, André et al. (2020) found
no significant correlations between OSA-associated parame-
ters and cognition (global cognitive function, processing
speed, attention, working memory, executive function, and
episodic memory) [11]. These discrepancies might in part
not only be due to low sample sizes and differences in study
populations and methodologies but also be due to the presence
of OSA-associated comorbidities, which might influence cog-
nition or the impact of the length between the beginning of the
disorder and diagnosis.

Short-term CPAP treatment has been shown to improve,
but not reverse some cognitive deficits. Bhat et al. (2018) (N =
182) found significant improvements in objective vigilance in
subjects with severe OSA after at least 1 month of CPAP
treatment [33]; Jackson et al. (2018) (N = 141) found that 3
months of CPAP resulted in significant improvements, but not
reversal to normal neuropsychological function (verbal fluen-
cy, psychomotor performance, complex cognitive function,
memory, set shifting, mood, quality of life, but not working
memory) in subjects with mild-moderate OSA [8]; and
Pecotic et al. (2019) (N = 48) reported slight significant im-
provements in convergent thinking, perception, and psycho-
motor performance after 1 year of CPAP treatment [34].
Furthermore, in a meta-analysis based on 1926 subjects,
M.L. Wang et al. (2020) reported that CPAP treatment (aver-
age treatment length: 6 weeks) had a (borderline) significant
effect on attention and information processing speed in sub-
jects with severe OSA, with no effects being identified for
attention and speed of information processing, executive func-
tion, or memory [9]. After the onset of MCI, Richards et al.
(2019) N =54) and Y. Wang et al. (2020) (N = 17) found that
subjects with MCI and mild OSA showed improved
psychomotor/cognitive processing speed after 1 year of
CPAP treatment [35, 36]. One reason for the lack of strong
effects is due to poor CPAP treatment compliance. It is how-
ever also likely that the improvements do not represent long-
term permanent changes but are rather related to reduced
sleepiness and sleep fragmentation as a result of the CPAP
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treatment. Indeed, all but M.L. Wang et al. (2020) and Y.
Wang (2020) reported a significant decrease in daytime sleep-
iness after treatment [8, 9, 33, 34, 36], although Bhat et al.
(2018) did not find changes in sleepiness to be predictive of
improved vigilance [33]. However, older studies based on
limited data have found that cognitive function did not im-
prove after CPAP in subjects who did not experience subjec-
tive daytime sleepiness, irrespective of OSA severity [9, 37].

Sleep Apnoea and Alzheimer’s Dementia

Alzheimer’s dementia (AD) is an irreversible and deadly neu-
rodegenerative disorder characterised by deteriorating cogni-
tive abilities. While its cause is still poorly understood, pro-
gression of the disorder is largely associated with amyloid
plaques, neurofibrillary tangle consisting of tau protein, and
loss of neuronal connections in the brain [18]. Regarding sleep
apnoea, there is a complex relationship between OSA and
Alzheimer’s dementia. While none is responsible for the oth-
er, both influence each other’s pathological processes
resulting in a possible bidirectional relationship [38]. In the
one direction, AD-related changes in the brain result in sleep
dysregulation and, as a consequence, high prevalence of sleep
disorders such as OSA in Alzheimer’s disease patients [38]. In
the other direction, OSA has been proposed as a risk factor for
AD as it promotes or enhances AD-related subclinical patho-
logical processes. In fact, multiple recent studies based on
large cohorts have shown that subjects with OSA are, depend-
ing on the study, between 1.49 and 2.21 times more likely to
develop AD than individuals not suffering from OSA [16, 17,
39—41]. Furthermore, Bubu et al. (2021) showed that individ-
uals with OSA have shorter progression times between cog-
nitively normal (CN) to mild cognitive impairment (MCI) or
MCI to AD [17]. One proposed mechanism through which
OSA could have an effect on AD pathology is via a dysregu-
lation of the A3 metabolism caused by intermittent hypoxia
and reduced clearance from interstitial to cerebrospinal fluid
(CSF) caused by sleep fragmentation, resulting in decreased
CSF Af3 40 and 42 levels and increased A3 plaque formation.
Recent studies support this, with Liguori et al. (2019) finding
that CSF A340 and 42 levels were lower in OSA patients than
those in control subjects but higher than those in AD subjects
[14]; Jackson et al. (2020) (N = 46) finding that OSA severity,
specifically during NREM sleep, was associated with in-
creased brain A3 burden [42]; and André et al. (2020) identi-
fying a significant association between increased florbetapir, a
marker for amyloid plaques, uptake, and OSA presence [11].
Longitudinally, in a 2-year follow-up study on 208 CN sub-
jects, Sharma et al. (2018) identified a significant association
between the annual rate of change of A3 42 and OSA sever-
ity, which was stronger than the change predicted by ApoE4,
currently the strongest risk factor known for AD [15]. This

was also observed by a study from Bubu et al. (2019) on 1639
CN and MCI subjects (mean follow-up period: 2.52 + 0.51
years), who additionally observed that subjects with OSA ex-
perienced a greater annual rate of change in florbetapir uptake,
indicating a greater buildup of amyloid plaques and providing
further validity to this mechanism [18]. Similar results were
found in autopsied hippocampi and brainstems of 34 subjects
with OSA [43]. While not identifying significant correlations
in the brainstem, the authors found hypoxia severity to be a
significant predictor of A3 plaque burden in the hippocampus
[43]. Concerning tau, the relationship between the protein and
sleep apnoea is even less understood. While some studies
found no association between OSA and CSF total, phosphor-
ylated tau, or neurofibrillary tangles [14, 15, 43], others did,
although it remains to be seen if these are caused by OSA itself
or if they are age-related early manifestations of AD-related
pathological processes [18, 44, 45]. With no AD treatment
being available, prevention through treatment of risk factors
is currently the only way to delay the onset of AD, with OSA
being a viable target. Indeed, greater CPAP-induced OSA
improvement was associated with decreased CSF A3 and
Tau levels in 18 OSA subjects, who underwent 1-4 months
of CPAP treatment, and OSA subjects receiving CPAP were
found to have a lower risk of developing AD than subjects
without CPAP treatment [16, 19].

Sleep Apnoea and Parkinson’s Disease

Parkinson’s disease (PD) is a progressive and, currently,
untreatable neurodegenerative disorder primarily affecting
the motor system. OSA often coincides with PD, although
reported prevalence varies widely between 20 and 70.1%
[46]. There are indications that OSA may act as a risk factor
before the onset of PD. In a recent meta-analysis performed by
Sun et al. (2020), subjects with OSA were 1.56 times more
likely to develop PD than controls [47]. The exact mecha-
nisms at play are still not fully understood, but, similar to
AD, OSA, although not causing the disorder, likely plays a
role in promoting or enhancing PD-associated pre-clinical
pathological processes. Concurrent with this, Sun et al.
(2019) (N = 88) reported that both OSA severity and hypoxia
markers were associated with increased levels of plasma o-
synuclein, a key protein involved in PD pathology, in healthy
adults [48]. With the onset of PD, the relationship between
OSA and PD becomes more complex. While there is no evi-
dence that the incidence of OSA is higher in the PD than that
in the non-PD population, OSA has an impact on the disorder
when present [47]. A meta-analysis performed by Elfi et al.
(2020) found that subjects with PD and OSA showed greater
cognitive and motor deficits than subjects with PD but without
OSA [49]. Similar results were also observed by Meng et al.
(2020) and Kaminska et al. (2018) (same sample, N = 67),
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who additionally found that 12-month CPAP treatment result-
ed in improved PD-associated non-motor symptoms and a
stabilisation of motor function [50, 51]. While this indicates
that OSA has a detrimental effect on PD-associated cognitive
and motor functions, there are also findings that PD has an
effect on OSA severity. In the early stages of PD, the disorder
has protective effects due to PD-induced weight loss, one of
the biggest risk factors for OSA, while PD-related factors such
as impaired ventilation control and upper airway motor insta-
bility might increase OSA severity as the disorder progresses
[52]. Support for the latter was published by Bahia et al.
(2019) (N = 48), where PD subjects with a laryngopharyngeal
motor dysfunction were three times more likely to have OSA
than those without the dysfunction [53].

Conclusion

There is a complex relationship between OSA and neurodegen-
eration, with both influencing each other and different aspects of
the disorder having different effects. In this review, we have
summarised recent findings on the association between OSA
and brain structure, cognition, and the two most common neuro-
degenerative disorders, namely Alzheimer’s dementia and
Parkinson’s disease. Overall, recent studies reported associations
between OSA and grey and white matter alterations [3, 1012,
20, 22-24], and changes in brain diffusion [13, 25, 26], as well as
impaired cognition, specifically regarding memory [5, 6, 26, 32],
attention [5, 7, 8, 30, 31], and executive control [7, 8].
Furthermore, subjects with OSA were found to have a higher
risk of developing mild cognitive impairment (MCI) [5, 27],
Alzheimer’s dementia [16, 17, 39—41], and Parkinson’s disease
[47], and show shorter progression times between cognitively
normal and MCI or MCI and Alzheimer’s dementia [17]. But
while these studies have added further insights, there are some
discrepancies in their results and large gaps remain to get a com-
prehensive overview of the exact mechanism at play here. Next
to the problem of generally small sample sizes and the presence
of a complex and dynamic system influenced by a variety of
factors, the lack of conclusive effects might be due to the way
OSA itself is defined. A large majority of studies considered in
this review have defined OSA as a categorical variable based on
various AHI cutoffs, medical diagnoses, or self-reported symp-
toms. Next to the difficulty of comparing such results between
different studies, there is also the question of what such an asso-
ciation represents, as such a broad phenotype makes it close to
impossible to distinguish between effects caused by OSA and the
ones caused by OSA-associated comorbidities such as obesity,
hypertension, diabetes, or depression [54]. Using the continuous
AHI instead could be a viable solution, although this does not
resolve all issues either. While this index, in combination with
other symptoms, is enough to diagnose OSA in a clinical setting,
it might not be valid to investigate specific OSA-related
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pathways [4]. Firstly, the index combines both hypoxic and sleep
fragmentation-related events, which individually influence neu-
rodegenerative processes, but not necessarily in an additive fash-
ion. Furthermore, the index also only assesses the frequency,
while completely ignoring the length of the individual events.
A subject with few but very long events would therefore be
considered “healthier” than a subject with numerous but short
events, especially if cutoffs are used. Alternative scores such as
the arousal index and oxygen desaturation index, or to incorpo-
rate length, metrics such as percentage/time of sleep spent below
a certain oxygen saturation threshold, could prove to be much
more informative.

In conclusion, while not being the cause, there are strong
indications that OSA is a major risk factor for neurodegener-
ation and neurodegenerative disorders. OSA treatment was
shown to alleviate some of the damage and improve cognitive
deficits. The underlying mechanisms, however, are yet to be
fully understood, highlighting the need for large, preferably
longitudinal studies based on standardised metrics, and more
importantly, assessing OSA-related hypoxia and sleep frag-
mentation separately. However, with no viable cure available
for most neurodegenerative disorders, OSA shows to be a
promising target to delay their onset.
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