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Abstract
Purpose of the Review  Systemic sclerosis (SSc) is a condition of dermal and visceral scar 
formation characterized by immune dysregulation and inflammatory fibrosis. Approximately 
90% of SSc patients develop interstitial lung disease (ILD), and it is the leading cause 
of morbidity and mortality. Further understanding of immune-mediated fibroproliferative 
mechanisms has the potential to catalyze novel treatment approaches in this difficult-
to-treat disease.
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Recent Findings  Recent advances have demonstrated the critical role of aberrant innate 
immune activation mediated by mitochondrial DNA (mtDNA) through interactions with 
toll-like receptor 9 (TLR9) and cytosolic cyclic guanosine monophosphate-adenosine 
monophosphate synthase (cGAS).
Summary  In this review, we will discuss how the nature of the mtDNA, whether oxidized 
or mutated, and its mechanism of release, either intracellularly or extracellularly, can 
amplify fibrogenesis by activating TLR9 and cGAS, and the novel insights gained by inter-
rogating these signaling pathways. Because the scope of this review is intended to gen-
erate hypotheses for future research, we conclude our discussion with several important 
unanswered questions.

Introduction
Systemic sclerosis (SSc) is a chronic, multisystem 
autoimmune disorder characterized by microvascular 
damage, immune dysfunction, and fibrotic remod-
eling of the skin and internal organs. Interstitial lung 
disease (ILD) affects approximately 90% of patients 
with this disorder [1] and is the leading cause of SSc-
related mortality [2•]. Current treatment strategies 
include non-specific immunomodulatory agents that 
exhibit variable efficacy in improving or stabilizing 
lung function [3•], and anti-fibrotic drugs that delay 
disease progression in a subset of patients [4]. Thus, 
improved treatment options for this difficult-to-treat 
and, at times, devastating disease represent an unmet 
clinical need.
The mechanism(s) through which the loss of self-toler-
ance engenders tissue fibrosis are not well understood. 
Perturbations in adaptive immunity and tissue-resident 
fibroblast biology [5] are strongly implicated, whereas 
innate immune processes remain far less studied [6•]. 
Innate immune activation is stimulated by pattern rec-
ognition receptors (PRRs) that recognize broadly con-
served microbial epitopes termed “pathogen-associated 
molecular patterns” (PAMPs) derived from microbes 
and cell- or tissue-derived endogenous ligands termed 
“danger-associated molecular patterns” (DAMPs) [7]. 
Given the well-established immune etiology of SSc-ILD 
[1], studies of innate immunity may illuminate interve-
nable disease mechanisms that can be targeted for the 
development of PRR-specific therapies.
Mitochondria are increasingly recognized as contribu-
tors to immune activation through their ability to 
function as DAMPs [8•]. In response to cellular stress, 

several mitochondria-associated molecules are poten-
tially released into the extracellular compartment—
known as mitochondrial DAMPS—that have been 
shown to activate various immune receptors (summa-
rized in Table 1) and initiate proinflammatory signal-
ing pathways implicated in the pathogenesis of several 
diseases [9, 10], including SSc-ILD [11, 12]. Among the 
mitochondrial DAMPs that have been described, the 
fibroproliferative contribution of mitochondrial DNA 
(mtDNA) has been an active area of investigation; this 
review will focus specifically on mtDNA-induced PRR 
activation in the setting of SSc-ILD.
In addition to encoding mitochondrial genes, DNA 
derived from mitochondria functions as a potent 
DAMP for DNA-sensing PRRs [8•]. The mitochondrial 
genome is unique in both its circular structure [13] 
and its low to undetectable level of CpG methylation 
[14]. It is particularly prone to injury [15] and is suf-
ficiently distinct from nuclear DNA to elicit “non-self” 
responses from cytosolic DNA sensors [8•]. Intracel-
lular or “endogenous” sources of mtDNA include free 
DNA that is herniated into the cytosol from damaged 
mitochondria [16], while extracellular or “exogenous” 
mtDNA is generated by at least two known mecha-
nisms: either via regulated secretion of extracellular 
vesicles (EVs) containing intact mitochondria that 
may represent a form of defective mitophagy [17] or 
via the release of cell-free mtDNA during necropto-
sis [18]. Both intracellular [16] and extracellular [19] 
sources of mtDNA potently activate innate immu-
nity through interactions with PRRs such as toll-like 
receptor 9 (TLR9) [20] and cytosolic cyclic guanosine 
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monophosphate-adenosine monophosphate synthase 
(cGAS) [19]. Activation of these cytosolic DNA sen-
sors by mtDNA stimulates pro-inflammatory responses 
driven by a multitude of soluble mediators such as 
interleukin 1-beta (IL-1β), IL-6, IL-8, tumor necrosis 
factor-alpha (TNF-α), and type I interferons (IFNs) that 

have been previously reviewed elsewhere [21••, 22••]. 
This review synthesizes recent work characterizing the 
functional role of mtDNA as a DAMP for TLR9 and 
cGAS and the therapeutic potential of these interac-
tions in the context of SSc-ILD.

Damage and Repair of mtDNA
First identified in 1963, mtDNA is located in the mitochondrial matrix and 
is comprised of a double-stranded circular DNA molecule containing 37 
genes encoding 13 proteins involved in oxidative phosphorylation, 2 rRNAs, 
and 22 tRNAs [23]. The mitochondrial genome is particularly vulnerable 
to damage due to (1) its lack of protective histones, (2) limited number of 
DNA repair enzymes, (3) lipid-rich membranes that increase susceptibility 
to peroxidation chain byproducts, and (4) proximity to endogenous and 
exogenous reactive oxygen species (ROS) located in the inner mitochondrial 
membrane [23]. These processes are not only injurious to mtDNA, but also 
alter mitochondrial function in a manner that promotes fibroproliferative 
processes in the lung. For example, myofibroblast activation has been asso-
ciated with impaired mitochondrial redox homeostasis via transforming 
growth factor beta (TGFβ)-mediated NADPH oxidase 4 (NOX4) expression 
[24, 25] and aberrant induction of mitochondrial biogenesis and aerobic gly-
colysis through a TGFβ-dependent mechanism [26, 27]. Additionally, imbal-
ances in mitochondrial oxidation [28, 29] and metabolism [30] have been 
linked to recruitment of pro-fibrotic macrophages. While the contribution 

Table 1.   Mitochondrial DAMPs and associated immune receptor(s)

AIM2, absent in melanoma 2; ATP, adenosine triphosphate; DAMP, damage-associated molecular pattern; FPR, formyl peptide receptor; 
P2XR, purine receptor subtype X; P2YR, purine receptor subtype Y; PRR, pattern recognition receptor; mtDNA, mitochondrial DNA; NLRP3, 
NOD-like receptor protein 3; RAGE, receptor for advanced glycation end products; SUCNR1, succinate receptor 1; TFAM, mitochondrial 
transcription factor A; TLR9, toll-like receptor 9

Mitochondrial DAMP Receptor

mtDNA TLR9
cGAS
NLRP3
AIM2

ATP P2XR
P2YR
NLRP3 (via 

P2X7R)
TFAM RAGE
N-formyl peptides FPR
Succinate SUCNR1
Cardiolipin NLRP3
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of mitochondrial dysfunction in the pathogenesis of the sclerodermatous 
lung warrants its own dedicated review, our group [31] and others [32] have 
shown that aberrant mitochondrial function is reflected in mtDNA; thus, the 
remainder of this review will focus on the immunopathogenic role of mtDNA 
in the setting of SSc-ILD.

Given the propensity of the mitochondria to accumulate excessive quan-
tities of ROS, recent efforts have endeavored to connect this phenomenon 
with the SSc disease state. Studies have suggested a novel association between 
ROS-mediated mtDNA damage and SSc by showing that the skin [33] and 
lungs [34] of these patients are enriched for ROS. This proposed connection is 
supported by work demonstrating potential for a feedforward signaling loop 
where lung fibroblasts derived from SSc-ILD patients treated with exogenous 
TGFβ resulted in mitochondrial ROS production which, in turn, was found 
to be indispensable for TGFβ-mediated production of pro-fibrotic mediators 
such as alpha smooth muscle actin (αSMA), NOX4, and connective tissue 
growth factor (CTGF) [34]. Given the presence of fibrogenic ROS in the SSc-
ILD lung, it is not surprising that the resultant DNA oxidation, particularly 
nucleotides rich in 8-oxo-7,8-dihydroguanine (8-oxoG) lesions, amplifies 
TGFβ1 signaling [35]. ROS-mediated mutations in mtDNA-encoded respira-
tory chain enzymes have also demonstrated a significant association with 
TGFβ1 [36•], which may account for augmented TGFβ1 signaling observed 
in SSc-ILD lung fibroblasts [37]. Overall, these findings suggest a previously 
unknown connection between ROS, mtDNA, and SSc-ILD that might be lev-
eraged for therapeutic benefit.

The mitochondrial genome’s exquisite sensitivity to injury is mitigated 
by unique homeostatic processes. For example, heteroplasmy [38••] and 
high copy numbers of mtDNA [39] limit genomic damage and its associated 
dysfunction. Furthermore, the opposing mitochondrial processes of fusion 
(merging of two mitochondria into one larger organelle) and fission (the 
division of one mitochondrion into two new organelles) support mtDNA 
integrity [40]: fusion redistributes healthy mtDNA, while fission sequesters 
damaged mitochondria [41]. An additional mechanism involves mitophagy, 
an evolutionarily conserved catabolic process that eliminates excessive or 
damaged mitochondria [42]. While each of these mechanisms may contribute 
to autoimmune lung conditions such as SSc-ILD [43], most pertinent to this 
review is another maintenance process—the generation of mitochondrial 
DAMPS via extrusion of heavily damaged mtDNA into the cytosol or extra-
cellular space [44].

Mechanisms of mtDNA Release
The release of mtDNA from the mitochondrial matrix has considerable 
immunologic consequences, one of which involves its DAMP-related func-
tion [8•, 19] that stems from its genome being rich in hypomethylated CpG 
motifs and prone to oxidative damage [45] and/or mutagenesis [36•]. First 
described as an inflammatory mediator in 2004 [46], mtDNA has been 
framed as an endogenous ligand for DNA-sensing PRRs, with TLR9 and cGAS 
being the most extensively studied. Cytosolic and extracellular mtDNA can 

207



Role of Metabolism in Fibrosis: Translational Implications (S Bhattacharyya, Section Editor)

both function as agonists for these PRRs, where their contributions to inflam-
matory pathology have been extensively studied.

The presence of cytosolic mtDNA is a recently described and highly signifi-
cant phenomenon. The release of damaged mtDNA directly into the cytosol is 
believed to occur via mitochondrial outer membrane openings including the 
mitochondrial permeability transition pore (MPTP) [47], macropores formed 
by activation of BAX and BAK proteins [16], and/or via voltage-dependent 
anion channel (VDAC) oligomers [48]. Although largely unknown as to 
whether these mechanisms work in parallel or in concert, they are integral 
in facilitating the cytosolic release of both mutated [49] and oxidized [50] 
mtDNA. While various heteroplasmic mtDNA mutations have been shown 
to initiate pro-inflammatory responses in circulating monocytes [51], the role 
of oxidized mtDNA as an endogenous DAMP has been described in several 
conditions characterized by autoimmunity and inflammatory remodeling. 
For example, oxidized mtDNA containing an abundance of 8-oxoG lesions 
exhibited immune-activating properties when compared to mtDNA devoid of 
such oxidized lesions [52], demonstrating robust activation of TLR9 [20] and 
cGAS [19] in autoimmune conditions such as systemic lupus erythematosus 
(SLE) and rheumatoid arthritis (RA) [8•]. While similar observations have yet 
to made in SSc-ILD, it is intriguing to speculate whether perturbation(s) in 
TLR9 [11, 12] and cGAS [11, 53] activation seen in this condition are derived 
from the presence of cytosolic mtDNA, a possible convergent molecular path-
way linking divergent clinical states.

Mirroring its role as an intracellular DAMP, the immunopathogenic con-
tributions of mtDNA circulating in the extracellular compartment are equally 
compelling. Extracellular mtDNA has been broadly classified as cell-free or 
encapsulated within EVs [54]. While other forms of extracellular mtDNA have 
been identified, such as the mtDNA contained within cell-free mitochondria 
[18, 55] or neutrophil extracellular traps (NETs) [56], because the majority of 
work in this context has focused on mtDNA in its cell-free or EV-laden forms, 
the immunopathogenic potential of these entities will be discussed below.

Cell-free mtDNA (cf-mtDNA) accumulation has been archetypally attrib-
uted to necrosis-induced exocytosis of cellular contents into the extracellular 
space, but can also be associated with hypoxic, inflammatory, and oxidative 
stress [54, 55, 57]. Early studies describing this process in platelets [55, 57] 
have been complemented by studies of tissue trauma [54], where cf-mtDNA 
was shown to mediate inflammation by acting as an endogenous DAMP for 
TLR9 [58] and cGAS [59]. In studies conducted by our group [11, 31, 60] 
and others [12, 61], circulating cf-mtDNA predicted poor clinical outcomes 
in such diverse conditions as idiopathic pulmonary fibrosis (IPF), sarcoido-
sis, and, relevant to this review, SSc-ILD. In some settings, cf-mtDNA may 
be oxidized [45] or mutated [62]. Oxidized cf-mtDNA has been shown to 
be a potent endogenous ligand for TLR9 and cGAS in a variety of inflam-
matory lung diseases, including SSc-ILD, by amplifying TGFβ signaling and 
pro-fibrotic responses [63]. Far less is known about whether mutations in 
cf-mtDNA are associated with SSc-ILD, as reports of cf-mtDNA mutations are 
largely restricted to the oncology literature [64] where varying degrees of het-
eroplasmy have hampered identification of disease-specific gene variants [65] 
and their functional implications. Better understanding of the connection 
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between mtDNA oxidation, mutation, and DNA-sensing PRR activation 
can potentially elucidate novel molecular mechanisms of fibroproliferative 
disorders.

Extracellular mtDNA can also be cargoed within EVs released by cells at 
homeostasis and in response to various forms of stress [66]. Size-classified 
as exosomes (< 100 nm), microvesicles (100–1000 nm), or apoptotic bod-
ies (> 1000 nm) [66], EVs are viewed as facilitating cellular communication 
through the intercellular transport of nucleic acids and proteins. EVs have 
also been shown to contain mitochondrial components such as intact orga-
nelles, mtDNA, and mitochondrial proteins, all of which may function as 
inflammatory stimulants [66]. Of relevance to this review, our own work 
identified a previously unrecognized connection between EV-mtDNA and 
cytosolic DNA sensor activation in the context of SSc-ILD [11]. Specifically, 
in a study of a longitudinal patient cohort, we found that SSc-ILD plasma is 
enriched for EV-mtDNA that exhibited TLR9 and cGAS activating potential 
while also predicting the progression of lung disease reflected by a > 10% 
relative decline in forced vital capacity [11]. Although in our study EV-mtDNA 
did not exhibit aberrant oxidation, reports in related conditions show that 
oxidized EV-mtDNA potently activates TLR9 [67] and cGAS [68]. Depending 
on the cell of origin, these immunopathogenic functions may accompany 
context-dependent homeostatic roles. For example, bone marrow-derived 
mesenchymal stem cells extrude partially depolarized mitochondria via EVs 
as an oxidative stress induced survival response to repress TLR signaling [69], 
and injured renal tubular epithelial cells release EVs rich in mitochondria to 
initiate repair programs [70]. While similar processes remain unknown in 
SSc-ILD, further study of EV-mtDNA and its biological functions are needed 
to delineate its pleiotropic function in mediating both disease and physi-
ologic states.

Cytosolic DNA Sensors

The nature of the mtDNA and the mechanism of its release, either intracel-
lular or extracellular, directly impact its proinflammatory functions. However, 
therapies that would be expected to suppress oxidant induced mtDNA release, 
such as vitamins A and E, penicillamine, N-Acetyl cysteine, and Coenzyme 
Q10, have shown only limited efficacy in treating various clinical manifesta-
tions of SSc, including ILD [71]. Because extracellular mtDNA was not an 
endpoint in these studies, it is difficult to know whether the lack of clinical 
benefit relates to its DAMP effects. Nevertheless, the studies described thus far 
suggest that interventions aimed at mitigating the immunologic consequences 
of mtDNA represent a better treatment approach. In the next portion of this 
review, we will discuss recent advances in the understanding of TLR9 and 
cGAS, which belong to a family of cytosolic DNA sensors that can be activated 
by mtDNA, and how these findings may be translated into novel therapeutic 
strategies in the context of SSc-ILD.
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Toll‑like Receptor 9
As a member of the well-studied family of toll-like PRRs [72•], TLR9 was first 
identified in 2000 [73] and recognizes unmethylated CpG dinucleotides pre-
sent in certain bacteria and host-derived substances. In the resting state, TLR9 
resides in the endoplasmic reticulum (ER), and upon encountering unmeth-
ylated CpG dinucleotides, TLR9 undergoes UNC93B1-mediated endosome 
trafficking [74], proteolytic cleavage of its ectodomain [75], acidification-
induced CpG binding [76], and conformational changes [77] that result in 
recruitment of the adapter protein myeloid differentiation primary response 
gene-88 (MyD88) [74]. MyD88 interacts with interleukin-1 receptor-asso-
ciated kinase 4 (IRAK-4) and IRAK-1 [78], to recruit tumor necrosis factor 
receptor-associated factor 6 (TRAF6) and activate TGFβ associated kinase 1 
(TAK1) [79]. TAK1 phosphorylates IκB kinase (IKK) complex, which results 
in nuclear factor-kappa B (NF-κB) activation and subsequent transcription of 
proinflammatory cytokines such as IL-6, IL-12, and TNF-α [21••, 80]. TLR9’s 
function has been most well described in the context of PAMPs; however, 
because SSc-ILD is not known to result from invading microbes, TLR9’s inter-
actions with DAMPs may be more relevant in this setting.

A role for TLR9 has been proposed in models of sterile inflammation [81], 
tissue fibrosis [82] and, more recently, human SSc [63]. For example, Fang 
et al. described TLR9 enrichment in SSc skin biopsies that was accompanied 
by a transcriptional signature reflective of chronic TLR9 activation [63]. A 
possible contribution to disease pathogenesis was demonstrated when CpG-
stimulated dermal fibroblasts from these patients developed TGFβ-dependent 
TLR9 activation [63]. Analogous results were observed in SSc-ILD, a disease 
characterized in part by innate immune overactivation [83], where our own 
work found that normal human lung fibroblasts stimulated with TGFβ1, and 
CpG-DNA displayed an activation state characterized by αSMA expression 
and mtDNA release [11]. These responses were suppressed by hydroxychlo-
roquine (HCQ) [11], which inhibits endosomal acidification and subsequent 
cleavage induced activation of TLR9 [84]. SSc-ILD lung fibroblasts showed a 
similar phenotype [11], framing TLR9’s potential as a cross-organ mediator 
of skin and lung fibrosis.

The studies shown above focused largely on TLR9’s fibrosis-promoting 
functions in TGFβ1 stimulated fibroblasts. An alternate but equally compel-
ling process is suggested by studies of SSc patients in which TLR9-expressing 
T- and B-cell populations displayed potential association with skin thick-
ness as measured by the modified Rodnan skin score (MRSS) [85]. While 
the expression of this PRR by lymphocyte populations defined by their role 
in adaptive immunity may seem at first conflicting, it adds to an emerging 
literature regarding the expanding, and at times unexpected, functions of 
TLR9. While it remains to be seen whether TLR9-expressing lymphocytes are 
pathogenic or protective in this setting, because TLR9 appears to restrict auto 
reactive B-cell activation in other conditions, TLR9 may promote host toler-
ance. This interpretation is supported by loss- and gain-of-function studies 
in animal models, where TLR9-deficient mice developed exacerbations of 
experimentally induced lung fibrosis [86] and granuloma formation [87], 
and in wild type mice in which experimental administration of synthetic 
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TLR9 ligands appeared protective in the bleomycin lung fibrosis model [86]. 
In contrast, a pathogenic role for TLR9 was shown in a novel mouse model of 
fibrosis caused by the administration of fibrotic lung fibroblasts derived from 
humans [82]. When viewed in combination, these data support a paradigm 
wherein TLR9 exerts alternatively protective or pathogenic roles in fibrosis 
that depends on cell-specific input and temporal cues.

While this complex biology may hinder the development of pathway-
specific therapies, the availability of safe and well-tolerated TLR9 antagonists 
has facilitated leveraging this biology for clinical benefit in autoimmune dis-
orders such as SSc [88]. The most extensively studied agent is HCQ, a member 
of the quinolone family. Its proposed biological effects include inhibition of 
endosomal acidification [89], which would be expected to oppose cleavage-
induced activation of TLR9. Initially developed as an antimalarial agent, HCQ 
is routinely used in the management of SLE [90], RA [91], and, most recently, 
SSc-related inflammatory arthritis [92]. While benefit in SSc-ILD has yet to 
be explored, its safety and efficacy are currently being evaluated in pediatric 
ILD [93], and results of this work could provide scientific premise for its 
indication in SSc-ILD.

The potential of HCQ is complemented by studies of Bortezomib, a pro-
teasome inhibitor whose properties include inhibition of intracellular TLR9 
trafficking [94]. Currently approved for the treatment of relapsed refractory 
multiple myeloma [95], Bortezomib has demonstrated anti-fibrotic properties 
in animal models of SSc-like skin [96] and lung fibrosis [97], and its use for 
SSc-ILD has been tested in a phase II clinical trial for which results are cur-
rently not available [98•]. Nonetheless, studies to repurpose FDA-approved 
drugs such as Bortezomib and the aforementioned HCQ for SSc-ILD could 
catalyze new therapeutic approaches for this disease.

While the therapies described above suppress processes associated with 
TLR9 activation, directly targeting TLR9 itself may be another option. For 
example, the synthetic oligonucleotide IMO-8400 is a TLR9 inhibitor, whose 
preclinical efficacy [99, 100], has yet to be studied in SSc. Another potential 
approach involves E6446, an orally available small-molecule non-oligonu-
cleotide inhibitor that sequesters TLR9-activating DNA ligands to attenuate 
receptor activation [101–103]. TLR antagonistic compound 5 (TAC5) and its 
derivative TAC5a are small molecule direct inhibitors of endosomal TLRs, 
including TLR9, that reduce NF-κB, TNF-α, and IL-6 production and prevent 
disease progression in mouse models of psoriasis and SLE [104]. SM934, a 
synthetic derivative of the anti-malarial agent artemisinin, has been shown 
to be effective in several murine models of SLE through mechanisms involv-
ing suppression of TLR9-dependent MyD88-dependent signaling [105–107]. 
Although these agents have not been evaluated in SSc-ILD, they highlight 
the possibility of repurposing TLR9 targeted interventions for this disease.

cGAS‑STING
Since its discovery in 2013 [108], cGAS has been increasingly acknowl-
edged for its recognition of cytosolic DNA. The biology of this interaction 
is complex, as binding of cytosolic double-stranded (ds) DNA to cGAS 
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occurs in a DNA-sequence independent manner with activation being 
length dependent [109]. Cytosolic dsDNA sequences exceeding 45 base-
pairs stimulate formation of stable ladder-like networks of 2:2 DNA-cGAS 
oligomer complexes that are critical for activation [109]. The cGAS proteins 
then undergo a conformational change that catalyzes binding of adenosine 
triphosphate (ATP) and guanosine triphosphate (GTP), inducing synthesis 
of 2′3′-cGAMP [110], a second messenger protein detected by the cyclic-
dinucleotide sensor STING [108], and a 40-kDa dimeric transmembrane 
protein located in the ER [111]. This form of STING translocates to the 
Golgi, where it undergoes post-translational modifications such as pal-
mitoylation [112], and activates TANK-binding kinase 1 (TBK1) through 
autophosphorylation and phosphorylation of STING and interferon regula-
tory factor 3 (IRF3) [111]. IRF3 phosphorylation leads to its dimerization 
and subsequent translocation to the nucleus [111], where it triggers the 
production of type I IFN and proinflammatory cytokines such as IL-1β, 
IL-6, and TNF-α [22••, 108]. In a relatively short period of time, significant 
progress has been made elucidating the mechanism of this important PRR.

Given the above work accomplished in characterizing this signaling 
pathway, a connection to SSc and ILD has been an area of ongoing inves-
tigation. Work completed by our group showed that SSc-ILD patients have 
elevations in plasma mtDNA which correlates significantly with cGAS-
STING activating capacity and production of type I IFNs and IL-6, suggest-
ing a potential immunopathogenic connection [11]. This interpretation is 
supported by a report in which mutations in the mitochondrial membrane 
protein ATAD3A augmented IFN signaling through cGAS-STING, resulting 
in a clinical syndrome suggestive of SSc [49]. However, because this study 
did not measure mtDNA, it is possible that cGAS-STING activation arose 
through alternative mechanisms, such as the recently described contribu-
tion of centromere alterations and chromosome instability observed in SSc 
dermal fibroblasts [113]. Further investigation linking the accumulation of 
extracellular mtDNA, cGAS-STING activation, and SSc-ILD has the poten-
tial to shed novel insight into the innate immune mechanisms mediating 
this process.

While the preponderance of human data suggests fibrogenic interactions 
between mtDNA and cGAS-STING, results of animal modeling have yielded 
conflicting results. For example, STING activation appears to drive inflam-
matory fibrosis in mouse models of silicosis [114] and in a gain of function 
mutations that mimic the development of STING-associated vasculopa-
thy with onset in infancy (SAVI), a pediatric autoinflammatory syndrome 
associated with pulmonary fibrosis [115]. However, the converse has been 
found in the widely used bleomycin model of lung fibrosis, where constitu-
tive and ubiquitous STING deletion exacerbated neutrophilic infiltration 
and fibrosis in a type I IFN-independent manner [116]. Similar to the TLR9 
data described above, these findings suggest context-dependent roles for 
cGAS-STING activation that would benefit from additional investigation.

Despite the contradictory in vivo results, cGAS antagonism has dem-
onstrated promise as a potential therapeutic strategy in preclinical stud-
ies. A variety of medications such as acetylsalicylic acid, quinolones, and 
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sulfonic acid exhibit unexpected cGAS inhibition [117–119] that could be 
tested in SSc-ILD, though the potential for off-target effects may dampen 
enthusiasm for their use. Alternatives would include specific approaches 
such as the small molecules CU-32 and CU-76, which selectively inhibit 
cGAS by targeting the protein-protein interface of cGAS for IRF3 activation 
and IFN induction [120] without observable off-target effects on other 
DNA-sensing PRRs such as TLR9 [120]. Species-specific effects may be an 
issue to overcome, as another small molecule, RU.521, was successful in 
binding to the catalytic site of cGAS and reduced binding affinity to ATP/
GTP in cells derived from mice [121], but not humans [122]. Superior 
efficacy was observed with the small molecule G140 and the monoclonal 
antibody PF-07043030 [123, 124], which raises the exciting possibility of 
testing these or related approaches for cGAS targeted treatment of SSc-ILD.

In addition, studies of STING inhibition have also been pursued for this 
purpose. H-151 is a small molecule that covalently binds to a cysteine residue 
on the STING protein, preventing its activation in the Golgi [125]. While this 
agent has yet to be studied in SSc-ILD, it has shown to be efficacious in pre-
clinical models of cisplatin-induced acute kidney injury and psoriasis [126, 
127]. SN-011 is another small molecule STING inhibitor that functions by 
competing for the cGMP binding site required for activation [128]. Other 
agents under investigation include nitro-fatty acid derivatives that interrupt 
STING palmitoylation [129], the cyclin-dependent protein kinase (CDK) 
inhibitor Palbociclib that disrupts STING dimerization [130], and Astin C, 
which blocks IRF3 recruitment [131]. Despite these encouraging results, stud-
ies with STING antagonism remain in the pre-clinical phase and have yet to 
be investigated for SSc. Nevertheless, such work holds promise for the future 
management of rheumatic diseases such as SSc-ILD.

Conclusions

Recent work has demonstrated an emerging association between mtDNA-
mediated activation of TLR9 and cGAS and SSc-ILD, suggesting a potential 
immunopathogenic contribution to the development and/or progression of 
disease that has catalyzed novel therapeutic approaches in treating this con-
dition (Fig. 1A–B). However, doing so will require further understanding of 
this biology and as shown in Box 1, additional questions require answers. 
For example, the source and significance of extracellular mtDNA require 
determination, as does the functional distinction between cf-mtDNA and 
EV-mtDNA. The inconsistencies between human and mouse studies war-
rant additional investigation and highlight the need for improved modeling 
systems. Finally, further understanding of the mechanisms through which 
interactions between mtDNA and TLR9 and cGAS stimulate pathologic lung 
remodeling will be required to fully leverage this pathway for treatment of 
SSc-ILD. Better understanding of these questions will undoubtedly lead to 
new and effective treatments for this complex condition.

213



Role of Metabolism in Fibrosis: Translational Implications (S Bhattacharyya, Section Editor)

Fig. 1   Proposed model of mtDNA-mediated innate immune activation via TLR9 and cGAS-STING. A Both intracellular and 
extracellular sources of mtDNA mediate activation of cytosolic DNA-sensing pathogen recognition receptors (PRRs), toll-like 
receptor 9 (TLR9), and/or cytosolic cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). Mutated 
or oxidized mtDNA is released into the cytosol through either the mitochondrial permeability transition pore (MPTP), 
macropores formed by activation of BAX and BAK proteins, and/or via voltage-dependent anion channel (VDAC) oligomers, 
where it functions as a damaged associated molecular pattern (DAMP) to activate either TLR9 or cGAS. Alternatively, mtDNA 
can be released into the extracellular compartment, as either cell-free (cf-mtDNA) or encapsulated within extracellular vesi-
cles (EV-mtDNA) to mediate activation of these PRRs. B Both direct and indirect antagonisms of TLR9 and cGAS-STING have 
been explored as potential therapeutic options in various interstitial lung diseases, including scleroderma. Created using 
BioRender.com.
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Box 1   Unanswered questions

Created using BioRender.com

1. What is the source and significance of extracellular mtDNA in SSc-ILD?
2. What is the relationship between mitochondrial dysfunction, abnormalities in mtDNA, and DNA-sensing PRR activation 

in SSc-ILD?
3. Are cf-mtDNA and EV-mtDNA equally able to induce activation of TLR9 and/or cGAS-STING?
4. Does the worsening of experimentally induced fibrosis in animal models reflect experimental limitations or pathway-

specific effects?
5. What are the best models to study interactions between mtDNA and cytosolic DNA sensors in SSc-ILD?
6. Can treatments targeting TLR9 and/or cGAS-STING mitigate disease progression in SSc-ILD?
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