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Abstract COVID-19 has substantially affected our lives during 2020. Since its 
beginning, several epidemiological models have been developed to investigate the 
specific dynamics of the disease. Early COVID-19 epidemiological models were 
purely statistical, based on a curve-fitting approach, and did not include causal 
knowledge about the disease. Yet, these models had predictive capacity; thus they 
were used to ground important political decisions, in virtue of the understanding of 
the dynamics of the pandemic that they offered. This raises a philosophical ques-
tion about how purely statistical models can yield understanding, and if so, what the 
relationship between prediction and understanding in these models is. Drawing on 
the model that was developed by the Institute of Health Metrics and Evaluation, we 
argue that early epidemiological models yielded a modality of understanding that 
we call descriptive understanding, which contrasts with the so-called explanatory 
understanding which is assumed to be the main form of scientific understanding. We 
spell out the exact details of how descriptive understanding works, and efficiently 
yields understanding of the phenomena. Finally, we vindicate the necessity of study-
ing other modalities of understanding that go beyond the conventionally assumed 
explanatory understanding.
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1 Introduction

COVID-19 was first reported on 31st December 2019 as a pneumonia of unknown 
aetiology that was observed in the Chinese province of Hubei.1 The first cluster was 
identified in the proximities of the Wuhan market, which was closed for disinfec-
tion on the 1st of January 2020. COVID-19 cases started to increase exponentially, 
quickly spreading to other parts of China. Less than two weeks later, on the 12th 
of January, the virus SARS-CoV-2 was identified as the causative agent of the dis-
ease, and data on its genomic composition was published for the first time. On the 
13th of January, Thailand recorded the first case outside the geographic borders of 
China. By the end of January, reported cases of COVID-19 amounted to 7818, by 
which time the disease had been identified in 18 countries around the world, includ-
ing cases in the USA and Canada, as well as in Germany, France, and Finland. By 
that time, Hubei had already been confined, with severe travel restrictions imposed. 
The main fear was that at the observed speed at which the infection rate was grow-
ing, healthcare systems would soon become overwhelmed in those areas particu-
larly affected by COVID-19. That fear had become a reality in Wuhan, where the 
army was required to set up a campaign hospital with a capacity for 1,000 patients 
that began operating on the 3rd of February. The disease continued to spread around 
the globe, with the World Health Organization (WHO) declaring it a pandemic on 
the 11th of March 2020. Less than a week later, on the 17th of March, most Euro-
pean countries imposed severe restrictions on their citizens’ basic rights by declar-
ing nationwide lockdowns—shutting down non-essential businesses, issuing stay-at-
home orders and closing borders. Such countermeasures required most countries to 
impose a state of emergency.2

The situation was critical in several European countries, as was reflected in data 
about the occupancy of intense care units (ICUs), the observed collapse of emer-
gency services in hospital, and the resulting need to build field hospitals for basic 
assistance in several countries.3,4 By March 2020, little was known about the nature 
of SARS-CoV-2 and, specifically, little was known about how it could spread so 
quickly. Importantly, the political decision makers who adopted countermeasures 
heavily relied upon epidemiological models that predicted how the virus would 

1 The information in this and the next paragraph is a selective summary of: WHO’s Statement (27th 
April 2020) WHO Timeline—COVID-19”, World Health Organization, https:// www. who. int/ news/ item/ 
27- 04- 2020- who- timel ine--- covid- 19. Accessed December 16, 2020. WHO’s Statement (29th June 2020) 
“Listings of WHO’s response to COVID-19″, World Health Organization. https:// www. who. int/ news/ 
item/ 29- 06- 2020- covid timel ine. Accessed December 16, 2020.
2 Cornelius Hirsch (March 31, 2020) “Europe’s coronavirus lockdown measures compared”, Politico, 
https:// www. polit ico. eu/ artic le/ europ es- coron avirus- lockd own- measu res- compa red/. Accessed December 
16,2020.
3 “Coronavirus: Field hospitals treating patients around world.” (March 30, 2020) BBC News, https:// 
www. bbc. com/ news/ world- 52089 337. Accessed December 22, 2020.
4 William Booth, Christine Spolar, Pamela Rolfe (31st March 31, 2020) “Vast coronavirus ‘field hos-
pitals’ fill spaces that hosted wedding expos and dog shows”. The Washington Post, https:// www. washi 
ngton post. com/ world/ europe/ coron avirus- field- hospi tals/ 2020/ 03/ 31/ 3a05b a28- 6f0f- 11ea- a156- 0048b 
62cdb 51_ story. html. Accessed December 22, 2020.

https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
https://www.who.int/news/item/29-06-2020-covidtimeline
https://www.who.int/news/item/29-06-2020-covidtimeline
https://www.politico.eu/article/europes-coronavirus-lockdown-measures-compared/
https://www.bbc.com/news/world-52089337
https://www.bbc.com/news/world-52089337
https://www.washingtonpost.com/world/europe/coronavirus-field-hospitals/2020/03/31/3a05ba28-6f0f-11ea-a156-0048b62cdb51_story.html
https://www.washingtonpost.com/world/europe/coronavirus-field-hospitals/2020/03/31/3a05ba28-6f0f-11ea-a156-0048b62cdb51_story.html
https://www.washingtonpost.com/world/europe/coronavirus-field-hospitals/2020/03/31/3a05ba28-6f0f-11ea-a156-0048b62cdb51_story.html
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spread, and how it would stop spreading under certain restrictions. Early versions 
of such models based their predictions on statistical data that had been provided by 
other countries, rather than on a causal understanding of the disease. In other words, 
early COVID-19 models were what epidemiologists call statistical models, i.e., 
models that derive their estimations from a regression analysis that fits a curve to 
empirical data—such as the number of infections or deaths—rather than from causal 
data about the patterns of infection of the disease which were mostly unknown at the 
time.5

Hence, political decision making was informed by estimations derived from 
purely predictive epidemiological models.6 While these models did not include spe-
cific causal-mechanistic information about how the disease would spread or affect 
those infected, their primary function was to give estimates of what would most 
likely happen if counter-measures were introduced or removed; for instance, how 
long would it take for the rate of infections to decrease and how this would affect 
hospital occupation. Furthermore, these models were built and modified according 
to the observed effects of countermeasures in other parts of the world (e.g., how the 
restrictions imposed in Wuhan changed the local infection and mortality rate), yet 
these modifications were vastly contingent upon the observed data in certain loca-
tions, without tracking why the data differed in this particular way. In this sense, 
statistical models became the main tool to gain knowledge about the dynamics of 
the COVID-19 pandemic from its early stages onwards.

From a philosophical perspective, this form of modelling also raises an interesting 
question about the relationship between the scientific capacity to predict a phenom-
enon and the ability to understand it; a topic that had already stimulated the interest 
of philosophers (de Regt, 2017; Dieguez, 2013; Douglas, 2009; Elgin, 2017; Frigg 
& Hartmann, 2020; Potochnik, 2017), and scientists (Shmueli, 2010).7 Since early 
epidemiological models were tested as to whether their predictions fit the reported 
data, it was possible to discover which of the underlying model assumptions were 
incorrect, which ones were lacking, and which ones had a different effect than had 
initially been assumed. Doing so, in turn, led to the development of new and more 
precise versions of statistical models. This development suggests that gradually, epi-
demiologists acquired a better understanding of the main variables determining the 
trajectory of the death rate than the one they had at the beginning of the pandemic. 
Yet, this acquisition was possible even in the absence of an explanation of the 

5 In the context of epidemiological modelling, statistical models are called curve-fitting, data-fitting and/
or data-driven approaches indistinctly. In this paper, we will only use “curve-fitting” for parsimony.
6 By “purely predictive” we mean that the model only aims at producing a curve that fits the data avail-
able, rather than a model that is built on the basis of the causes of the phenomenon. See Sect. 2.
7 A note on the terminology: When we use the term understanding without any further specification 
concerning its type (explanatory, descriptive), it can be read as synonymous to what de Regt calls intel-
ligibility. When we use explanation as the relationship that mediates between understanding and predic-
tion, de Regt’s readers can interpret it as explanatory understanding. Our choice of this terminology is 
guided by the main purpose of the paper, which consists in distinguishing different modalities of under-
standing (explanatory/descriptive understanding), or different cognitive paths (explanation, description) 
that mediate between understanding (intelligibility) and prediction.
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exact relationship between COVID-19 and the accompanying mortality and infec-
tion rates. For this reason, we believe that by studying the development of one of 
these models in its detail, we will be in a good position to analyse how the concepts 
of prediction and understanding are related to each other. We aim to spell out the 
nature of this relationship in some detail by looking at how understanding emerges 
in a specific case study (see Poliseli, 2020 for a similar approach).

We will focus on the development of the model from the Institute of Health Met-
rics and Evaluation (IHME model), and carefully analyse how it was modified in the 
light of new evidence. Concretely, we analyse the role that early predictions played, 
and how their comparison with the evidence ultimately resulted in a modified model 
with a better data-fit which was not based on the knowledge of an explanation—
explanatory understanding—of the phenomenon. In view of this, we argue that 
early IHME predictions generated a specific type of understanding—which we call 
descriptive understanding, or DESC—of the relationship between certain restric-
tions and the evolution of the infection rate. As a result, this descriptive understand-
ing was used to predict the evolution of hospital occupation, which served politi-
cians as a basis to impose or relax restrictive measures.

Overall, our paper shows that in the early IHME COVID-19 epidemiological 
model, prediction and understanding are in an intimate dialectical relationship that 
is not mediated by an explanation, but by a description. Our observation is at odds 
with views that define understanding as consisting in having an explanation (de 
Regt, 2017; Hills, 2016; Khalifa, 2017). In contrast, our case study favours those 
accounts according to which understanding is a very specific skill of the members of 
a scientific community that can be realised through a plurality of cognitive pathways 
(Dellsén, 2020; Verreault-Julien, 2019).

In Sect. 2, we show how other analyses of the relationship between prediction and 
understanding presuppose that an explanation is always mediating between both ele-
ments. In Sect. 3, we present the IHME model and argue that it serves as a fruitful 
case study to study the interplay between prediction and understanding, due to its 
own development during the COVID-19 pandemic. In Sect. 4, we show that in the 
IHME model, prediction and understanding are not mediated by an explanation, but 
by a different type of cognitive path. In Sect. 5, we introduce the concept of descrip-
tive understanding as the type of understanding that emerges in the building-process 
of the early versions of the IHME model. We further show the epistemological rel-
evance of descriptive understanding, showing the role that predictions play in creat-
ing and improving it. Finally, we present our conclusions.

2  Understanding, explanation, and prediction

Several philosophers have alluded to the existence of a relationship between pre-
diction and understanding in scientific modelling (Elgin, 2017; Khalifa, 2017; 
Potochnik, 2017), though many of them have failed to spell out clearly what this 
relationship exactly amounts to. In some cases, this has been due to the lack of a pre-
cise account about the exact epistemological mediation between both concepts. In 
other cases, while the exact epistemological mediator is clear—an explanation—the 
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cognitive path between the two concepts is not, leaving open the conceptual possi-
bility that other types of cognitive mediators exist.

Grimm (2010) and Hills (2016) present an example of the first problem. In ana-
lysing what an agent’s understanding consists of, these authors have argued that it is 
a cognitive ability (often called grasping) that enables one “to draw the conclusion 
that p (or probably p) from the information that q” (Hills, 2016), or, less formally, to 
“anticipate how changes in one element of the thing under consideration will (or will 
not) bring about changes in another element of the thing.” (Grimm, 2010, p. 342). 
Assuming that prediction can be at least minimally conceived as a form of inference, 
hence equated to something along the lines of “drawing a conclusion from a body of 
information or evidence” or “anticipating consecutive changes between elements”, 
it follows that Grimm and Hills consider that understanding, as a cognitive ability, 
makes prediction feasible. What is more, according to these authors, understanding 
is manifested in the capacity of the subject(s) that possess it to generate predictions 
from the body of knowledge that is available to her. This results in the view that 
understanding and prediction are epistemically and, probably, semantically, con-
nected. Unfortunately, neither Grimm nor Hills say more about what this connec-
tion exactly consists of, nor how both concepts constitutively assist each other in 
scientific research. Is prediction strictly necessary for understanding, or is it just a 
way, among many others, of manifesting it? Understanding may make predictions 
feasible but, are there other ways of doing so, when understanding is not present? 
Moreover, how tight is the relationship between both concepts?

On the other hand, a good example of the second problem can be perceived in the 
work of Douglas (2009). Focusing on how explanatory models and theories provide 
understanding of some phenomena, she has suggested that predictions play the epis-
temically crucial role of testing explanations in so far as they “assist our explanatory 
endeavors by providing a check on our imagination, helping to narrow the explana-
tory options to those that will provide a more reliable basis for decision making” 
(Douglas, 2009, p. 446). According to this view, explanations are a key epistemo-
logical concept mediating between prediction and understanding, as understanding 
is equated to having an explanation. This results in a model according to which pre-
dictions enhance our understanding by telling us which of our explanations are the 
correct ones, and which are not. This view enriches Grimm’s and Hills’ accounts 
epistemologically, but it is not particularly informative of the cognitive path from 
explanation to prediction and back. Are predictions the only test between alternative 
explanations? If not, then it seems the relationship between understanding and pre-
diction is seriously weakened. If they were the only test, then it would be necessary 
to say what the appeal to explanation as a mediating concept is exactly adding to the 
specification of the relationship between prediction and understanding.

A more informative, yet we think problematic account of the relationship 
between prediction and understanding is provided by de Regt (De Regt, 2009, 2017; 
de Regt & Dieks, 2005), who builds on Douglas’ framework but also spells out its 
details in considerable depth. We consider that his view of the connection is the 
most articulated so far; thus, we will concentrate on his analysis here. However, as 
we will show, his method of analysing the relationship is slightly problematic in 
accounting for our case study (Sect. 3) insofar as de Regt takes explanation as the 
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epistemological concept mediating between prediction and understanding. To see 
why, let us first introduce de Regt’s analysis of scientific understanding, as well as 
his terminology.

In chapter 4 of his book Understanding Scientific Understanding, de Regt intro-
duces the two key notions that structure his contextual approach to the concept of 
scientific understanding, namely the Criterion for Understanding Phenomena (what 
we have so far called “explanation”; hereafter, CUP) and the Criterion for the Intel-
ligibility of Theories (what we have called “understanding” so far; hereafter, CIT). 
These two criteria are explained as follows:

CUP: A phenomenon P is understood scientifically if and only if there is an 
explanation of P that is based on an intelligible theory T and conforms to the 
basic epistemic values of empirical adequacy and internal consistency (de 
Regt, 2017, p. 92)

CIT: A scientific theory (T) (…) is intelligible for scientists (in context C) if 
they can recognize qualitatively characteristic consequences of T without per-
forming exact calculations (de Regt, 2017, p. 102)8

 In de Regt’s work, these two criteria are associated with a definition of intelligibil-
ity (understanding, in our terminology) as the value that scientists ascribe to the set 
of characteristics of a scientific theory that facilitates its use (in making models, pro-
viding explanations, etc.) (de Regt, 2017, p. 23). As this set of characteristics is con-
textual (viz. it may change from one research community to another), and relational 
(viz. it depends on the skills of the scientists who use these theories), it is impos-
sible to specify a set of necessary and sufficient characteristics that makes a theory 
intelligible. In any case, the concept of intelligibility, and its connection with CUP 
and CIT, provides a first link between the concepts of understanding and prediction. 
De Regt tells us: “The intelligibility of a theory (…) implies that it should be pos-
sible to grasp how its predictions are generated” (2017, p. 102). Given that scientists 
are the ones who build the models, construct the explanations, and are ultimately 
responsible for the predictions, it can be argued that the former sentence entails that 
if a theory is intelligible to a scientist, then she can derive predictions from it. This 
reading suggests that having intelligible theories9 is sufficient for making predic-
tions. Call this feature the prediction-generating character of intelligible theories. 
The key question now is whether, and if so, how, it is possible to make a conceptual 
move from the prediction-generating character of intelligible theories to their ability 
to provide explanatory scientific understanding of certain phenomena (i.e., to CUP).

Let us assume, for simplicity, that we have a prediction-generating theory which 
is also empirically adequate and internally consistent. Does this entail that the the-
ory provides understanding of some phenomena? The key to answer this question 

9 Bear in mind intelligible theories exist in relation to a scientific community and the skill set of the sci-
entists involved in working with the theory.

8 De Regt does not believe that CIT is the only criterion that exists to determine whether a theory is 
intelligible, but only one criterion. He leaves the question open as to whether there may be other pos-
sibilities.
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lies in the connection between explanation and prediction. Given that an empiri-
cally adequate and internally consistent theory is one that produces explanations, 
de Regt’s theory of understanding can answer our question affirmatively, for he 
assumes the existence of an “inherent connection between prediction and explana-
tory understanding” (2017, p. 107).This assertion is essential, for it proves that in 
de Regt’s conception of scientific understanding, scientific explanations always play 
a mediating role between mere intelligibility and predictions. This is analogous to 
Douglas’ idea, whom de Regt appeals to when articulating the nature of this rela-
tionship: “the relation between explanation and prediction is a tight, functional one: 
explanations provide the cognitive path to predictions, which then serve to test and 
refine the explanations” Douglas (2009, p. 454, emphasis added). De Regt’s concep-
tual map of the connections between explanation, understanding and prediction can 
be seen in Fig. 1.

This reading of the connection between prediction and understanding presents 
two problems. Firstly, as it happened with Douglas’ account, it is not clear what the 
exact “cognitive paths” from explanations to prediction are, or in which way predic-
tions “serve to test and refine” explanations. Are the cognitive paths mathematical 
calculations? Or psychological operations? How do predictions refine explanations? 
By proving them false? On the other hand, what de Regt’s figure suggests is that 
there is a conceptual move from explanation to prediction, and from the latter to 
intelligibility, which then goes back to the idea of explanation. But what type of 
conceptual move? Is it a question of pragmatics or does it have an epistemological 
import? If it has an epistemological import, how does it specifically work? De Regt 
neither elaborates concrete examples, nor does he spell out possible characteristics. 
Thus, so formulated, the connection remains vague, and in need of further research 
that investigates its precise nature.

Secondly, the reading of de Regt’s work we have just suggested seems to be at 
odds with other assertions that he makes in Understanding Scientific Understanding. 
Remember that the primary reading we have offered casts intelligible theories as 
sufficient for generating predictions. However, CIT casts the relationship as neces-
sary. Namely, it asserts that scientists can recognise qualitatively characteristic con-
sequences of a theory (i.e., predictions; see de Regt, 2017, p. 107) only if it is intel-
ligible to them. This reading is reasonable (i.e., not contradictory) for, if one looks 

Fig. 1  Analysis of the interplay 
between prediction, explanatory 
understanding, and intelligibility 
in de Regt’s model of under-
standing. Note that explanations 
are always in between intelligi-
bility and prediction (de Regt, 
2017, p. 108, Fig. 4.1)
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at Fig. 1, it is obvious that the conceptual move goes from explanatory understand-
ing, to prediction, and later to intelligibility. However, The problem is that de Regt’s 
theory assumes, correctly in our view, a circularity or, as we prefer to express it, a 
dialectical relationship that develops with time. How this relationship develops, and 
whether it necessarily requires an explanation in between intelligibility and predic-
tion, is precisely the question we are investigating in this paper.

The necessary reading of the relationship is furthermore consistent, although not 
equivalent, with his assertion that “prediction turns out to be impossible without 
understanding” (2017, p. 107). The concept of impossibility puts us in the realm 
of modality. If a modal reading is adopted, then we must renounce the possibility 
of predictive, non-explanatory modelling practices that provide understanding. 
De Regt believes that this possibility should be rejected as a case of non-genuine 
understanding:

Perhaps it is possible to devise a purely phenomenological model of a phe-
nomenon, which does not relate to any theories at all, but such a model would 
merely have a descriptive and perhaps predictive value but yield not explana-
tory understanding (2017, p. 98, emphasis added)

The intuition according to which no understanding is possible without an explana-
tion is reinforced later. De Regt tells the imaginary story of an oracle that produces 
perfect predictions of every phenomenon, and wonders whether scientists would be 
satisfied with such a perfect tool. He says:

An oracle is nothing but a black box that produces seemingly arbitrary predic-
tions. Scientists want more than this: in addition they want insight, and there-
fore they need to open the black box and consider the workings of the theory 
that generates the predictions (2017, pp. 101–102)

Even while he rejects that such an oracle is realisable in our world, it is beyond 
doubt that the intuition of the oracle is a conceptual possibility that requires it to be 
taken seriously. Concretely, because the possibility of an oracle suggests that non-
explanatory understanding may exist and maybe also plays a role in science. In other 
words, because the possibility of imagining such an oracle makes it feasible to imag-
ine a prediction-generating theory/model/scientific tool that provides understanding 
but does not simultaneously generate explanations (Fig. 2). We show an example of 
such a possibility, spelling out the details of the relationship, including the cognitive 
path between understanding and prediction, in the remainder of this paper (Sects. 4, 
5).
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3  Modelling COVID‑19: An introduction to the Institute of Health 
Metrics and Evaluation Model

Since the beginning of the COVID-19 pandemic, research groups from all over the 
world have built epidemiological models to estimate the impact of the outbreak of 
the disease, which in turn have been heavily relied upon by policymakers in their 
decision-making. COVID-19 models can be broadly distinguished by three different 
types: statistical models that derive their estimations from a regression analysis that 
fits a curve to empirical data such as the number of infections or deaths, mechanistic 
models that simulate disease transmission between (groups of) people on the basis 
of empirical data such as the spread of the virus, the onset of disease symptoms, and 
hybrid models that combine both approaches (Fig. 3).

While the choice for one type of model can be explained by the different purposes 
for which it was designed, such as estimating the disease’s short-term impact versus 
investigating future scenarios (Maziarz & Zach, 2020), the accuracy of the output, 

Fig. 2  We investigate whether 
there is a connection between 
understanding (intelligibility) 
and prediction that does not 
require an explanatory step, as 
well as the exact details of how 
this relationship works

Fig. 3  There are two general types of infectious disease models: mechanistic models, which use causal 
knowledge of disease transmission and dynamics, and statistical models, whose predictions rely only on 
patterns in the data (GAO, 2020)
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i.e., the estimates of all types of models, depends on the quality of the data to which 
models are calibrated, which at an early stage of an epidemic is typically limited. 
Limitations for statistical COVID-19 models have been attributed to insufficient or 
inconsistent detection of cases or, delays in reporting or errors in documentation, 
whereas limitations for mechanistic COVID-19 models have stemmed from insuf-
ficient understanding of the biological nature and behaviour of the virus.

In the course of the pandemic, COVID-19 models have been constantly fed with 
new data, modified by smoothing the available data and refined by tweaking their 
parameters, some of which have also been substantially updated by extending the 
underlying regression algorithm or, in some cases, by adding a mechanistic compo-
nent to the model.

To be clear, even in their more advanced versions, COVID-19 models should 
not be thought of as “crystal balls”, as Michael Levy (2020) has recently remarked. 
While we will show that the evolution of models such as the IHME model has given 
rise to improvements in their predictions, we can never reasonably expect them to 
give predictions as precise as the ones we can find in the physical sciences. As any 
model needs to rely on a limited set of parameters, with human behaviour thought 
to be too complex to be expressed by such a set, the best we can hope for is that its 
predictions do not diverge too far from reality and be accurate enough to inform 
decision-making; a demand which in light of the COVID-19 pandemic, threatening 
the lives of many and impacting the worldwide economy in an unprecedented way, 
becomes particularly important.

What exactly determines the degree of permissible divergence and what makes 
an estimate sufficiently accurate are of course delicate questions. Answering them 
in a fully satisfactory way may well lie beyond the scope of this paper. Suffice it 
to say that it is nevertheless possible to identify instances of clearly impermissible 
divergence and insufficiently accurate estimates, such as the IHME model’s severe 
underprojection of the number of total deaths in the US, which has arguably led to a 
delay in the adoption of COVID-19 control measures such as social distancing and 
closure of schools there, which, if it had been left uncorrected, would have resulted 
in their premature relaxation.

3.1  The model of the University of Washington’s Institute for Health Metrics 
and Evaluation (IHME Model) in detail

The model of the University of Washington’s Institute for Health Metrics and Evalu-
ation (IHME) was one of the most prominent statistical COVID-19 models that was 
used early on in the COVID-19 pandemic (first released on March 26, 2020) to esti-
mate the death rate and the excess demand for beds and ventilators in hospitals at its 
estimated peak. The first version found, at a very general level, that even with the 
enactment of social distancing measures, the epidemic would place a load on health 
systems beyond available capacity.

The majority of early COVID-19 forecasts was based on mechanistic models 
that predicted disease transmission on the basis of estimating the probability of 
people moving between susceptible, exposed, and infected states, and then to a 
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recovered state or death (SEIR models). These SEIR models generally suggested 
that most, if not all, individuals in a population would become infected unless 
countermeasures were introduced and therefore projected millions of deaths from 
COVID-19 in the USA and Europe. Most SEIR models could not predict peaks 
and subsequent declines in deaths and, importantly, were not able to account for 
the effects that individual behavioural responses and government-mandated coun-
termeasures could have on the course of the epidemic (IHME, 2020).

In light of these shortcomings, the IHME scientists decided for the alternative 
strategy of statistically modelling the empirically observed COVID-19 population 
death rate curves (for further motivations with regard to this choice, see Sect. 4) 
The statistical approach of the early IHME model consisted of two basic compo-
nents. The first was a nonlinear mixed effects regression framework that projected 
the course (viz. the trajectories of the cumulative and daily death rate) of the epi-
demic by trying to fit a specific sigmoid function—a Gaussian error function–to 
the shape of the epidemic as a function of the implementation of social distancing 
measures. The corresponding bell curve depicted the number of deaths rising and 
falling and finds where US data of confirmed deaths fit on that curve. The second 
component of the model was a microsimulation that estimates the need for hospi-
talisation, ICU use, and ventilation based on available data on clinical practices 
in COVID-19 patients (Murray et al., 2020). Let us now consider the model’s first 
basic component (viz. its nonlinear mixed effects regression framework) in more 
detail.

The first step in developing the basic component was to compare different 
functional forms for modelling the death rate of COVID-19 and see how they 
fit to the available data. The IHME scientists found that a Gaussian Error Func-
tion provided the best fit and developed a statistical curve-fitting tool which they 
called CurveFit on its basis (IHME, 2020). Hence, one key assumption underly-
ing this modelling approach was that the cumulative death rate for each location 
would follow the parametrised Gaussian Error Function in Eq. 1:

Note that the Gaussian Error function in Eq. 1 has three fundamental parameters 
α, β, p that can be fit to data (viz. confirmed COVID-19 deaths), where α represents 
mortality growth, β the timing of when the growth curve inflects, and p the final 
total. As the parameters by themselves do not account for the covariates reflecting 
social distancing measures, statistical models are used to specify these through link 
functions, thereby connecting different locations together, and through fixed and 
random effects. In the first version of the model, these priors were chosen by deter-
mining the mean variance of the relationship between the social distancing covari-
ates and the peak time from Wuhan City, China, where the only complete pandemic 
had been observed at that time. Finally, the result is a nonlinear mixed effects model 
with user-specified priors in the statistical assumptions (IHME, 2020).
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The reason for choosing confirmed deaths rather than reported cases of infec-
tion was that IHME researchers thought the former to be more accurately reported 
than the latter, especially in the beginning of the pandemic.

Soon after its release, the model came under heavy attack for the large dis-
crepancy between estimated and actual deaths, having severely underprojected 
the death toll. For example, while the 27 March version had projected that NY 
would at most see 26,444 deaths (i.e., the upper range of its estimates), with an 
estimated median of 10,243 deaths, 31,125 people had actually died by June 22. 
Moreover, it was found that the actual number of deaths fell outside the IHME’s 
next day 95 percent confidence interval 70 percent of the time (Marchant et al., 
2020).

The severe failure of the IHME model, especially in its early versions, has been 
mainly attributed both to the fact that it is a purely statistical model that does not 
account for transmission dynamics (Jewell et al., 2020) and to the very choice of the 
Gaussian error function (Bergstrom, 2020), which produces trajectories that appear 
highly symmetric, meaning that the pandemic is projected to rise to its peak and 

Fig. 4  The early IHME model predicted COVID-19 curves for Washington, New York, and California 
that appear highly symmetric, which is (COVID-projections) the result of fitting a Gaussian error func-
tion to the data representing the cumulative number of deaths that have occurred
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decline from it at the same rate. This can be seen in Fig. 4, which shows IHME’s 
projections as of 27 March for Washington, New York, and California.

Choosing an epidemiological function that assumes symmetric bell curves to ena-
ble the estimation of the relevant parameters is historically motivated by the so-called 
Farr Law of Epidemics (Pacheco-Barrios et  al., 2020), a single mathematical for-
mula which tried to capture the bell-shaped curve that had been empirically observed 
in many epidemics, such as the Great Plague in London and Newcastle upon Tyne 
(Dean et al., 2018). Importantly, a similar, roughly symmetric shape has also been 
observed for the COVID-19 pandemic in Wuhan City in February 2020 (Fig. 5).

However, the assumption that the curves for the US states and for other coun-
tries would also follow a symmetric trajectory with an equal growth and decline 
rate was disconfirmed by empirical observations from several locations where the 
pandemic had peaked. These showed declines that took longer than was estimated 
by the model, which in turn underestimated the total number of deaths. The actually 
observed curves were characterised by a flat peak as can be seen in the example of 
Spain (Fig. 6).

In light of the shortcomings of its initial versions, the IHME model has received 
several updates, out of which two can be considered particularly important, with 
the first being designed to accommodate asymmetric bell curves, and the second to 
model people’s behaviour under an increasing variety of social distancing measures. 
While the latter would merit an analysis of its own, for reasons of scope, in what fol-
lows we will only consider the first update.

3.2  April 17 update

To accommodate the observed asymmetries, the April 17 update (IHME, 2020) 
introduced a multiple mixture model component (“Gaussian extensions”). Roughly, 
such extensions can be understood as an extended approach to fit to data, using a 

Fig. 5  Epidemiological curves by date of symptom onset, date of diagnosis and date of death in Wuhan 
(Bai et al., 2020)
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linear combination of peaks inferred from different locations, in order to provide a 
weighting scheme that is then applied to new locations, i.e., locations that have not 
yet peaked.

In the first step, a particular basic model is fit to a given location using the social 
distancing covariate to fit its γ multiplier, and the parameters α and p, thereby 
inferring a peak. This gives the atom specification for the next step (the so-called 
“Gaussian atom”). For the specified atom, the IHME researchers then use a semi-
parametric fit of staggered atoms to data, which means that they repeat the proce-
dure from the first step until 12 further atoms are obtained from locations where a 
peak has been observed. They then consider a basis of staggered atoms for 13 days, 
with peaks 2 days apart, which are then centered at the inferred peak from step 1. 
Given a set of atomic functions of time fi(t), and all observations  yt for a given loca-
tion, the following model is fit to data:

Since the data is fit as a non-negative combination of atoms, upper bound con-
straints of 1 are placed on each weight. The full fitting problem is a bound-con-
strained linear least squares problem which is solved by the L-BFGS-B routine 
(IHME, 2020):

yt =

13
∑

i=1

wifi(t) + �.

Fig. 6  The actually observed death rate largely diverged from the one projected by an early IHME 
model (Tyka, 2020)
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The introduction of the weighting scheme finally allowed the IHME model to 
accommodate for asymmetric curves, which constituted the most important exten-
sion since its release, as was confirmed by the leading IHME scientist Chris Murray 
(FiveThirtyEight 2020). Through this update, the model could significantly increase 
the accuracy of its estimates, i.e., projecting a higher number of cumulative deaths 
because of a slower decline in the daily death rate. Figure 7 illustrates the sharp con-
trast between the predictions offered by the original IHME model and the version 
obtained after the April 17 update.

(2)min
{0≤wi≤1}

∑

t

(

yt −

13
∑

i=1

wifi(t)

)2

.

Fig. 7  The actual number of deaths between the end of April and the beginning of May, represented by 
the blocks, was tracked much better by the updated model (Bergstrom, 2020)
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4  Prediction and understanding without an explanation

As we said in Sect.  1, the development of the IHME model since the beginning 
of the COVID-19 pandemic provides a fruitful source for analysing the interplay 
between prediction and understanding in contemporary scientific practice.10 More 
concretely, our analysis aims to show two things. First, that the IHME model satis-
fies de Regt’s intelligibility requirement (i.e., it provides understanding according to 
our terminology) and does so via its predictions; second, that no explanation medi-
ates between intelligibility and predictions (as so-called explanatory understanding 
would have it), but rather descriptions do. By what we will call descriptive under-
standing or DESC, we introduce a new modality of understanding not previously 
appreciated in philosophical debates. This section analyses why the IHME model 
is intelligible in de Regt’s sense (i.e., why it generates understanding), and why the 
type of predictions it generates cannot be considered the result of explanatory under-
standing. Section  5 will argue that the IHME provides descriptive, as opposed to 
explanatory understanding.

Let us start with the claim that the IHME model is intelligible in de Regt’s sense. 
Recall that intelligibility is a value that scientists in a particular context attribute 
to those qualities of their theory or model which facilitate its use. This claim thus 
depends on whether the IHME epidemiologists used a model-building strategy 
which would make their model intelligible in a way that facilitated its use at the 
beginning of the pandemic, as well as in its further development. The first versions 
of the IHME model followed a curve-fitting approach, which was pragmatically jus-
tified as the IHME epidemiologists had previously been using it to predict health-
related outcomes in several epidemic scenarios long before COVID-19. Therefore, 
they already knew how to use the curve-fitting approach to predict the course of dis-
ease outbreaks. Moreover, and not less importantly, the scientists strongly believed 
on evidential grounds that a curve-fitting approach would be a superior choice to 
the mechanical approaches that other modellers, such as the Imperial College 
COVID-19 response team, had chosen. They believed that a problem with mechan-
ical approaches in the early stages of a disease is that they would necessarily be 
built upon several assumptions about disease spread that would not be specific to 
COVID-19, but rather extrapolated directly from the observed behaviour of other 
viruses. The usefulness of the model would thus be limited to the contingency that 
COVID-19 mechanically behaves as other infectious diseases do; an assumption 
which in the beginning of COVID-19 was purely speculative. This clearly limits 
their validity and usefulness in early stages of an emerging pandemic caused by the 
unknown pathogen SARS-CoV-2. The IHME epidemiologists thought that a model 

10 We should at this point recall that while we conveniently speak of the IHME model, the scientists who 
created the original model in March 2020 have since developed it in different versions in response to the 
acquisition of new empirical information. We have also shown that, through several updates, the core 
elements responsible for predicting the trajectories of the COVID-19 pandemic have been substantially 
altered, significantly increasing the accuracy of the predictive estimated. Thus, even if strictly speaking, 
there is not one IHME model, but a plurality of them, we will still speak of the IHME model for conveni-
ence.
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following a curve-fitting approach would be more promising, and developed more 
easily because its predictions would be primarily informed by the empirical knowl-
edge specific to the transmission rate of COVID-19 available at that time (Wuhan), 
with the possibility of further extending the model to include new data (Sect. 5). As 
the director of IHME, Christopher Murray, reports:

Whereas a lot of the modelling groups are using very theoretical models 
[mechanistic models], we are trying to fit a model to the data we’ve seen 
already in the world and when it comes to infectious diseases, this matters a 
lot because all these infectious disease transmission models show exponen-
tial growth up to the point where everybody gets infected, but that’s not what 
we saw in Wuhan (…). Introducing social distancing really puts the brakes on 
transmission, so you get a much earlier peak and that was the critical thing we 
were trying to predict—when will the peak be because that’s what hospitals 
need to plan. If you want to think about it, fundamentally, what we’re captur-
ing is the human behavioural response to the world around us. [By contrast], 
the models that the Imperial College and others have are essentially assuming 
that people are going to live their lives and not change anything that they do.11

In sum, the IHME scientists attributed the value of intelligibility to their mod-
el’s predictions precisely because these facilitated the model’s use, and the mod-
el’s development in the light of new data. They believed their model could render 
good predictive estimates of the peaks in COVID-19’s mortality rate because, unlike 
other approaches, the curve-fitting approach included the effects of social distanc-
ing measures empirically observed in Wuhan. Additionally, because their model 
was responsive to new evidence, it could be re-used and re-adapted when new data 
became available, which is an epistemic virtue that epidemiologists particularly 
value especially in the early moments of an emerging disease.

As the IHME model’s intelligibility is primarily ascribed to its predictive capac-
ity, a common assumption among philosophers would be that a form of explanatory 
understanding must be mediating between them, as explanations lay down the fun-
daments for predictions (Sect. 2). However, this is not the case in the early versions 
of the IHME model, given the specific details of their curve-fitting approach. To be 
clear, we claim that the analysis of these early versions reveals that there is a specific 
type of cognitive path to understanding (descriptive understanding) that is charac-
teristic of scientific work: descriptions. Importantly, this type of cognitive path does 
not qualify as an explanation in any non-trivial sense. To see why, let us examine 
how the IHME model was built.

The first, curve-fitting, version of the IHME model was built to reflect the regu-
larity pattern that the COVID-19-derived mortality rate was expected to follow. To 
do so, the model was built upon certain assumptions concerning the shape of the 
curve of mortality. These assumptions, directly derived from the evidence coming 
from Wuhan, are intentionally included in the IHME model to generate a regularity 

11 Extracted from https:// www. ncfp. org/ 2020/ 05/ 01/a- conve rsati on- with- dr- chris- murray- of- the- insti 
tute- for- health- metri cs- and- evalu ation/. Accessed August 22, 2021.

https://www.ncfp.org/2020/05/01/a-conversation-with-dr-chris-murray-of-the-institute-for-health-metrics-and-evaluation/
https://www.ncfp.org/2020/05/01/a-conversation-with-dr-chris-murray-of-the-institute-for-health-metrics-and-evaluation/
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pattern that can embed the data-model (i.e., the mortality rates that are observed 
in reality). In general, obtaining a regularity pattern is considered a virtue of bona 
fide scientific explanations ever since Hempel’s deductive-nomological/inductive-
statistical account (e.g., Díez, 2014; Hempel, 1965; Woodward, 2019), and it is 
also considered a virtue under an unificationist lens (Kitcher, 1989). Additionally, 
causalist approaches to explanation also emphasise that explanations are based on 
the possibility of obtaining a causal regularity pattern that connects explanans and 
explanandum in an asymmetric manner (Salmon, 1984; Woodward & Woodward, 
2003). Nonetheless, the types of counterexamples raised against Hempel’s model 
(symmetries, irrelevancies, etc.; see Salmon, 1989; Woodward, 2019) suggest that 
while obtaining a regularity pattern and including it in the explanans is necessary 
for providing an explanation, it is by no means sufficient. Additional requirements 
need to be satisfied concerning the way in which explanans and explanandum relate 
to each other that, we contend, in the case of the IHME model, were not fulfilled. 
Hence, looking at the regularity pattern only would mask the real explanatory/non-
explanatory import of the model. A more detailed analysis of the assumptions is 
required.

In choosing the assumptions of the model, the IHME scientists selected a set 
of variables that they assumed could exert relevant causal influence on the evolu-
tion of the pandemic. These included two beliefs: a) that social distancing meas-
ures had a strong effect on the mortality rate, as they had empirically observed in 
Wuhan; and b) that the effect of the social distancing measures on the mortality 
rate would be very similar also for other locations. Both assumptions were neither 
trivial, nor unjustifiably speculative, since they had been borne out by previous 
pandemics—thus their alleged causal influence on the evolution of COVID-19. 
From the viewpoint of the IHME researchers, it seemed reasonable to believe that 
similar political restrictions on social movements would have the same effects 
on the mortality rate in different parts of the world. And a fortiori, the observa-
tion that epidemic events rise and fall in a roughly symmetric pattern had found 
expression in the so-called Farr-Law (Dean et  al., 2018). Hence, it was by no 
means unreasonable to assume that COVID-19 could follow a similar trajectory.

However, basing the model upon these assumptions does not mean that the 
IHME model was a causal model, because these assumptions are not related to 
the causal underpinnings of COVID-19 in terms of SARS-CoV-2’s behaviour, 
something that causalist philosophers would demand of a bona fide scientific 
explanation (Machamer et  al., 2000; Glennan, 2002; Bechtel & Abrahamsen, 
2005; Craver, 2009; Kaplan & Craver, 2011). Kaplan & Craver spell out this 
requirement as follows:

In successful explanatory models (…) (a) the variables in the model corre-
spond to components, activities, properties, and organizational features of the 
target mechanism that produces, maintains, or underlies the phenomenon, and 
(b) the (perhaps mathematical) dependencies posited among these variables in 
the model correspond to the (perhaps quantifiable) causal relations among the 
components of the target mechanism. (2011, p. 611)
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By contrast, the early IHME model was built upon the empirical observations of 
the mortality rate observed in a specific location, and how this rate changed when 
certain restrictive measures were introduced, plus the general assumption that the 
correlations between social distancing measures and the mortality rate would work 
in the same manner in the rest of the world. Nothing in the way these assumptions 
were chosen, or the way the mathematical model was built (including the meaning 
of the variables) reflects a causal relationship between the form of the model and the 
mechanistic biology of SARS-CoV-2. It is hard to see how this would even remotely 
qualify as a mechanistic explanation of the development of the mortality rate. Our 
case would be analogous to the scientific use of Kepler’s laws. These laws are usu-
ally regarded as descriptive rather than explanatory because they account for the 
positions of the planets in terms of previously observed positions and the phenom-
enological pattern that could be deduced from fitting this data into a mathematical 
equation. It is undeniable that Kepler’s work constitutes a great achievement in the 
development of physics, because knowing the pattern of a specific phenomenon pro-
vides a lot of information about it. The same is true for the first version of the IHME 
model: knowing the pattern of the mortality rate is helpful not only scientifically, but 
also politically, as it helps in decision making. Yet one should not conflate scientific 
achievement with scientific explanation, because the latter is only a very specific 
form that the former can take.

The fact that the IHME model is itself non-causal in the sense developed by 
causalist philosophers does not necessarily mean, though, that it may not capture 
counterfactual dependencies of a certain kind. Some recent approaches to scientific 
explanation have shown that certain types of scientific activities can provide bona 
fide explanations based on the existence of non-causal forms of counter-factuality 
(Baker, 2009; Díez, 2014; Moreno & Suárez, 2020; Rice, 2015; Strevens, 2008). 
Probably the most salient examples in contemporary science are topological expla-
nations (Deulofeu et al., 2021; Huneman, 2010, 2018; Kostić, 2020; Suárez & Deu-
lofeu, 2019). In a sense, it seems plausible to assume that the assumptions upon 
which the IHME model is built capture certain counterfactual dependencies between 
the social distancing measures and the mortality rate. But this is again incorrect, 
because it would attribute to the assumptions a role that they ultimately lack. The 
assumptions are not in any significant sense within the model, as if the IHME model 
were capturing the dependency relationships between social distancing measures 
and the mortality rate. Recall Murray’s interview (see above): the assumptions 
rather justify the choice of the curve-fitting approach, as opposed to other types of 
modelling approaches, including those chosen by competing groups. The regularity 
pattern generated by the model is not per se counterfactual. While it offers loca-
tion-to-location variation, especially after the April update (Sect. 3.1), those within-
model variations only reflect the evolution of the mortality rate in certain locations, 
and how their patterns matched ordiffered from those of Wuhan. It is assumed, for 
good reasons as we will show (Sect. 5), that these variations are due to the different 
local effects of the social measures. This hardly makes the case for an explanatory 
role of the assumptions, even in a weak counterfactual sense.
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5  Introducing descriptive understanding: from understanding 
to prediction via a description

So far, we have shown that the type of understanding gained in the process of build-
ing the curve-fitting versions of the IHME model (including the March version and 
the April update) is not explanatory. Nevertheless, a question remains about what 
type of understanding the building-process of the IHME model provides, and what 
it consists of. In this section, we argue that the early versions (including the April 
update) of the IHME model provided descriptive understanding, which is enough to 
generate predictions about the phenomenon which are scientifically useful insofar as 
they can be compared with the real mortality data, despite being a non-counterfac-
tual model. Descriptive understanding can be characterised as follows:

DESC: A scientific community has descriptive understanding of a phenom-
enon P when they have a model or theory that can generate non-counterfactual 
predictions of the dynamics that P will follow (i.e., how the values of P will 
develop over time) and is built on a set of basic empirically-based assumptions 
 A1,  A2,  A3,, …, that make these predictions plausible.

Note that DESC comes in degrees for, as we will show, the more adequate the set 
of assumptions that justifies the plausibility of the process of generating non-coun-
terfactual predictions, the higher the degree of the DESC of a scientific community. 
The remainder of this section analyses the interplay between DESC and the produc-
tion of predictions about the empirical phenomenon in the case of the IHME model. 
We show that DESC dynamically emerges and improves during this process.

To generate the first predictions with the early versions of their model, the IHME 
scientists started by choosing a technical framework that, in light of the two key 
assumptions they had made concerning the general evolution of pandemic, was ade-
quate to model the mortality rate over time. The key assumptions were a) that the 
inclusion of social distancing measures in different locations will influence the evo-
lution of the mortality rate, and b) that these effects will be similar for any location, 
i.e., that similar social-distancing measures will affect the evolution of the mortality 
rate in the same way irrespectively of the location. In the case of this specific pan-
demic, b) means that the curve of the mortality rate will always have a symmetric 
shape for every location, given that this was the shape observed in Wuhan (Sect. 3). 

Fig. 8  Schematic representation of the process that allows the first degrees of DESC to be obtained. 
Deepening DESC requires comparison of the values in the model’s regularity pattern with the real data
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For the technical framework, the epidemiologists decided to choose a Gaussian 
error function, based on their observation of how the COVID-19 mortality rate had 
already evolved in Wuhan, and based on previous experience with the behaviour 
of other disease outbreaks. The Gaussian error function for COVID-19 corresponds 
to a curve-fitting approach, i.e., a model that aims to fit the type of fluctuations in 
daily mortality rates observed in a few locations. Moreover, the model went slightly 
further in advancing some key predictions as to how the data would evolve in the 
following days, given what was known by the time the model was built. Interest-
ingly, these predictions were not merely the result of a projection of the model into 
the future, following an arithmetic or geometric progression. Rather, the predictions 
were based on the integration between the model as described in Sect. 3, plus the 
fundamental assumptions a) and b).

The integration of these two epistemic elements allowed the creation of a model, 
(Eq.  1) which in turn made possible the generation of a set of non-trivial predic-
tions—as opposed to projections, which would be generated by the technical frame-
work without the inclusion of any assumption in its building process—that jointly 
provided a regularity pattern of the expected mortality rate which was supposed to 
be numerically similar to the pattern that would emerge from observing real mortal-
ity data in different locations. It is in the very process of creating this model, we 
argue, that the scientists started to obtain DESC. Figure 8 schematically illustrates 
this claim. The key elements that characterise the model building process in which 
DESC can be obtained are the following: (a) the technical framework, as represented 
by the Gaussian error function; (b) the assumptions which are used to determine the 
shape of the Gaussian error function and allow for its precise mathematical expres-
sion; (c) the regularity pattern that the combination of (a) and (b) as expressed in 
the IHME model is expected to follow.

The interplay between prediction and DESC in this case works as follows. First, 
the technical framework produces basic “predictions” in the form of a mere (geo-
metric) projection of the mortality rate into the future. Importantly, this technical 
framework needs to be adequate (intelligible) for modelling a specific pandemic like 
COVID-19. Yet, by itself, it is a mere predictor-generator which provides no under-
standing (i.e., neither in the explanatory, nor in the DESC mode) of the COVID-19 
mortality rate. Second, the technical framework is combined with some fundamental 
assumptions about how the mortality rate generally behaves, and, as a result of this 
integration, a clear mathematical expression of the model follows. This expression 
allows the derivation of predictions that, according to the IHME epidemiologists 
(Sect. 4), make descriptive understanding of the mortality rates feasible. This is so 
because these predictions are plausible for the specific disease due to the empirical 
appeal of the initial assumptions given the evidence available at the time when the 
first version of the model was built.

While the empirical appeal of the assumptions is necessary for the emergence of 
DESC, it is by itself not sufficient. An additional necessary ingredient as to why the 
epidemiologists began to obtain DESC on the basis of these predictions is because 
they convey a regularity pattern specific to the COVID-19 mortality rate that can 
then be compared to an empirically observed rate. The regularity pattern is based 
on the evidence available at the time when the model is built and will allow (by 
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means of its comparison to real data) for specific improvements in the model in its 
later versions. This last element is essential for the concept of DESC that character-
ises the work of the epidemiologists. Being conscious that a first model is only an 
approximation of the actual rates, they already work on the plausible assumption 
that some elements of the model will have to change in future versions due to the 
discovery of new evidence.

This gives us a picture according to which the model’s regularity pattern is inti-
mately related to the two assumptions a) and b) about how the mortality rate will 
behave, since the pattern can only be generated with a technical framework that is 
integrated with assumptions a) and b), so that it can be universally applied. Fur-
thermore, this picture points towards the existence of a deep, intimate relationship 
between DESC and prediction. But, importantly, it also points towards the relevance 
of combining specific assumptions about the disease under investigation with a tech-
nical framework, in a way which generates a non-trivial model that can generate reg-
ularity patterns, with future versions of the model being expected to generate better 
patterns that will give rise to an even deeper DESC (i.e., in virtue of further assess-
ing the plausibility of the basic assumptions).

One may argue, though, that the process we have just spelled out either fails to 
characterize a genuine form of understanding—in the end, the model described by 
Eq.  1 had to be adjusted—or that it characterizes a rather shallow kind of under-
standing. In our specific case, the worry is that because the model simply follows 
the past behaviour of the COVID-19 mortality rate in some locations and projects 
it to other locations in the future, the IHME model would not allow for understand-
ing why the rate behaves as it does. For example, by comparing the mortality rate 
observed in Spain with the rate projected by the early IHME model for Spain, one 
would understand that the real rate did not evolve symmetrically, but not understand 
why this was the case. So, how DESC is gained constitutes at best an uninteresting 
part of scientific research, and at worst not even a scientific achievement at all.12

The problem with this criticism is that what we have called DESC exists in sev-
eral scientific areas and is essential for taking scientifically based political decisions, 
like e.g., in economics (Maziarz, 2020). Furthermore, DESC is even indispensable 
when carrying out research in contexts where causal knowledge is either not (yet) 
available or not considered useful for predictive or even practical purposes. For 
example, newly emerging disease outbreaks are typically due to unknown causes 
and gaining DESC of these diseases is essential for properly managing the disease.13 
Additionally, causal models seem to be uninteresting for generating good predic-
tions about the types of complications that may emerge after surgery, so that clinical 
surgeons tend to prefer descriptive models, and hence DESC, over gaining causal 
knowledge (Bernard, 2017). So, even if one may think that DESC is a shallow form 
of understanding, it is undeniable that it is a form of understanding that deserves 
philosophical scrutiny to better capture its epistemological import.

12 We thank Carl Hoefer and an anonymous reviewer for raising this important point.
13 See “The criteria for Disease Outbreak News”. https:// www. who. int/ emerg encies/ disea se- outbr eak- 
news, Accessed December 22, 2020.

https://www.who.int/emergencies/disease-outbreak-news
https://www.who.int/emergencies/disease-outbreak-news
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Second, while it is true that if the form of understanding we describe were exclu-
sively gained by comparing the model’s projections with actual observations, it 
would be of a rather shallow nature, DESC is a far more complex kind of under-
standing that cannot be appreciated by simply looking at the outcome of the model-
ling process. While looking at the outcome of the modelling process may be useful 
to discover explanatory understanding, given it is based on the existence of counter-
factual dependencies between the variables of the model, DESC does not emerge as 
a result or product of modelling, but rather as result of the process of model-build-
ing and model-readjusting in the light of new evidence. It is a form of understanding 
that can only be grasped by looking at the development of the model and how epide-
miologists changed it over time.

While the case of DESC we have characterized in this paper corresponds to the 
form of understanding that emerges in the process of mathematical-model building, 
we suspect that an analogy with other processes of description would help to see 
the point we are making.14 Imagine we are trying to make a good description of the 
physiology of the nervous system, and we are supporting it with anatomical draw-
ings of the neurons and the neural connections, including detailed knowledge of the 
different parts in the synaptic space. We can draft a first approximation of the draw-
ing by looking at a series of samples, as Ramón y Cajal did. But the very first draw-
ing will probably not be accurate enough for the purposes of capturing the details 
of the synaptic space, and once we have drawn it, it will become necessary that we 
look at the samples again and adjust these parts of our picture that do not correspond 
to the information that our samples reveal about the synaptic space. The process will 
need to be repeated several times, until our picture of the neural space is accurate 
and corresponds to what we aim at capturing based on what our samples reveal. 
DESC is what results from this whole process of drawing, redrawing, and compar-
ing with the samples, until our picture is accurate and satisfactory. The final picture 
that we draw, i.e., the result of the process, cannot be characterized as providing us 
with DESC. Rather, in our account, DESC is what gradually emerges throughout the 
process.

Our argument is that the development of the IHME model constitutes a clear 
case of DESC, one that is obtained through mathematical modelling and, especially, 
through model improvement. It is this process of model-development what creates 
DESC, and not the final model itself. Let us now show how this process took place 
in the case of the IHME model.

As we already noted, the IHME model underwent an important alteration on 
April 17, when a multiple mixture model component was introduced to cope with 
the observed mismatch between the early predictions and the empirical data. Basi-
cally, the key problem of the first version of the IHME model was that the mortality 

14 We are conscious that descriptions, and particularly these conveyed by drawings, play many other 
functions apart from conveying DESC, and the process of obtaining them presents unique challenges. 
But in our narrative, we are limiting the discussion to the cases where these descriptions and the process 
of generating them create DESC, as this is the main function that we characterize in this paper. We thank 
Hanna Worliczek for a very helpful discussion on this specific point.
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rate developed very differently across the locations where measures were intro-
duced. Consequently, the projected death rates diverged largely from the observed 
number of deaths, showing that the model had significantly underestimated the con-
sequences of COVID-19. This led epidemiologists to revise the original assumptions 
that had backed up their early predictions and investigate which of them might have 
caused the mismatch. They found that their key assumption b), about the symmet-
rical behaviour of the mortality rate across locations, was mistaken for most local 
conditions. Note that, as we showed (Sect.  3), the symmetry of mortality curves 
is a well-established epidemiological observation (viz. the Farr Law of Epidem-
ics) which had also been detected for the city of Wuhan. Epidemiologists worked 
on the assumption that if symmetry had been observed in the mortality rate-curve 
of Wuhan, then it was also expected to be shown in other locations. However, this 
assumption was proven false: observed death trajectories were characterised by a 
long tail which represented a slow decline of deaths, resulting in asymmetric curves. 
Epidemiologists concluded, thus, that the observed symmetry of the death curve in 
Wuhan was simply a contingent fact of Wuhan, instead of a regularity underlying 
the dynamics of the COVID-19 pandemic. Thus, a new version of the IHME model 
should avoid making that assumption with the goal of improving the accuracy of its 
estimates.

One of the aspects of the COVID-19 pandemic that became salient after the early 
predictions of the IHME model had been compared with the data was that people’s 
mobility (understood as the time they spent in public places) played a key role in 
shaping the mortality rate. Moreover, it also turned out that analogous political 
restrictions on mobility in different areas had strikingly different effects. This was 
partly because of the combination of different local conditions with people’s com-
pliance with the introduced measures, which sharply varies in different geographi-
cal areas. For instance, different levels of population density in the area, differences 
concerning whether the measures are introduced in cities or in the countryside, or 
differences about the separation between residential and non-residential areas had 

Fig. 9  Schematic representation of the role of predictions in updating the IHME model. Notice that as 
the relationship between the predictions and the assumptions works back and forth, it is dialectical. Also 
note that, coherently with our claims, DESC gradually improves during the process of model update
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a substantial impact on the outcome of the measures (IHME, 2020). This illustrates 
how hard it is for epidemiologists to make inferences based on data from a scarce 
pool of available locations, given the important magnitude of local effects.

We will now substantiate the claim that predictions play another fundamental 
epistemic role in the process leading to the obtainment of DESC. When comparing 
predictions with the actual evidence, they serve to test which of the assumptions 
that were used in building the model were mistaken. Note that the idea that predic-
tions allow testing of the validity of the assumptions was already explicitly stated 
in the work of Douglas (2009) and de Regt (2017), yet they had failed to spell out 
why this fact played a role in the generation of scientific understanding, due to their 
emphasis on linking both concepts through an explanation (Sect. 2). Our hypothesis, 
as illustrated by the case of the IHME model, is that predictions help to generate 
descriptive understanding of a phenomenon by pinpointing the error and success of 
the model. That is, predictions play the additional role of showing where the model 
got the phenomenon right, and where it needs to be modified, so that deeper DESC 
can be gained. This generates a dialectical view of the relationship between DESC 
and prediction, one that we contend should be incorporated in contemporary analy-
sis of the concepts, which is summarised when Fig. 8 is contrasted with Fig. 9. As 
this comparison illustrates, in the initial stage, the model generates predictions that 
provide a regularity pattern that allows scientists to obtain first degrees of DESC 
regarding the COVID-19- mortality rate. In the second stage, predictions work back-
wards: they are contrasted with the evidence and force scientists to reshape their 
model by modifying the assumptions upon which it relies. This second step does not 
require replacing the technical framework by a different one (i.e., by another type 
of error function), but merely updating it in the light of the introduction of some 
new assumptions that make the deduction of predictions feasible (by introducing so-
called Gaussian extensions). Importantly, after this second stage has taken place, the 
predictions are themselves altered, i.e., they are freshly produced. This is because 
the change in the assumptions reshapes the model, hence the prediction generation 
process begins again, and in that vein, the whole DESC-prediction-assumption pro-
cess is taken to the next stage, in which the assumptions and the predictions become 
more plausible for the phenomenon under investigation.15

Overall, this gives us a picture in which DESC and prediction are intimately 
linked in a dynamic way which results from the generation of a regularity pat-
tern that is then compared with actual data. In the case of the IHME model, this 
was feasible, following the dynamics we have described, even in the early statisti-
cal versions published during March and April. This suggests that some statistical 

15 One reviewer has objected that the fact that the assumptions can be isolated as the part that “went 
wrong” in the IHME model must be particular of this model, given confirmational holism, which causes 
that the theory or model is confirmed (or refuted) as a whole (Stanford 2017). This is essentially correct, 
but the reasons why IHME modellers though that the assumptions were what must have been wrong in 
this case depended on the fact that the choice of other parts of the model had been independently con-
firmed in other cases, e.g., for other diseases and in other outbreaks, whereas the assumptions where the 
key element that was being put into test given their locality (i.e., they were solely based on data from 
Wuhan, and some vague information, but had not received independent confirmation).
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epidemiological models can provide scientific understanding of a special and non-
explanatory type of certain phenomena, despite their lack of reference to causal 
or counterfactual variables affecting the dynamics of the phenomena. What makes 
understanding feasible in these cases is the model’s capacity for generating statis-
tical associations between some key variables that underlie the phenomenon, even 
while it is not known how exactly these variables mechanistically relate to it. In 
other words, statistical models of COVID-19 such as the IHME model analysed here 
provide a genuine form of scientific understanding, which we have called descrip-
tive understanding or DESC, even when the connection between the variables of the 
model and the real dynamics of the pandemic is not counterfactual.

In this vein, our work introduces a new modality of understanding that should be 
taken seriously in contemporary philosophical research. We have shown that predic-
tion and understanding (or in de Regt’s terms intelligibility) of a model can also be 
linked via a description. We have shown that the degrees of DESC depends on the 
empirical appeal of the assumptions that allow the building of the model, its predic-
tive capacity, and the possibility of modifying the assumptions in virtue of the pre-
dictions generated by the model.

6  Conclusion

In an unprecedented manner, the COVID-19 pandemic caused rapidly growing 
rates of viral infections that threatened the lives of many and put hospitals all 
over the world in acute danger of becoming overwhelmed by the vast number 
of incoming patients. This emergency accelerated scientific research, with many 
resources being dedicated to understanding several aspects of the pandemic. One 
of the most important aspects to understand was the pandemic’s dynamics. Such 
dynamics includes uncovering how the transmission rate increases over time, how 
the mortality rate evolves, and how the number of infected people changes. To 
understand these aspects, scientists elaborated several epidemiological models. 
In this paper, we have studied one of these models, the IHME model, paying spe-
cial attention to how it was modified and updated during the months of March 
and April 2020. These early versions of the IHME model followed a curve-fitting 
approach, and thus they were purely statistical as opposed to causal or causal-
mechanistic models. Yet, they had predictive capacity, and their usefulness and 
relevance in political decision-making was based on this epistemic virtue.

In this paper, we have used the IHME model as a proxy to investigate how 
statistical epidemiological models can be scientifically useful, and what specific 
epistemic role they play in scientific research (Sect.  3). Our point of departure 
was the scientific conviction that these types of models provide scientific under-
standing of some phenomena (concretely, understanding of the dynamics of the 
COVID-19 mortality rate), and we have tried to uncover the reason why this fam-
ily of epidemiological models is useful for this task. We have noticed that statisti-
cal models have substantial predictive power, and that this predictive power is 
intimately connected to their capacity in providing a regularity pattern for a con-
crete phenomenon. We have analysed the epistemological relationship between 
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understanding and prediction on this basis. First, we have shown that statistical 
models do not provide explanatory understanding, contradicting some current 
accounts of understanding that equate it to having an explanation. We grounded 
our claim on the observation that statistical models do not spell out causal or 
counterfactual dependencies and, given that at least one of these should be pre-
sent for a model to be considered explanatory, we have excluded this possibility 
(Sect. 4).

Second, we have coined the concept of descriptive understanding (DESC) 
which we characterised as the type of understanding that emerges and deepens in 
the process of building and modifying non-counterfactual, but plausible predic-
tion-generating models or theories of the dynamics of a particular phenomenon. 
We defined the plausibility requirements in terms of the basic set of assumptions 
 (A1,  A2,  A3, etc.) that scientists take to underlie the dynamics of the phenom-
enon based on what is known from previous research. In the specific case of the 
early versions of the IHME model, DESC is made feasible via the combination 
of a simple technical framework that depicts a mathematical function or regular-
ity, with a series of assumptions about the set of variables that would affect the 
results of the technical framework and, in a sense, affect the unfolding of the phe-
nomenon. The integration of these two aspects into a single model generates a set 
of predictions that, in turn, constitute a regularity pattern. DESC, we have argued, 
results from scientists’ ability to generate these regularity patterns and compare 
them with real data (Sect. 5; for a summary, see Fig. 8).

A second step in our work consisted in analysing how the original version of the 
IHME model changed in response to the growing evidence. This suggests that DESC 
is not a form of shallow understanding, but rather a genuine cognitive achievement, 
even though it comes in different degrees. We have shown that a key element that 
characterised the work of IHME modellers was that they used their predictions 
backwards, as instruments for comparing their model with the available evidence to 
gain knowledge about which assumptions of the model had to be changed. This step 
is fundamental, for it shows the dynamic interactions between predictions, DESC, 
and the assumptions that underlie model building, in a real-world case of model 
development. Our hypothesis was hence that predictions served scientists as a test 
to discover where their assumptions about the dynamics of COVID-19 had failed 
and needed to be replaced by new assumptions. Concretely, this means that certain 
local conditions not included in early versions of the IHME model (such as popula-
tion density, urban area vs. countryside, or level of compliance with the mobility 
restrictions) needed to be included in an updated version, as they severely affected 
the development of COVID-19. In virtue of changing these assumptions, the whole 
prediction-generating process is started again (for a summary, see Fig. 9).

Our work emphasises an important step in the philosophical comprehension of 
scientific modelling (in its statistical version), scientific understanding, scientific 
prediction, and the relationship between them. We highlighted the epistemic value 
of non-causal, but descriptive models, and their relevance for contemporary scien-
tific research. This suggests that understanding cannot merely consist in having an 
explanation (de Regt, 2017; Grimm, 2010; Hills, 2016; Khalifa, 2017), but it is a 
scientific skill that can be realised through multiple types of cognitive achievements 
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(Dellsén, 2020; Verreault-Julien, 2019) (for a summary see Grimm et  al., 2016; 
Grimm, 2021). Furthermore, we shed light on how these models evolve over time, 
and how they are generally responsive to evidence. An additional step would be to 
shed light on the role that these models have for the generation of hybrid or causal 
models (Sect. 3). As we said, after May 2020, the IHME became a hybrid model, as 
epidemiologists subsequently began using hybrid or causal models, instead of sta-
tistical models. Studying the role that early statistical models played in the develop-
ment of hybrid models is, however, outside the scope of this work.
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