
Vol.:(0123456789)

HPLS (2021) 43:104
https://doi.org/10.1007/s40656-021-00457-9

1 3

ORIGINAL PAPER

Epidemiological models and COVID‑19: a comparative 
view

Valeriano Iranzo1   · Saúl Pérez‑González2 

Received: 31 May 2021 / Accepted: 4 August 2021 / Published online: 25 August 2021 
© The Author(s) 2021

Abstract  Epidemiological models have played a central role in the COVID-
19 pandemic, particularly when urgent decisions were required and available evi-
dence was sparse. They have been used to predict the evolution of the disease and to 
inform policy-making. In this paper, we address two kinds of epidemiological mod-
els widely used in the pandemic, namely, compartmental models and agent-based 
models. After describing their essentials—some real examples are invoked—we 
discuss their main strengths and weaknesses. Then, on the basis of this analysis, 
we make a comparison between their respective merits concerning three different 
goals: prediction, explanation, and intervention. We argue that there are general 
considerations which could favour any of those sorts of models for obtaining the 
aforementioned goals. We conclude, however, that preference for particular models 
must be grounded case-by-case since additional contextual factors, as the peculiari-
ties of the target population and the aims and expectations of policy-makers, cannot 
be overlooked.
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1  Introduction

Mathematical models are key tools in many scientific fields (Magnani & Casadio, 
2016; Weisberg, 2013). Researchers use models to represent and study diverse kinds 
of systems (e.g., cells, planets, social networks, etc.). Models help them to learn 
about target systems, explain observed phenomena, organise knowledge, develop 
concepts, etc. (Bokulich, 2011; Knuuttila, 2011; Nersessian, 2010). Nonetheless, 
some concerns and doubts have been raised regarding the relevance of mathemati-
cal models for medical practice and health interventions (see, for instance, Ioannidis 
et al., 2020). Those worries are usually raised by advocates of the Evidence-Based 
Medicine (EBM) approach, according to which (clinical and policy) decision-mak-
ing should be guided by the best available evidence (Thompson, 2010).

During the COVID-19 pandemic, maybe even more clearly than in previous 
health crises, epidemiological models have played a crucial role (Eubank et  al., 
2020; Holmdahl & Buckee, 2020; Rhodes et al., 2020). They have been used to pre-
dict the evolution of the pandemic, to estimate the effect of health interventions, 
to anticipate side effects, etc. Furthermore, given the lack of other decision-support 
tools (e.g., high-quality experimental evidence), especially in the first stages of the 
pandemic, models became the main guide for political decision-making (McBryde 
et  al., 2020). In the United Kingdom, for instance, the government’s approach to 
the pandemic was mainly informed by epidemiological models run at the Imperial 
College London. In this sense, an update to a model related with intensive-care unit 
(ICU) bed occupancy (from 15 to 30% of hospital cases), which had a great impact 
on the number of predicted deaths, was highly relevant to the implementation of 
the first lockdown on 23th March (Adam, 2020). Similarly, in France, the scien-
tific committee formed to inform public decision in the handling of the COVID-19 
pandemic took epidemiological models as the main reference (Manzo, 2020). The 
judgements and recommendations released by this committee in mid-March led the 
French government to introduce several measures to reduce social interaction.

The aim of this paper is twofold. Firstly, to characterize the epidemiological 
models invoked during the COVID-19 crisis. We will discuss the so-called “the-
ory-driven models”, particularly those kinds most widely used, that is, compart-
mental models and agent-based models (ABMs).1 Our second goal is to assess the 
theoretical strengths and weaknesses of those models. Factors such as the urgency 
to provide a guide for policy-making or the quality of the available data may limit 
the empirical success of models. But it should be made clear that here we are not 
concerned about the actual performance of particular models. Rather, we will focus 
on their general features and analyse how they can contribute to turn epidemiologi-
cal models into effective tools for both prediction and policy-making. According 
to this, Sect. 2 introduces compartmental models (Sect. 2.1) and accounts for their 

1  A further option that will not be discussed here are “data-driven models”, also labelled as “curve-fit-
ting approaches” or “statistical models” (Fuller, 2021; Manheim et al., 2016). Regarding the COVID-19 
episode, the IHME model of the Institute for Health Metrics and Evaluation (University of Washington) 
is probably the most famous among them.
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capacities and limitations (Sect. 2.2). Section 3 deals with ABMs. It presents their 
main traits (Sect. 3.1), highlights some remarkable advantages (Sect. 3.2), and iden-
tifies certain problematic aspects (Sect. 3.3). Section 4 scrutinises how compartmen-
tal models and ABMs can inform policy-makers and support decision processes. For 
that purpose, it is discussed their relevance for prediction (Sect.  4.1), explanation 
(Sect. 4.2), and intervention (Sect. 4.3).

2 � Compartmental models

Epidemiological models have been prominent in the COVID-19 pandemic. Predict-
ing the evolution of the pandemic and informing governments’ decisions for control-
ling it are the basic demands for mathematical epidemiologists (Jewell et al., 2020). 
Compartmental models—originally formulated in (Kermack et  al., 1927)—are 
standard tools in this field.

2.1 � The SIR model

The simplest compartmental model is SIR. It is a set of three ordinary differential 
equations which try to describe the rate of change in relation to three different com-
partments in a particular population: Susceptible (S), Infected and infectious (I), and 
Recovered and neither able to be infected again nor to spread the disease (R). During 
an epidemic episode some individuals move from S to I, and then, to R. The equa-
tions are intended to predict how the number of individuals in each compartment 
changes as epidemics evolve:

The parameters β and γ are the “infectivity rate” and the “recovery rate”, respec-
tively. β depends on the number of contacts an infected individual has per time unit 
(κ) and the “transmission rate”, that is, the probability of transmitting the infection 
to susceptible contacts (τ). Then, � =

�⋅�

N
 . And � =

1

D
 , where D is the duration of the 

infection, measured in units of time (days, for instance).
This model makes some assumptions:

•	 population is closed, so if N is the number of members at t0, for the entire pro-
cess S + I + R = N

•	 natural births/deaths are not considered
•	 the outbreak is short lived

dS

dt
= −�SI

dI

dt
= �SI − �I

dR

dt
= �I
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•	 the latent period is null: an individual becomes infectious at the moment she is 
infected

•	 no backward transfer is allowed, so recovery equates to lifetime immunity
•	 even though the disease can be fatal, the recovery rate does not distinguish 

between recovered or death individuals
•	 β and γ are constant (unaffected by age of patients, virus mutations…)
•	 homogeneous mixing: all infected individuals transmit the disease at rate β and 

the recipient is chosen uniformly at random from the population

According to all this we can plot the epidemic curve (three curves, indeed: one 
for each compartment).2

A central question for predicting the evolution of the epidemic seems to be how 
many people is infected by an infectious individual for the time she is ill and able 
to transmit the infection, that is, before her recovery or death. This is R0, the basic 
reproduction number, which is derived from R, the reproductive rate, a notion devel-
oped by Anderson and May (1982); see also (Heesterbeek, 2002):

At the outset of the epidemic just one individual, perhaps a few of them, is 
infected. If the whole population, except those few ones infected at the beginning, 
may be infected, and S0 >  > I0, then S0/N ≈ 1. Given that, since � =

�⋅�

N
 , we obtain R0, 

that is:

R0 is the average quantity of people who gets infected by an infectious person 
during the whole period the latter is infectious. It is a good indicator of the near 
tendency of the epidemic. Thus, if R0 > 1, I exponentially grows; if R0 < 1, I expo-
nentially decreases.

2.2 � Pros and cons of compartmental models

Compartmental models have been routinely used for different infectious diseases for 
a long time. Measles, dengue fever, influenza, HIV, and more recently, the SARS 
epidemic of 2002, the H1N1 influenza pandemic of 2009, and the Ebola outbreak of 
2014, are some examples (Brauer, 2017; May & Anderson, 1987). The equations of 
compartmental models are not very demanding concerning the amount of input to 
be implemented. Some basic knowledge about the disease mode of transmission is 

R =
S0 ⋅ �

�

R0 =
� ⋅ �

�
= D ⋅ � ⋅ �

2  Two further basic options are SIS and SEIR. The former does not assume total immunity after infec-
tion, while the latter adds a new compartment for exposed individuals. For a survey of different versions 
of compartmental models see Brauer et al. (2008) chaps. 2 and 5.
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assumed, of course. Apart from this, cardinals for N and I0, plus estimated values for 
a few parameters suffice.

This is a good reason to favour compartmental models in some situations. Think 
of a sudden outbreak of an epidemic and a disease with a non-negligible rate of 
fatality. Delay in decisions could result in an unacceptable increment of deaths. 
Here, compartmental models may be, in principle, a fine option. We have previous 
implementations of them in many different epidemics and the information required 
for calibrating them is not very extensive when compared to some other modelling 
options (see below). Certainly, if the disease is unknown, it may be extremely dif-
ficult to get reliable information about those parameters at the onset of the epidemic. 
However, this is an unavoidable constraint not only for compartmental models, but 
for every prospective strategy.

Nonetheless, compartmental models also have some limitations concerning indi-
vidual variability, social dimension of the epidemic, unexpected responses to inter-
ventions, and side effects of interventions. Let us pause on this.

(1) Individual variability. Individuals are initially classified as members of either 
S or I, and the focus is on the global rate of change from S to I and from I to R. 
Hence, compartmental models are not very realistic about some traits of individu-
als that may be highly relevant for a detailed understanding of the human transmis-
sion pathways and, consequently, for improving local predictions about the disease 
spreading. As we noticed before, it is possible to include additional compartments—
for the exposed, for infectious who require hospitalization, etc.—to build more com-
plex compartmental models, but that does not change the essentials.

Regarding sources of individual variability, we should distinguish between dis-
ease independent host factors—e.g., sex, age, number of contacts, and compliance 
to public health recommendations—and disease dependent host factors—e.g., sus-
ceptibility to disease, transmission rate, and recovery rate. The infectivity rate is a 
partial effect of social interactions in time and space between individuals, and con-
sequently, to specific habits related to age, environmental conditions… Individual 
biological response to the infectious agent may introduce variations in the probabil-
ity of catching the disease, specifically, in the transmission rate τ (there are many 
reasons why a particular individual may be more/less contagious when contact with 
susceptible people is established), and also in the recovery rate γ (notice that we are 
assuming, firstly, that the period of being infected equates to that of being infectious, 
and secondly, that this is the same for all individuals in N).

Let us consider in detail a fundamental disease independent factor as the number 
of contacts per time unit (κ), usually measured in number of daily contacts. A homo-
geneous distribution of the population in space is assumed in compartmental mod-
els so that contact with every other person per time unit has equal probability. The 
“mass-action” principle is related to this. According to it, doubling the size of the 
population implies doubling the number of infections per time unit. But our contacts 
are much more frequent with those people belonging to smaller subgroups (close 
friends, family…). The number of contacts also depend on age or activity. Appeal-
ing to multiple classes of susceptible and infected individuals and assuming well 
mixing between these sub-classes with different rates is a lively option. But at the 
onset of an epidemic there are few individuals infected and the specific pattern of 
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contacts of a typical infectious agent seems relevant. Furthermore, individual pecu-
liarities have been noticed in many epidemics. “Superspreaders”—i.e., individu-
als who transmit the infection to many susceptible members—have been observed, 
while some others transmit the infection to very few people.3

In order to cope with these difficulties some authors tried to cash out compart-
mental models in the network language (Brauer et  al., 2008; Miller, 2017). Still, 
when compared with empirical epidemiological data, homogeneous mixing mod-
els fit better when the real pattern of contacts involves a highly connected network 
where many individuals make contact. Again, that may be an unrealistic state of 
affairs. Besides, they have a tendency to underestimate the amount of initial spread 
for the transmission and to overestimate it at the final period.

(2) Social dimension of the epidemic. Prediction is the main goal for COVID-19 
compartmental models. As the proportion of recovered people increases there are 
fewer susceptible contacts to be infected, so eventually R0 goes down. The evolution 
of the epidemic is determined by changes in R0, but these fluctuations do not depend 
just on bio-medical factors. Now, according to the parameters included in compart-
mental models, what strategies could be followed for controlling the epidemic?

(a)	 A direct defensive move is vaccination. Vaccinated people reduce the propor-
tion of susceptible individuals among the contacts of an infectious person and, 
presumably, the number of contagions she provokes while she is ill.

But there are further possible interventions in order to minimize R0:

(b)	 Decreasing the duration of the infectious period (D).
(c)	 Reducing the number of individuals’ contacts per time unit (�).
(d)	 Reducing the probability of transmitting the infection in contact with susceptible 

people (τ).

Options (a) and (b) depend on the availability of effective drugs. Unfortunately, 
there were no effective drug-pharmacological treatments against COVID-19 till 
the advent of vaccines at the end of 2020. In contrast, (c) and (d), which could be 
labelled as “non-pharmacological interventions” (NPIs), were available. Isolation 
and preventive hygienic measures as lockdown and handwashing, respectively, were 
recommended.

Furthermore, different degrees of severity can be envisaged here. Voluntary 
isolation of infectious people is a minimum (appealing to personal responsibil-
ity) while compulsory quarantine for them and for their close contacts would be 

3  Compartmental models may include some details about individuals. Report 12 of the Imperial Col-
lege London builds a SIR model to predict the final epidemic size and an alternative SEIR to model the 
epidemic’s demand of healthcare. This SEIR model adds more compartments by distinguishing between 
mild infections and those which require hospitalization (with/without requiring ICU beds). Both models 
are “age-structured” models: the demographic structure of the population is implemented and the rates of 
contact between different individuals are estimated across different age groups (Walker et al., 2020). For 
local predictions, anyway, this may not be enough.
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a stricter policy. A much more ambitious option to prevent the circulation of the 
virus is forced isolation at home for all people (without distinguishing between those 
included in S, I, and R) except for essential workers. In fact, measures applied in dif-
ferent countries greatly differed—compare, for instance, Spain or Italy, where severe 
lockdown was applied, to Sweden.

The fact is that fluctuations in R0 are influenced by more or less spontaneous 
changes in the agents’ behaviour, but they may also be externally provoked by new 
legal provisions (closing schools, for instance). Accordingly, social attitudes and 
political decisions, in addition to bio-medical factors, are decisive to predict the 
course of the epidemic. Some authors even insisted that changes in R0 during the 
COVID-19 pandemic are not governed by “natural” laws (Boumans, 2021). If that 
means that conditions where natural laws operate change as a result of policy-mak-
ers’ decisions, we agree on that. Changes in R0 cannot be fully explained resorting 
exclusively to those laws. And this adds a significant degree of uncertainty on the 
evolution of the pandemic.4

In favour of compartmental models it should be stressed, however, that they have 
been used not only at the “null-action” setting, i.e., when no public global interven-
tion has been tried, but also to assess the potential effects of measures as quarantine, 
social distancing, etc. Certainly, NPIs are aimed at reducing the values of either κ 
or τ by favouring or disallowing certain behaviours and controlling the conditions 
for interaction between citizens. Insofar as NPIs have an impact on those endog-
enous factors highlighted by compartmental models, it would be unfair to claim that 
the social dimension of COVID-19 pandemic is completely disregarded by those 
models.5

Regrettably, the resources of compartmental models to address the social dimen-
sion of the pandemic are limited. Changes in patterns of social interaction brought 
about by NPIs can only be grossly conjectured. Those patterns, like health policies, 
should properly be understood as exogenous variables in those models. In addi-
tion to this, social conditions independent of the implemented policies could sig-
nificantly erode the effectiveness of such measures in slowing the spread of the epi-
demic. Think about specific behaviours resulting from low-income effects (necessity 
of going out for work violating quarantine, avoiding use of face masks because of 
their price…) or differences in health services equipment/qualification among coun-
tries, regions, cities, or neighbourhoods.

(3) Unexpected responses to interventions. Predictions about the evolution of a 
contagious disease like COVID-19 cannot overlook changes in human attitudes and 
behaviour. Of course, in order to predict the effectiveness of social policies some 

4  Boumans infers from that a stronger claim: “This not only makes the curve erratic but its future devel-
opment unpredictable.” (Boumans, 2021, p. 14). This conclusion should be qualified. Conditions for 
transmission may change due to political decisions but this does not imply that the evolution of the curve 
is unpredictable. After all, the indirect effects of those decisions on R0 may be anticipated to some extent. 
The drastic reduction of the value of κ as a result of severe confinement, for instance, is foreseeable so 
that its effects on the shape of the curve can also be approximately estimated.
5  For instance, the compartmental model deployed in McCabe et  al. (2021) estimates the potential 
effects of different lockdown scenarios in ICU resources in France, Germany, and Italy.
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expected effects on behaviour are considered by compartmental models. Severe 
lock-down accompanied with high fines guarantees that many outdoor activities will 
not be practiced by the vast majority of people. But there may be effects on the 
individual response that: (1) are more difficult to predict, (2) may have a substantial 
influence—positive or negative—in the course of the epidemic statistics at least in 
particular locations, age cohorts, etc., and (3) can hardly be accommodated in com-
partmental models.

Among those consequences, we could distinguish:
Spill-over effects: unexpected effects in the “control” population (that is, the part 

of the population where the intervention does not apply) as a consequence of an 
intervention in the target population. Forced quarantine just for infectious people, for 
instance, may make their close relatives and neighbours more careful with hygiene 
preventive measures.

Looping effects: unexpected changes in the behaviour of the target population as 
a consequence of an intervention, which could have a non-negligible influence, be 
it positive or negative, on its effectiveness. The more extended period of closure for 
businesses where alcoholic beverages are allowed, the higher increase in multitudi-
nous private parties where security measures are not enforced. This may have a dif-
ferential impact (i.e., a remarkable increase of infected people) among those popula-
tion groups who attend to these events but, perhaps, a minimal impact on some other 
groups.

Even though asking models for very accurate predictions about this sort of effects 
could be unrealistic, a broad anticipation of these differential impacts allows for 
devising specific counterbalancing policies. But compartmental models have no slot 
in their input for behavioural considerations like these.

(4) Side effects of interventions. In addition to those individual responses that 
could have an indirect influence on the effectiveness of the implemented policies, 
there are further untargeted effects that are out of reach of compartmental mod-
els. When confronted to the decision to extend severe lockdowns, for instance, a 
cost–benefit calculation should take into account that long lockdown periods may 
have an impact on demand for mental health care. Likewise, it has been noticed that 
closing schools is more disadvantageous for those children who have no easy access 
to new technologies at home. Then, it is not a surprising fact that a pandemic like 
that of COVID-19 has effects in areas as diverse as mental health, education, job 
market… The point is anticipating and estimating—with a moderate degree or reli-
ability at least—these partly expected but unintended consequences of NPIs. Com-
partmental models, however, are silent about them.

3 � Agent‑based models

Although compartmental models are standard tools, epidemiologists also appeal to 
other kinds of models to predict the evolution of epidemics and anticipate the (plau-
sible) effects of certain interventions. Among those alternative approaches, ABMs 
occupy a prominent place. Since its emergence in the second half of the twentieth 
century, they have achieved great relevance in fields such as sociology (Macy & 
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Flache, 2009), political science (de Marchi & Page, 2014), social psychology (Smith 
& Conrey, 2007), immunology (Bauer et al., 2009), and epidemiology (Auchincloss 
& Diez Roux, 2008). In this section, we will characterise ABMs and discuss their 
main capabilities and limitations in epidemic scenarios.

3.1 � Dynamics of behaviour

An ABM can be an artificial society (Epstein & Axtell, 1996). ABMs are computer 
simulations of autonomous agents that interact according to a set of rules and within 
a specific environment (Epstein, 2006). Individual agents, which are the theoretical 
starting point of any ABM, are represented as specific software objects; they are not 
aggregated into homogeneous populations. Each individual agent is characterised by 
a vector of attributes, usually including spatial location (de Marchi & Page, 2014). 
Some other attributes could be gender, political affinity, job… So, the set of attrib-
utes is:

Models are instantiated by assigning particular values—xi1, xi2, xi3,…—to agents 
for each attribute. A great flexibility is allowed regarding the individual agents 
included in the model. They can be few or millions, identical or highly heteroge-
neous, etc. Furthermore, attributes can be fixed, and remain invariable during the 
entire simulation, or mutable and susceptible to change. For time-indexed attributes, 
the state of agent j at a time t is:

Provided that the number of agents is N, the configuration of the model at t 
encompasses all the agents’ states at t:

Individual agents interact among them and with the environment on the basis of 
behavioural rules, which can also be fixed or mutable. Those rules can be the same 
for all the agents or vary among them, allowing heterogeneous behavioural patterns. 
They guide individuals’ behaviour according to the input they receive from envi-
ronment. That input may refer to past configurations of the environment, current 
configurations of the environment, or potential actions of other agents. Because of 
the responsive nature of those rules, the behaviour of agents is often considered as 
adaptive (de Marchi & Page, 2014). Nevertheless, it should be noticed that, in most 
ABMs, agents have limited cognitive capacities and limited information, which is 
often restricted to the nearby environment (Parker & Epstein, 2011). Accordingly, 
given a particular (past, current, or future) configuration of the environment, they do 
not always make optimal choices.

In ABMs, the autonomous and interdependent behaviour of individual agents 
aggregates and results in (often informative) system-level outcomes (e.g., economic 

{
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inequality among neighbourhoods). Those outputs are usually understood as emer-
gent or bottom-up (Epstein, 2006; Macy & Flache, 2009). They can be highly unex-
pected even when agents’ attributes and behavioural rules are well known. ABMs 
pay special attention to how individual behaviour results in system-level outcomes 
(de Marchi & Page, 2014). They aim to identify and explore the link between some 
individuals’ traits and behaviours, and certain aggregate patterns. Hence, unlike 
compartmental models, ABMs are not exclusively focused on the aggregate output, 
but also on the dynamics of the individuals’ behaviour.

Concerning the degree of detail, ABMs vary significantly in their complexity 
and their resemblance to the target real population. They can range from simple and 
unrealistic models, such as the well-known segregation model developed by Schell-
ing (1971), to complex and empirically calibrated models. The Global-Scale Agent 
Model (GSAM), for instance, includes more than 6 billion individual agents that 
are modelled on the basis of available data (Parker & Epstein, 2011). The appropri-
ate level of complexity and realism depends on the purpose of the model (Boero & 
Squazzoni, 2005; Bruch & Atwell, 2015; de Marchi & Page, 2014).

During the COVID-19 pandemic, several ABMs were built to study and predict 
the viral spread and the plausible effect of diverse interventions. In this sense, for 
example, Nicolas Hoertel et al. (2020) developed a stochastic ABM of the epidemic 
in France. The main purpose of their research, which was conducted in the spring 
of 2020, was to study the consequences of lifting the first nationwide lockdown and 
evaluate the efficacy of diverse NPIs to avoid a second epidemic peak and lockdown. 
They examined the potential impact of post-lockdown measures on cumulative dis-
ease incidence and mortality, and on ICU-bed occupancy. Three of them were dis-
cussed: physical distancing, mask-wearing, and shielding those who are the most 
vulnerable to severe COVID-19 infection.

The ABM developed by Hoertel and collaborators consisted of a realistic syn-
thetic population (500.000 agents), a social contact network among individual 
agents (including close/prolonged, less-frequent/less-prolonged, and brief contacts), 
and a disease model. The model included 194 parameters that were considered 
potentially relevant. Among them, 140 parameters referred to individuals’ proper-
ties (e.g., age), 33 to social contacts (e.g., employment rate), and 21 to SARS-CoV-2 
characteristics (e.g., incubation time). Most of those parameters were calibrated on 
the basis of available data. The main references for calibration were data provided 
by the French National Statistical Institute and Santé Publique France for individ-
uals’ properties, information provided by previous studies for social contacts, and 
data provided by the Pasteur Institute and the Imperial College London for SARS-
CoV-2 characteristics.

Nevertheless, at the first stages of the pandemic, when the model was built, few 
data were available about basic aspects of SARS-CoV-2 transmission. In particu-
lar, the proportion of undiagnosed cases and the risk of contamination were almost 
entirely unknown. Those parameters were estimated by comparing model predic-
tions about previous stages of the epidemic with the observed data. For that com-
parison, data provided by the Pasteur Institute and Santé Publique France were taken 
as reference. Furthermore, sensitivity analyses were conducted in order to ensure 
that deviations in the estimation of those parameters would have little impact on the 
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results. In those sensitive analyses, several versions of the ABM, which only differed 
in the value of the uncertain parameter, were run and their outputs were compared. 
In fact, in order to support the robustness of the model, sensitivity analyses (with 
variations of ± 20%) of each individual parameter were conducted.

In the empirical calibration of the model, not only parameters about SARS-CoV-2 
transmission were problematic. There was also scarce information about important 
aspects of social contacts. There were no data about parameters such as number of 
shopping trips (per week), frequency of meeting friends (per week), or number of 
close encounters per event participation. The estimated value of those parameters 
was based on assumptions about social behaviour. Furthermore, as it has been noted, 
sensitive analyses were also conducted regarding all parameters.

The ABM developed by Hoertel and collaborators anticipated that physical dis-
tancing and mask-wearing would be effective in slowing the epidemic and reduc-
ing mortality, but they would hardly be sufficient to prevent overwhelming ICUs 
and a second lockdown. However, according to that model, complementing physi-
cal distancing and mask-wearing with shielding of vulnerable people (for a period 
of 38  weeks) would result in better outcomes, including lower mortality and an 
adequate ICUs occupancy. Nonetheless, they claim that, in both scenarios, benefits 
would be substantially reduced if the measures were not adopted by most people or 
were not maintained for a sufficiently long period.

3.2 � The potential of ABMs

Advocates of ABMs have pointed out several capabilities and strengths of that kind 
of models (see, for instance, Auchincloss & Diez Roux, 2008; de Marchi & Page, 
2014; Macy & Flache, 2009). They are able to model dynamic processes, link indi-
vidual behaviour and population-level outcomes, explore neighbourhoods of mod-
els, include (geographical and social) space, etc. Nevertheless, there are four traits 
of ABMs especially relevant in epidemic or pandemic scenarios: heterogeneity of 
agents, variety of interventions, dynamic response, and identification of side effects. 
Let us consider them in some detail.

(1) Heterogeneity of agents. In ABMs, each individual agent is represented as a 
specific software object and characterised by a particular vector of attributes. Fur-
thermore, behavioural rules are individually assigned to each particular agent. Indi-
vidual agents can differ in beliefs, location, information, preferences, ability, learn-
ing rules, etc. Consequently, it is possible to build artificial societies that incorporate 
the heterogeneity and diversity of the target population (Auchincloss & Diez Roux, 
2008; de Marchi & Page, 2014). Following epidemiological and biological data-
bases, ABMs can include those aspects of individuals relevant for the spread of the 
disease. Those aspects can be either disease independent host factors (e.g., sex) or 
disease dependent host factors (e.g., susceptibility to disease). In order to illustrate 
that point, recall the ABM developed in Hoertel et al. (2020). In that model, individ-
ual agents diverge in many aspects that are considered relevant for the spread of the 
SARS-CoV-2. They differ in individual traits such as age or pre-existing conditions, 
and also in social aspects such as number of colleagues at work or use of public 
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transport. ABMs create artificial societies whose individual components resemble 
the real population of interest and take into account the influence of (non-homo-
geneously distributed) relevant aspects. This possibility of building heterogeneous 
populations is aptly appreciated to enhance ABMs accuracy in prediction.

(2) Variety of interventions. The theoretical starting point of ABMs are individual 
agents, which are individually characterised. And, as it has been noted, many and 
diverse parameters can be incorporated to characterise individual agents and envi-
ronments. Those parameters can refer to biological traits, cognitive capacities, social 
topologies, etc. This flexible and bottom-up nature allows ABMs to contemplate, 
study, and evaluate diverse interventions (Manzo, 2020). Although, as in the case of 
compartmental models, health policies are exogenous to them, ABMs can take into 
account a great array of interventions. They can explore interventions in any attrib-
ute or behavioural rule of any individual agent or type of agents, and also in any 
parameter of the environment. The interventions can range from very general inter-
ventions that address the whole population to fine-grained interventions targeted to 
a particular kind of agents. For instance, an ABM can simulate a 25% reduction 
in the use of public transport by agents who have close contact with agents with 
pre-existing conditions that make them particularly vulnerable to the disease. The 
possibility of considering diverse kinds of interventions has been important for the 
evaluation of NPIs to mitigate the COVID-19 pandemic. For example, the ABM 
of the epidemic in Ontario developed by Naimark et al. (2021) takes into account 
both community-based NPIs (e.g., restricting gatherings) and non-community-based 
NPIs (e.g., closing schools), and compares their influence in the number of infec-
tions. The main aim of the model is to study if non-community-based NPIs, which 
have many undesired effects, can be avoided.

(3) Dynamic response. In ABMs, agents interact guided by behavioural rules 
which may differ among them. Those rules, as it has been noted, guide their behav-
iour on the bases of the input received from the environment. Given this adaptive 
and dynamic aspect, ABMs are able to explore changes in people’s behaviour as 
result of the introduction of a particular intervention (Bruch & Atwell, 2015). In 
that kind of models, as long as the intervention results on a change in (some of) 
the included parameters, individual agents will act in response to it. The specific 
response will depend on both the changes produced and the behavioural rules. The 
input encompassed by behavioural rules can include traits of the own agent, of other 
agents, and of the environment. The flexibility of behavioural rules allows ABMs to 
incorporate both spill-over effects (i.e., untargeted effects on the population not tar-
geted by the intervention) and looping effects (i.e., untargeted effects on the popula-
tion targeted by the intervention).

(4) Identification of side effects. ABMs may include multiple processes, which 
involve different domains, in the same instantiation. Individual agents are endowed 
with very diverse kinds of attributes (psychological, biological, economic, etc.) and 
they interact across those multiple domains. For example, a viral infection can bring 
about health, occupational, and psychological effects on a particular agent. And 
these changes will probably modify her particular pattern of interactions with other 
individuals in each of those domains. The capacity of simultaneously accounting 
for diverse domains and processes places ABMs in a privileged position to identify 
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potential side effects of interventions, even although those effects refer to domains 
not targeted by the intervention (e.g., cross-domain spill-over). Furthermore, given 
the adaptive and dynamic nature of agents’ behaviour, ABMs can also incorporate 
feedbacks from one domain to other. In fact, ABMs have been used to identify and 
weight the plausible side effects of NPIs in the current pandemic. For example, 
Kano et al. (2021) developed a simple ABM to explore the relationship between the 
spread of COVID-19 and economic activities. In that model, both health (e.g., infec-
tion) and economic traits (e.g., employment) of agents are considered, and special 
attention is paid to how they are related. For example, the authors analysed how the 
amount of previous savings relates with the probability of being infected.

3.3 � The limitations of ABMs

As it has been noted, ABMs can vary significantly in their complexity and realism. 
They can range from simple and unrealistic models to complex and empirically cali-
brated models. The adequate degree of complexity and realism depends on the goals 
of the model. For instance, for pure theoretical purposes such as illustrating new 
intuitions or ideas, abstract and unrealistic ABMs are the most appropriate (Boero & 
Squazzoni, 2005).

In epidemics, as we have seen, the main role of ABMs is to assess the effect of 
particular factors or interventions in specific populations. For that purpose, it is usu-
ally considered that complex and realistic models are required. That sort of ABMs 
are often known as “high-fidelity” (de Marchi & Page, 2014), “high-dimensional 
realism” (Bruch & Atwell, 2015), or “case-based” (Boero & Squazzoni, 2005) mod-
els. In those high-fidelity ABMs, model components must be empirically calibrated. 
Available empirical data and insights from diverse fields of research (e.g., social 
psychology) must be taken as reference for deciding which parameters include and 
fix their value. Yet, high-fidelity ABMs face important difficulties that may under-
mine their assets in epidemics.

First, the relevance and accuracy of high-fidelity ABMs depend on their empiri-
cal adequacy (Auchincloss & Diez Roux, 2008; Jewell et al., 2020). Those complex 
ABMs involve many parameters that must be empirically calibrated. Unfortunately, 
it is often the case that available data about some of those parameters is scarce (or 
unreliable) and, consequently, adequate empirical calibration is hardly achievable. 
That scarcity of data is an outstanding source of uncertainty—i.e., input uncer-
tainty—and may undermine the predictions made by the model (Bauer et al., 2009; 
Bruch & Atwell, 2015). It should be added that empirical calibration is especially 
problematic in the early stages of epidemics of new diseases. At the beginning of 
the COVID-19 episode, little information was available about essential aspects of 
the disease such as incubation period, protective immunity, or proportion of asymp-
tomatic (Holmdahl & Buckee, 2020). Furthermore, how people would behave in a 
global pandemic scenario was difficult to anticipate.

In order to calibrate parameters in non-ideal conditions, different strategies have 
been developed (Bruch & Atwell, 2015). For example, in the model developed by 
Hoertel and collaborators (see Sect.  3.1), the uncertain parameters are estimated 
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by comparing the model-predicted data with the observed data. Nonetheless, in 
complex ABMs, those strategies are hardly unproblematic. In those models, the 
parameters space is highly expanded and exploring it results complicated. As a 
consequence, estimation of unknown parameters is always tentative. For example, 
there may be several (known or unknown) combinations of values that result in the 
observed output.

Second, in high-fidelity ABMs, many interactions, dynamic processes, and 
outcomes take place (Auchincloss & Diez Roux, 2008; Bauer et  al., 2009; Macy 
& Flache, 2009). They generate very complex networks of micro-micro and 
micro–macro relations. As a result, interpreting the model becomes extremely dif-
ficult. It may be impossible to identify and understand the causal processes that 
underlie the detected system-level outcomes. ABMs may, somewhat paradoxically, 
become opaque. This opacity makes it difficult to assess the role played by a specific 
factor or intervention, that is, to understand how and to what extent it has contributed 
to a specific system-level output.6 Moreover, when unexpected or undesired effects 
are identified, tracing their history and identifying their causes is hardly possible.

And third, high-fidelity ABMs can be seen as case-based or ad-hoc models 
(Boero & Squazzoni, 2005). They take into account many specific aspects of the real 
population of interest, which characterise and distinguish it from other populations. 
That specificity is important in order to make accurate predictions. Nevertheless, 
due to the case-based nature of high-fidelity ABMs, their results and the conclu-
sions drawn from them are hardly generalizable. Furthermore, given the complexity 
of those models, it is very difficult to anticipate which deviations in the examined 
parameters would have a significant impact in the output.

Of course, in principle, it is possible to recalibrate the model for each population 
of interest and run multiple simulations. Alagoz et al. (2020), for instance, recali-
brated an ABM of the COVID-19 epidemic to analyse the effect of several aspects 
of social distancing (adherence, timing of implementation, and timing of easing) in 
diverse populations (Dane County, Milwaukee Metropolitan Area, and New York 
City). But this kind of approach is not unproblematic. While material resources 
(including time, economic funds, and workforce) are often scarce, target populations 
may be many and very diverse. Therefore, it is not always possible to build a specific 
high-fidelity ABM for each population.

6  Horner and Symons (2020) analyse the public code archives of the microsimulation model (Covid-
Sim) developed by the Imperial College COVID-19 Response Team. It should be recalled that the tables 
included in the famous Report 9 issued at March 2020 (Ferguson et al., 2020)—a determinant in shifting 
the British Government position to favour stricter measures to confront the pandemic—were generated 
by that model. After examining the implementation phase for it, they conclude: “A simulator typically 
requires that the user enter input values for the parameters that are relevant to the model underlying the 
simulation […] The high number of parameters in this simulator and its resulting complexity cannot be 
avoided at some level if the model is to assess the effects of even the intervention regimes that have been 
deployed by various countries. As a result, [it] is unavoidably more difficult to comprehend, correctly 
use, calibrate, and maintain than lower-fidelity epidemiological models as SIR.” (Horner & Symons, 
2020, p. 18).
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4 � Models, evidence, and decision‑making

According to the evidence-based paradigm, medical practice and policy interven-
tions should be guided by evidence. Evidence is evaluated and weighted accord-
ing to hierarchies, which rank kinds of methods according to their potential to 
suffer from systematic bias (Howick, 2011; Karanicolas et  al., 2008). In hierar-
chies of evidence, Randomized Controlled Trials (RCTs) and meta-analysis of 
RCTs are typically at the top, followed by observational studies (e.g., cohort stud-
ies). The bottom is often reserved to case studies, expert opinion, and mechanism-
based reasoning. Among the most prominent hierarchies are those developed by 
the Oxford Centre for Evidence-Based Medicine, the National Institute for Health 
and Care Excellence (UK), and the Scottish Intercollegiate Guidelines Network.

In the last decades, the evidence-based paradigm has gained great popularity in 
policy-making. In areas such as development economics, it has become the stand-
ard approach (Olken, 2020). The evidence-based paradigm has shaped research 
teams, funding programs, evaluation parameters, etc.

Nonetheless, in certain contexts, high-quality evidence (e.g., RCTs) is not 
available and other information must be taken into account. In those scenarios, 
there is a potential role for scientific models. This is the case when coping with a 
new infectious disease, and COVID-19 was not an exception, at least during the 
first stages of the pandemic (Pearson, 2021). But there seems to be some addi-
tional reasons for that unavailability of non-fragmentary evidence: urgency, prac-
tical limitations, and ethical concerns. First, given the rapid spread and lethality 
of the COVID-19, a delay in the development and implementation of treatments 
and interventions until the realisation of high-quality and time-demanding RCTs 
was undesirable. It should be noted that the rush for obtaining RCT-based evi-
dence often results in poor-quality studies (e.g., small sample, absence of control 
group, etc.). Second, because of their methodological basis, RCTs were unable to 
provide us with evidence about certain relevant causal hypotheses. Interventions 
such as confining a territory or closing borders between countries can hardly 
be evaluated by them. And third, due to the hazards of COVID-19 and availa-
ble background knowledge, it was ethically objectionable to test certain causal 
hypotheses by means of RCTs. For example, RCTs about side effects of ibuprofen 
in COVID-19 patients would have been an inadmissible risk for individuals in the 
treatment group.

The fact is that epidemiological models, given the scarcity of high-quality evi-
dence, have played an important role in the COVID-19 pandemic. And even the 
staunchest advocates of high-quality evidence have claimed that taking models 
into account was a sensible choice (see, for instance, Ioannidis, 2020). But even 
though it is generally accepted that epidemiological models may be a valuable 
resource, a fundamental question remains open: which kinds of models should 
be employed? That is, on account of their basic properties, should certain kind 
of models be favoured in (certain scenarios of) policy-making? Since contribut-
ing to the development of health/social policies partly depends on models’ pre-
dictions and on the understanding afforded by them, their effective contribution 
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to interventions should not be considered separately from their predictive and 
explanatory merits. On the basis of the previous discussion, we will compare 
compartmental models and ABMs with respect to those three goals.

4.1 � Prediction

Models must be implemented with some empirical data to generate more or less 
specific predictions. In principle, the more uncertain those data, the riskier the pre-
dictions. However, unavailability of comprehensive data was a salient aspect at the 
COVID-19 pandemic outbreak. Although our knowledge about the virus (SARS-
CoV-2) and the disease gradually increased through the last year, initially very few 
details were known about them. There were just very limited statistical surveys and 
tentative hypothesis about primary routes of transmission, immunity after recov-
ery, reproductive rate, potential treatments, etc. A negative effect on the predictive 
performance of models was to be expected. Despite all this, compartmental models 
were developed. Those early compartmental models were indeed the main guide for 
political decision-making in the beginning of the epidemic. It is worth stressing here 
that the input required for those models was just about a few parameters. In contrast, 
ABMs, and particularly the high-fidelity ones, require a lot of empirical input. As 
Kathleen O’ Reilly, an epidemiologist at London School of Hygiene and Tropical 
Medicine, claimed: “These very specific models are extremely data hungry” (Adam, 
2020, p. 317). Attributes and behavioural rules of each individual agent, in addition 
to the disease model, must be empirically calibrated. As a result, a huge amount 
of information about the modelled population is required. Even though sensitivity 
analyses can be conducted to assess the potential impact of inaccurate estimations, 
it has been noticed that those procedures are hardly unproblematic (see Sect. 3.2). 
Furthermore, given the dynamic nature of ABMs, an inaccurate parameter may have 
a huge impact on the system-level outcome.

Then, there is a remarkable difference between compartmental models and ABMs 
in their respective demands on data. Insofar as uncertainty about this information 
may jeopardize prediction, at the beginning of the COVID-19 pandemic compart-
mental models could be run with more confidence. During the first wave of the pan-
demic, the main goal was to predict the number of COVID-19 cases and, especially, 
the number of deaths with and without the introduction of NPIs. Compartmental 
models were decisive for that purpose (see Sect. 2). They provided early predictions 
that warned us about the dangers of that new disease and encouraged the introduc-
tion of some NPIs.

Let us now put aside the quality and quantity of data by assuming that we have 
a reliable and fairly comprehensive stock of empirical information. Differences in 
predictive performance between both sorts of models are not erased, anyway. Con-
cerning model-based predictions, a well-known distinction differentiates between 
unconditional predictions (forecasts) and conditional predictions (projections) 
(Fuller, 2021; Schroeder, 2021). The former predict how the system under study 
will actually be in the future. Projections, on the other hand, predict how the system 
would be/evolve given certain conditions. Projections are usually contemplated just 
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as hypothetical scenarios, conditioned to some assumptions. It should be noted that, 
given their hypothetical nature, they are especially difficult to assess since it is often 
unfeasible to contrast them with empirical data.

In order to evaluate and judge a particular epidemiological model, empirical 
confirmation should be taken as a crucial guidance. The accuracy of the model’s is 
essential for the purposes for which models are used in policy-making. Nonetheless, 
our discussion here is not about the predictive success of any particular model, but 
on the fundamental traits of compartmental models compared to ABMs, that is, on 
how the way they are built and their respective capacities and limitations are related 
with the demands and needs of policy-making.7 And from this general point of view 
some morals can be obtained. Thus, when faced with local scenarios, compartmental 
models have important predictive limitations. Those limitations are mainly related to 
their difficulties for taking into account individual variability and (certain aspects) 
of social behaviour. Compartmental models follow the evolution of epidemics from 
a population-level point of view, in which the agents that constitute the population 
are not individuated but merged, producing average types for each compartment. 
Consequently, particularities of individual agents (e.g., pre-existing conditions) and 
their interactions (e.g., number and kind of contacts) can hardly be tackled.8 ABMs 
seem to be in a better position regarding local-oriented prediction. They are spe-
cifically devised to take into account individual heterogeneity and particular social 
behaviour. In ABMs, modellers start specifying the traits and rules of behaviour of 
each individual agent and then run the simulation to see the resulting outcome.

4.2 � Explanation

Although prediction was a central goal, especially in the first stages of the COVID-
19 pandemic, models were also used for explanatory purposes. They aimed to pro-
vide information about which factors increased the speed of contagion, how the 
virus spreads among a population, etc. That information is notably valuable for 
policy-makers since it points at those aspects that should be targeted to achieve the 
desired effect, i.e., controlling the epidemic.

Compartmental models, in particular, give a valuable account of the dynamics of 
disease spread. They are specially fit to identify the basic parameters underlying the 
evolution of an epidemic from a general perspective. That means that compartmen-
tal models may be successful in explaining how the disease evolves through pop-
ulations. To certain extent, these are “black-box explanations” whose simplifying 
assumptions can be accepted insofar as what we are concerned about is the rate of 

7  In the COVID-19 pandemic, especially in its early stages, the empirical reliability of epidemiological 
models was below expectations. Readers interested in this question may look at the comparative—and 
updated—report provided in (Wynants et al., 2020).
8  Bansal et al. (2007) discusses several alternatives for including detailed information—through nets—in 
compartmental models. It is concluded that “[w]hen contacts are heterogeneous, it thus makes sense to 
consider the growing toolkit of tractable network based methods that explicitly consider individual-level 
contact patterns and can predict the changing structure of a contact network as disease spreads through 
it.” (Bansal et al., 2007, p. 889).
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transition between the different compartments. In this context, the scope of decisions 
is significantly constrained by the very same information provided by the model. 
They must be targeted to questions as how to minimize the whole number of sus-
ceptible individuals, the rate transition from susceptible to exposed, from exposed 
to infectious, and so on. Then, interventions aimed at this population-level can be 
reasonably informed by the explanatory account afforded by compartmental models. 
In this sense, compartmental models “can only lead to one type of intervention, i.e., 
interventions that indifferently concern large subsets of the population or even the 
overall population” (Manzo, 2020, p. 33). The point is that selective interventions to 
operate on particular subgroups in the population demand further information that 
can hardly be provided by compartmental models.

ABMs, in contrast, open the black box by specifying how certain interactions 
among individual agents result in the identified system-level output. They provide 
information about the internal workings responsible for the output. In the meth-
odological literature, especially in social science, ABMs are often associated with 
the development of mechanism-based explanations (see, for instance, Hedström & 
Ylikoski, 2010; Macy & Flache, 2009; Manzo, 2010). In order to specify the mech-
anism responsible for the phenomenon of interest—i.e., identifying its component 
entities and activities—building an ABM able to generate that phenomenon is con-
sidered a crucial step.9 Mechanism-based explanations, in principle, can be of great 
value for policy-making. They specify the causal processes responsible for the phe-
nomenon of interest and, consequently, provide valuable information about the rel-
evant aspects that should be addressed by interventions.

Nonetheless, fine-grained ABMs’ have some disadvantages. As the number 
of agents and the array of characteristics assigned to them grow, models become 
more complex. While exploration of different scenarios for compartmental models 
is restricted to a limited number of parameters, the situation is much more compli-
cated for complex ABMs. The network of interactions that links individual agents 
and system-level outcomes trough different temporal stages may gradually become 
more elusive. Thus, it can be very complicated for researchers to discern the causal 
chain responsible for the resulting outcome.

4.3 � Intervention

Policy-making is not only informed by the evidence listed in and assessed by 
hierarchies. As it has been argued in previous sections, models were used to 
anticipate the spread of the SARS-CoV-2, test NPIs, identify plausible side 
effects, etc. This role was particularly salient under the extraordinary conditions 
triggered by the pandemic. But it is worth emphasizing here that models may 

9  It should be noted that developing a generative sufficient ABM is hardly enough for explaining a phe-
nomenon (Macy & Flache, 2009). There may be alternative specifications able to produce the same out-
put, the involved assumptions about individual agents may be highly implausible, or the underlying pro-
cess may be too obscure. In order to provide a satisfactory mechanism-based explanation, it also seems 
necessary to specify the generative process that results in the output of interest (León-Medina, 2017).
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also be a valuable source of information, which can complement available evi-
dence, in less pressing situations.

First of all, it must be acknowledged that there is a feed-back between pol-
icy-makers and modellers (Manheim et  al., 2016). During the COVID-19 
pandemic, the former demanded prospective research to scientists in order to 
anticipate the spread of diseases, the cost in human lives, the capacity of the 
health system to cope with increasing demands, the effects of more or less strict 
measures… Modellers gave predictions and tested the options—in virtual sce-
narios, certainly—considered by policy-makers (McBryde et al., 2020). Models 
also suggested new interventions and qualifications of those measures initially 
implemented.

A great advantage of modelling is precisely the possibility to explore coun-
terfactual settings which can hardly be implemented in practice. Virtual explora-
tion is one source of information about those scenarios for policy-makers. Mod-
elling may help decision-makers to anticipate future states of the populations of 
interest, and to develop and test interventions aimed to produce specific effects 
in those populations. Nevertheless, it should be noted that, in order to be helpful 
for policy-making, modellers must inform about the capabilities and limitations 
of implemented models (Manheim et al., 2016).

Turning now to the comparison between compartmental models and ABMs, 
how do they score regarding intervention? Policy-making, unlike political sci-
ence and other theoretical fields, is usually focused on particular contexts and 
populations. Its main aim is to develop, assess, and implement policy interven-
tions for obtaining certain desired effects (or, alternatively, for avoiding certain 
undesired effects) in particular contexts. According to the aforementioned com-
ments, if we are interested in very detailed predictions on possible NPIs, ABMs 
should be favoured against compartmental models, in principle, provided that 
the empirical input is fairly good at least. Still, compartmental models may be 
fully adequate in different conditions.

Summing up, the predictive performance of models decisively depends on the 
availability of good-quality data and also on the scope of prediction. In princi-
ple, ABMs are more adequate for local predictions while compartmental mod-
els fare better when the goal is getting a general view on the evolution of the 
epidemic and on the effects of policies. Turning to explanation, compartmental 
models are interested in explaining the dynamics of the epidemic from a popu-
lation-level perspective while ABMs may be the appropriate modelling tool for 
explaining how individual behaviour and characteristics affect disease transmis-
sion. Finally, when intervention comes into play, particular demands of policy-
makers should be crucial for favouring one or other sort of models.

Correspondingly, we think that it would be very simplistic to affirm that one 
or other sort of models is intrinsically better. Model-building is constrained by 
the available resources for building them and the policy-makers demands. Their 
appropriateness should be assessed, then, in relation to those factors.
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5 � Conclusion

In the COVID-19 pandemic, where high-quality sources of evidence were not ini-
tially available and the need for public-health decisions was urgent, epidemiologi-
cal models have played a central role. They have been one of the main sources 
of information and a compass for policy decision-making. Regarding theory-
driven epidemiological models, both compartmental models and ABMs held, and 
still hold today, a prominent position. Nonetheless, they can also be a valuable 
resource in less adverse scenarios. Because of their contrasting characteristics, 
compartmental models and ABMs (should) play different roles in decision-mak-
ing. In principle, compartmental models are useful for general predictions about 
the spread of a disease, particularly when empirical information is scarce. Con-
trarily, ABMs are more adequate for local and specific predictions, although they 
require more empirical input. Since ABMs incorporate the detailed effects of 
human differences in traits and behaviour, they can also be fruitful to discern the 
mechanisms responsible for the spread of the disease. Compartmental models, 
on the other hand, explain the dynamics of the disease spread from a population-
level perspective. Finally, regarding intervention, compartmental models may be 
helpful for developing and testing interventions that concern large subsets of the 
population (or the whole population), while ABMs are more promising, in princi-
ple, when fine-grained interventions are required.

We think that our previous discussion on the assets and limits of those kinds of 
models throws some light on what we can expect from them and, consequently, 
may significantly contribute to modelling in the current COVID-19 pandemic and 
also in similar epidemiological episodes. A better understanding of epidemiologi-
cal models allows us to use them more appropriately. As we have argued, useful 
modelling requires to consider the particularities of the context of interest and 
how the diverse kinds of models cope with them. In this sense, two aspects of the 
context are particularly important and should not be overlooked: the aim of the 
models and the available empirical data.

Certainly, relevant aspects of the context have not remained constant during 
the whole COVID-19 pandemic but have changed over time. In the outbreak of 
the pandemic, epidemiological models were focused primarily on the expected 
deaths in absence of intervention and the potential effect of population-level 
NPIs. Subsequently, nonetheless, it has been stressed the importance of consider-
ing the economic, social, and psychological aspects of the pandemic (Naz et al., 
2021). Many epidemiological models are now demanded to deal with the effects 
of both the disease and the public health interventions in those areas. Regarding 
the availability of reliable data, the first stages of the COVID-19 pandemic were 
characterised by plural uncertainty since very little was known about the mecha-
nisms of transmission of SARS-CoV-2, the effects of considered NPIs, and the 
social response to them (Ongaro, 2021). Essential questions still remain unan-
swered (e.g., the immunity term after recovery/vaccination), but our knowledge 
about basic biological and social aspects of the spread of the disease has signifi-
cantly increased, allowing for better empirically calibrated models.
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Those changes in significant aspects of the context force us to rethink and 
re-evaluate our modelling practices. Thus, given the context-dependence of epi-
demiological modelling and the non-stable nature of the context, we think that 
favouring one or other sort of models in a particular situation cannot be justified 
only by appealing to their respective technicalities. While the latter are important, 
contextual factors as the peculiarities of the process to be modelled and the pol-
icy-makers’ goals and expectations must be considered to arrive at a reasonable 
cost–benefit decision.

These considerations suggest a further difference concerning legitimate sources 
of information in public-health policy. Standard hierarchies of evidence rank sev-
eral procedures (RCTs, cohort studies…) according to a general characteriza-
tion of them and to their potential for avoiding biases. Putting aside the question 
whether models can be considered as providing evidence in the full sense—an 
issue that goes beyond the scope of this paper—it is clear that they do provide 
information that may be valuable for decision-making. Context-dependence, how-
ever, makes highly complicated to adopt a general approach that ranks kinds of 
models concerning the alleged quality of the information obtained through them. 
On our view, comparison between particular models should be decided on a case-
by-case strategy. Considering the relevance—i.e., their difference-making poten-
tial—of the factors included in the models would be crucial for that comparison 
(Maziarz & Zach, 2021).

We have tried to assess epidemiological theoretical modelling concerning pre-
diction, explanation, and intervention. It is noteworthy, however, to underline that 
intervention here is always targeted at more or less extensive groups. Our discus-
sion highlights, then, a distinctive peculiarity of epidemiology when compared 
to other fields in medicine, that is, that intervention in epidemiology is, properly 
speaking, social intervention. Epidemiological intervention is unavoidably con-
strained by social conditions and its deployment pursues supra-individual effects. 
We hope, finally, that this paper will modestly contribute to a better understand-
ing of those intertwined dimensions—prediction, explanation, and social inter-
vention—involved in epidemiological modelling.
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