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Abstract  Since the February 2020 publication of the article ‘Flattening the curve’ 
in The Economist, political leaders worldwide have used this expression to legiti-
mize the introduction of social distancing measures in fighting Covid-19. In fact, 
this expression represents a complex combination of three components: the shape of 
the epidemic curve, the social distancing measures and the reproduction number R

0
 . 

Each component has its own history, each with a different history of control. Present-
ing the control of the epidemic as flattening the curve is in fact flattening the under-
lying natural-social complexity. The curve that needs to be flattened is presented as a 
bell-shaped curve, implicitly suggesting that the pathogen’s spread is subject only to 
natural laws. The R value, however, is, fundamentally, a metric of how a pathogen 
behaves within a social context, namely its numerical value is affected by sociopo-
litical influences. The jagged and erratic empirical curve of Covid-19 illustrates this. 
Although the virus has most likely infected only a small portion of the total suscep-
tible population, it is clear its shape has changed drastically. This changing shape is 
largely due to sociopolitical factors. These include shifting formal laws and policies, 
shifting individual behaviors as well as shifting various other social norms and prac-
tices. This makes the course of Covid-19 curve both erratic and unpredictable.
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1  Introduction

In an early stage of the Covid-19 pandemic, in February 2020, The Economist (Vol. 
434, Issue 9183) published the article ‘Flattening the curve’. This article discussed 
the economic consequences of social distancing. The impact of the social distance 
measures on the assumed development of the epidemic was illustrated in a chart (see 
Fig. 1).

Although the chart displays a direct link between the social distancing meas-
ures and the shape of the curve, in the corresponding text the impact was presented 
more indirectly, namely through a variable labeled R : “the course of an epidemic is 
shaped by a variable called the reproductive rate, or R .” As a result, the Economist 
article connected three different components: the shape of the epidemic curve, the 
social distancing measures and the “reproductive rate R .” Actually, it is the combi-
nation of all three components that is captured by the slogan “flatten the curve”: “To 
flatten the curve you must slow the spread.”1

Since the publication of the article, ‘to flatten the curve’ has become the com-
mon expression used by political leaders worldwide in legitimizing the introduc-
tion of social distancing measures in fighting Covid-19. This policy is presented in 
a visually strong and clear way, and is therefore easy to comprehend: the epidemic 
is visualized through a bell-shaped curve that needs to be flattened. It is the contrast 
between this complex societal problem with its many economic, social, political, 
psychological, and medical dimensions and the simple visual representation of it 
which made me wonder where it came from. This article is the result of my research.

The concept of ‘flatten the curve’ is a nice example of the notion of controlling a 
macro-phenomenon. This notion is based on two implicit assumptions: the epidemic 

Fig. 1   Chart 2 of the article in 
The Economist showing how the 
course of an epidemic is shaped 
by the reproductive rate. This 
chart was adapted from afigure 
published in CDC 2007 (see 
Figure 3). Source: Economist 
2020

1  Jones and Helmreich (2020) aptly articulate this combination as “an overlapping history of metaphori-
cal, mathematical, and moral messaging.” They focus on the history of shaping epidemics as waves.
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phenomenon apparently has a specific shape and this shape appears to have such 
materiality that it can be shaped. As a result, control of a macro-phenomenon means 
re-shaping the shape of the phenomenon left uncontrolled.2 This article analyses this 
kind of control by exploring how it arose and how it received this specific meaning. 
To do this, the origins of each component have to be traced back. It appears that 
each component has its own history, each with a different history of control. It is 
only when they were integrated that control acquired its current meaning of shaping 
a curve.

2 � The curve of a happening

The curve of an epidemic was presented for the first time (see Fig. 2) in the arti-
cle ‘A contribution to the mathematical theory of epidemics,’ published in 1927 
and written by William Ogilvy Kermack and Anderson Gray McKendrick. This 
work was inspired by Ronald Ross. Ross’s ideas about applying mathematical rea-
soning to infectious disease dynamics originated from his ambition to understand 
malaria transmission and control. He was the first to develop a general theory of epi-
demic phenomena (which he called a ‘theory of happenings’) of infectious disease 

Fig. 2   Deaths from plague in 
the island of Bombay over the 
period December 17, 1905, 
to July 21, 1906. The ordi-
nate represents the number 
of death per week, and the 
abscissa denotes the time in 
weeks. The “calculated curve” 
is drawn from the formula 
dR

dt
= 890sech

2(0.2t − 3.4). 
(Source: Kermack and McKend-
rick 1927, p. 714)

2  A comparable case of such a control is mid-twentieth century business cycle policy. The business cycle 
was presented as a smooth up-and-down going wave, and the aim was to lessen the wave’s amplitude 
(Boumans 2013).
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dynamics. This theory was not specifically tailored to a particular pathogen or pub-
lic health problem but based on prior assumptions about mechanisms that could be 
acting in the spread of infections (rather than trying to obtain insight a posteriori by 
studying real epidemics) (Heesterbeek and Roberts 2015, p. 2; Heesterbeek 2002, 
pp. 192–3).

This first figure of an epidemic curve was the result of a new development in 
epidemiology at the beginning of the twentieth century, namely the development of 
mathematical compartmental models. In these models, the population under study is 
divided into compartments. Assumptions are made about the nature and time rate of 
transfer from one compartment to another. For example, in the currently well-known 
SIR model the population is divided into three classes labelled S, I, and R. Here 
S(t) denotes the number of individuals who are susceptible to the disease, that is, 
who are not (yet) infected at time, t; I(t) denotes the number of infected individuals, 
assumed infectious and able to spread the disease by contact with susceptibles; and 
R(t) denotes the number of individuals who have been infected and then removed 
from the possibility of being infected again or of spreading infection.

The first epidemic models to describe the transmission of communicable dis-
eases were developed in a sequence of three papers by Kermack and McKendrick, of 
which the first (1927) provided a compartmental model (Brauer 2017, p. 114). The 
situation they modelled was described as follows:

One (or more) infected person is introduced into a community of individuals, 
more or less susceptible to the disease in question. The disease spreads from 
the affected to the unaffected by contact infection. Each infected person runs 
through the course of the sickness, and finally is removed from the number of 
those who are sick, by recovery or by death. […] As the epidemics spreads, 
the number of unaffected members of the community becomes reduced. Since 
the course of an epidemic is short compared with the life of an individual, 
the population may be considered as remaining constant, except in so far as 
it is modified by deaths due to the epidemics itself. In the course of time the 
epidemic may come to an end. […] In the present communication discussion 
will be limited to the case in which all members of the community are initially 
equally susceptible to the disease, and it will be further assumed that complete 
immunity is conferred by a single infection. (Kermack and McKendrick 1927, 
pp. 700–701).

The resulting model was a SIR model, though expressed in the variables x, y, and 
z.3 As the initial population density, N, was assumed to be constant, the following 
relation applies: S(t) + I(t) + R(t) = N. Kermack and McKendrick also defined two 

3  The literature discussed in this article does not use consistently the same symbols for the compart-
ments in question. To facilitate comparisons between the various discussed models, throughout this arti-
cle the modern SIR notation is used. To distinguish this notation from the one used for the reproduction 
number, a script fond is used for the reproduction number (hence also for the “reproductive rate”) such 
that the reproduction rate appears as R.
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relevant rates: γθ, the rate of removal, that is the sum of the recovery and death rates 
at age θ; and βθ is the rate of infectivity at age θ.

This general case led to integral equations. These are difficult or even impossible 
to be solved analytically, in the sense that a function can be given as exact solution. 
These equations are usually solved by numerical methods. However, Kermack and 
McKendrick’s “calculated curve” (Fig. 2) is an analytical solution based on the sim-
plifying assumptions that βθ and γθ are the constants β and γ respectively. In this case 
the dynamics of the epidemic can be described by the following three equations:

The solution of these three equations can be expressed in terms of the rate at 
which cases are removed by death or recovery (dR/dt) “which is the form in which 
many statistics are given” (p. 714). Even though these equations still cannot be 
solved analytically, McKendrick and Kermack provided a function as an approxima-
tion to the solution:

where q is a function of β, γ, S0, and I0. In other words the shape of an epidemic was 
presented as the shape of the sech2 curve (see Fig. 2).4

Although the Eqs. (1)–(3) do not have a function as analytic solution, graphical 
representations of numerical solutions also show bell-shaped curves, however, these 
are not symmetrical. Nonetheless, it is Kermack and McKendrick’s symmetrical 
shape that came to be commonly used to represent the curve of an epidemic.

The possibility of control, if any, was conceived in terms of critical community 
size. Ross proved that not all mosquitos needed to be eliminated to stop the malaria 
parasite from spreading, but that the depression of the number of mosquitos per 
human host in a population to a value below a critical level was sufficient. McKen-
drick and Kermack generalized Ross’s initial ideas of critical thresholds for malaria 
to be a critical size of a community of susceptible individuals necessary for an infec-
tious disease to become established in a population (Heesterbeek and Roberts 2015, 
p. 2).

(1)
dS

dt
= −�SI

(2)
dI

dt
= �SI − �I

(3)
dR

dt
= �I

dR

dt
=

�3

S
0
�2

qsech2(q�t − �),

4  The sech function is a hyperbolic function (hyperbolic secant): sechx = 1

coshx
=

2

ex+e−x
 . Hence, its curve 

has a symmetrical bell-shape.
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3 � R
0

The concept of the R
0
 did not originate in epidemiology and has a more compli-

cated cross-disciplinary history than the epidemic curve.

The concept of R
0
 is closely linked to quantities such as ‘net fertility’ or ‘net 

reproductive rate’ in demography (introduced mainly through the work of 
Alfred Lotka), and ‘absolute fitness’ or ‘reproductive fitness’ in population 
genetics (introduced mainly through the work of Ronald Fisher and Sewall 
Wright), although these concepts did not evolve from each other in a linear 
manner. They all describe the average contributions of members of a given 
generation to the next generation, in terms of new infections caused, the birth 
of daughters, or genotypes produced. (Heesterbeek and Roberts 2015, p. 2).

An importance source of the history of R
0
 is Hans Heesterbeek’s (2002) ‘brief his-

tory of R
0
 .’ Although R

0
 is “arguably the most important quantity in the study of 

epidemics and notably in comparing population dynamical effects of control strat-
egies,” Heesterbeek (2002, p. 189) emphasizes that “the use of R

0
 in its present 

form is of relatively recent origin in epidemiology.” Heesterbeek gives the following 
explanation for R

0
 achieving this prominent role in modern epidemiology:

It took a long time for modellers in epidemiology to realise that the formula-
tion in terms of reproduction potential is a much clearer and more powerful 
concept for infectious diseases as well, which is moreover much more amena-
ble to generalisation to heterogeneous populations, and can be tied much more 
easily to data and hence applications. An important reason for this long delay 
in epidemiology […] can indeed be this link to data. The early development of 
R

0
 in ecology/demography had a much closer link to empiricism than the early 

development in epidemiology in the hands of Kermack and McKendrick and 
others, who were much more interested in presenting a mathematically coher-
ent theory. After the realisation, around 1975, that the reproduction potential 
was to be preferred over critical size, the major hurdle that had to be taken was 
to tie the formal concept to empiricism. The use of R

0
 finally took off when 

it was found that the quantity could be estimated from readily available data. 
(Heesterbeek 2002, p. 190–1).

According to Heesterbeek, it is mainly due to the work of Roy Anderson and Robert 
May in the 1970s and 1980s that R

0
 gained this prominent role. In 1979, they pub-

lished a two-part paper on the population biology of infectious diseases in Nature. 
While this paper “played a dominant role in revitalising the subject of infectious 
disease modelling, after attention for it had waned from the late nineteen-sixties” (p. 
199), the concept of R

0
 is not used. The entire analysis is done in terms of critical 

sizes of host populations. However, a few years later they published a paper in Sci-
ence which made extensive use of R

0
 . In this 1982 paper and at a conference in the 

same year, they promoted the application of R
0
 in epidemiology. These contribu-

tions were “most influential in reviving scientific interest in applying mathematical 
modelling as a tool in studying the spread and control of infectious agents” (p. 199).
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The aim of the Science article was “to show how relatively simple models can 
provide a broad biological understanding of the factor controlling disease per-
sistence and recurrent epidemic behavior (including the changes wrought by spe-
cific vaccination programs), and on how they can make detailed contact with data” 
(Anderson and May 1982, p. 1054). The basic model explored in this article was a 
compartmental model consisting of four first-order differential equations describing 
the dynamics of the infection within its host population, a SEIR model:

E is the class of the exposed, the infected who are not yet infectious. μ is the birth 
rate and is assumed to be equal to the death rate. The net rate at which infections 
are acquired is proportional to the number of encounters between susceptibles and 
infectious individuals, βSI, where β is a transmission coefficient. Individuals pass 
from the latent state to the infectious state at a per capita rate σ and recover to join 
the immune class at a per capita rate γ.

Immediately after the presentation of this model, the R was introduced in the fol-
lowing way:

The disease will maintain itself within the population provided the “repro-
ductive rate,” R , of the infection is greater than or equal to, unity; R is the 
expected number of secondary cases produced by an infectious individual in a 
population of S susceptibles. (Anderson and May 1982, p. 1054).

Based on the above model, the formal expression of R was ��S

(�+�)(�+�)
 , which can be 

interpreted as secondary infections are produced at a rate βS throughout the expected 
lifetime, 1/(γ + μ), of the infectious individual; of these, a fraction σ/(σ + μ) will sur-
vive the latent period to become the second generation of infectious individuals. R

0
 , 

the ‘intrinsic reproductive rate” was defined as the value of R in a disease-free pop-
ulation. That is to say, assuming no vaccination and all individuals are susceptible, 
S = N.

Anderson and May (1982, p. 1055) emphasized that “the concept of the intrinsic 
reproduction rate, R

0
 , is central to an understanding both of the epidemiology of 

infectious diseases and of the impact of control policies.” The control policy was 
conceived as reducing R

0
 below unity. The way to achieve this was by immuniz-

ing a proportion, p, of the population by vaccination soon after birth, such that 
p > 1−

(

1∕R
0

)

.
Although Anderson and May (1982) introduced R

0
 to epidemiology as a concept 

to understand how to design control policies, it was only discussed in terms of popu-
lation densities, even though the formal expression of R hinted at other options of 
control. Some of the parameters determining R were specific to the disease agent. 
The examples Anderson and May mentioned were σ and γ, and also β in its rela-
tionship to “the expected life-span of the infected particle or spore in the external 

dS∕dt = �N−�S−�SI

dE∕dt = �SI− (� + �)E

dI∕dt = �E− (� + �)I

dR∕dt = �I−�R
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environment” (p. 1054). However, other components of R , such as the density of 
susceptibles S, and the parameter β, could also be looked upon as reflecting “the 
average frequency of contacts between individuals” depended on “the prevailing 
environmental and social conditions.” They also mentioned “even the value of 1/γ 
may be influenced by such conditions, since the isolation of infected children can 
substantially reduce the effective infectious period” (p. 1054). However, control in 
terms of influencing these social conditions were not further discussed in the article.

Previous literature, such as discussed above, uses R and R
0
 interchangeably. 

However, it should be emphasized that in the current epidemic literature both sym-
bols have a fixed meaning. R

0
 is the “basic reproduction number,” and is defined as 

the expected number of secondary cases produced by a single (typical) infection in a 
completely susceptible population. Although the variable was initially referred to as 
“reproductive rate,” it was later pointed out that it is neither reproductive nor a rate, 
it is a dimensionless number (see below). Hence the current preferred name in the 
epidemic literature is “reproduction number.”5 R does not depend on the assump-
tion that the population is completely susceptible. This assumption is often violated 
in the later stages of an outbreak or in a situation in which the population has been 
previously exposed to the pathogen.

4 � Social Measures

Despite May and Anderson successfully advocating the use and the value of R
0
 in 

the early 1980s, it took a number of years before epidemiologists realized its poten-
tial (Heesterbeek 2002, p. 199). The perception of R

0
 and how it can enlighten ade-

quate policy measures changed only with the SARS epidemic of 2002–3, “despite 
rapid early spread, the epidemic eventually was contained, reflecting in part a highly 
effective global public health responses” (Fraser e.a. 2004, p. 6146). In the article 
‘Factors that make an infectious disease outbreak controllable’ the methods used to 
control SARS were assessed as “likely to be equally effective for future outbreaks 
of other emerging infectious […] even when effective vaccines or treatment are not 
available” (p. 6146). The article aimed to understand the social factors that make 
containment feasible.

Two “basic” public health policy options “in the absence of effective vaccines or 
treatment” were explored: “(i) effective isolation of symptomatic individuals and (ii) 
tracing and quarantining of the contacts of symptomatic cases” (Fraser e.a. 2004, p. 
6146). As a result of this, three important parameters were identified:

1.	 The “basic reproduction number” R
0
.

2.	 The “disease generation time,” the mean time interval between the infection of 
one person and the infection of the people that individual infects.

5  I would like to thank Mick Roberts for bringing this point to my attention.
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3.	 The “proportion of transmission occurring prior to symptoms (or asymptotically)” 
θ which determines the potential for symptom-based public health control meas-
ures to reduce the number of infections. (p. 6146)

The analysis was based on an “idealized optimal intervention,” that is to say, 
without delays in implementation of isolation and quarantining. This meant that the 
disease generation time did not play an important role. Delays if needed, could be 
taken into account by θ. The result of the analysis was “that the interventions are 
sufficient to control outbreaks of infections for combinations of values of parameters 
R

0
 and θ falling below a certain critical line” (p. 6147).
As a result of the SARS epidemic and the concern of a possible H5N1 influenza 

epidemic in 2005, scientists and policymakers were growing more concerned that 
the world may soon face a pandemic. One in which neither vaccines nor sufficient 
antivirals would be available to protect the public. For this reason, in the US, a Com-
mittee on Modeling Community Containment for Pandemic Influenza was set up 
to investigate if “nonpharmaceutical community containment strategies may help in 
the absence of sufficient medical interventions” (Mahmoud 2006, p. 1). Six mathe-
matical models were used to evaluate the role of “nonpharmaceutical interventions” 
in mitigating a pandemic influenza outbreak. The main focus was the “measure of 
infectivity,” R

0
 , “the average number of secondary cases of disease generated by a 

typical primary case in a susceptible population” (p. 2).
These evaluations led to the conclusion that “evidence suggests a role for surveil-

lance and case reporting, rapid viral diagnosis, hand hygiene, and respiratory eti-
quette in reducing pandemic influenza virus transmission” (p. 24). The results also 
suggested “a role for contact tracing (early in the epidemic) to allow for individual 
action by the contact, voluntary sheltering, and quarantine in reducing pandemic 
influenza virus transmission” (p. 27). The report provided 11 recommendations, of 
which the 9th reveals the kind of evidence on which the conclusions were based:

The committee recommends that communication regarding possible commu-
nity interventions for pandemic influenza that flows from the federal govern-
ment to communities and from community leaders to public not to overstate 
the level of confidence or certainty in the effectiveness of these measures. The 
communications should also not overstate the role that modeling or historical 
analyses play in supporting these interventions. (Mahmoud 2006, pp. 29–30).

5 � Shaping the epidemic curve

While in earlier publications a connection between R and the shape of the epidemic 
curve was already suggested, such as in the Anderson and May 1981 article, “it is 
immediately evident that the dynamics of the infection, the shape of the [epidemic] 
curve […], depends only on the quantity R ” (p. 460), and in Mahmoud’s (2006) 
Letter Report the conclusion that the effect of early interventions “might be to slow 
the time to peak of the outbreak in a community,” the explicit connection was only 
made in a ‘Interim Pre-pandemic Planning Guidance’ published in 2007.
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The Guidance was developed to plan and prepare for “the first wave of the next 
pandemic without vaccine and potentially without sufficient quantities of influ-
enza antiviral medications” (CDC 2007, p. 8). It formulated the following ration-
ale for Non-Pharmaceutical Interventions (NPIs):

(1) delay the exponential increase in incident cases and shift the epidemic 
curve to the right in order to “buy time” for production and distribution of a 
well-matched pandemic strain vaccine, (2) decrease the epidemic peak, and 
(3) reduce the total number of incident cases and, thus, reduce morbidity 
and mortality in the community. (CDC 2007, p. 9).

This rationale was illustrated with the following figure (Fig. 3):
This figure is the one that was reproduced in The Economist of February 2020, 

however, without the 1, 2, 3 numbering scheme and with different colors. Rosa-
mund Pearce, a data visualization journalist at The Economist, decided to rebuild 
it for this article on Covid-19. Her words “I thought it was a beautifully clear 
and simple illustration of an important concept” (Wilson 2020). Pearce kept the 
graphic as close to the original in terms of shape as she could, because.

"The difficulty with these diagrams is showing uncertainty. Even though it’s 
a diagram of a concept and not a model from real data, it’s easy for people 
to interpret it as a precise prediction, as it looks like a chart and we’re used 
to charts being precise,” says Pearce. “Once you’ve drawn these shapes, they 

Fig. 3   Source: CDC 2007, p. 18
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look authoritative, even if they’re intended to be illustrative. That’s why I 
keep as close to the CDC’s as I could.” (Wilson 2020).

The connection with R , however, was most explicitly made in another CDC 
figure (See Fig. 4). This figure was to illustrate a specific property of R

0
 : “ R

0
 is 

not an intrinsic property of the infectious agent but rather an epidemic character-
istic of the agent within a specific host within a given milieu. […] Alterations in 
the pathogen, the host, or the contact networks can result in changes in R

0
 and 

thus in the shape of the epidemic curve (CDC 2007, p. 23).
According to the Guidance, the value of R

0
 can be influenced by various “pan-

demic mitigation strategies”. For example:

(1) case containment measures, such as voluntary case isolation, voluntary 
quarantine of members of households with ill persons, and antiviral treat-
ment/prophylaxis, (2) social distancing measures, such as dismissal of stu-
dents from classrooms and social distancing of adults in the community and 
at work, and (3) infection control measures, including hand hygiene and 
cough etiquette. (CDC 2007, p. 28).

To determine if these measures were successful, mathematical models were used 
to assess various types of interventions within the context of social networks. 

Fig. 4    Source CDC 2007, p. 24
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These simulations suggested that “a combination of targeted antiviral medica-
tions and NPIs can delay and flatten the epidemic peak” (p. 29).

The relationship between the shape of the curve, R , social distancing and the 
idea of ‘flattening the curve,’ originates in this CDC report. Interestingly, a similar 
reservation was made regarding the confidence in the effectivity of social measures:

Taken together, these strands of evidence are consistent with the hypothesis 
that there may be benefit in limiting or slowing the community transmission 
of a pandemic virus by the use of combinations of partially effective NPIs. At 
the present time, this hypothesis remains unproven, and more work is needed 
before its validity can be established. (CDC 2007, p. 29).

6 � What is shaped?

The compartmental models discussed so far in this article are variants of the SIR 
model where the population is divided into three classes: S(t), the number of sus-
ceptibles, I(t) the number of infected, and R(t) the number of individuals who have 
been infected and then removed from the possibility of being infected again or of 
spreading infection. It is usually also assumed that the total of these three groups 
remains constant, that is S + I + R = N. The dynamics are usually described by the 
Eqs.  (1)–(3). The solution of these equations was approximated by Kermack and 
McKendrick (1927) with a symmetric sech2 function. Today, computers can easily 
solve these equations numerically, the graphs of these solutions are still bell-shaped 
but not symmetrical. Nonetheless, the shape that is usually presented, like in all dis-
cussed figures of this article (Figs. 1, 2, 3, 4), is the symmetrical bell-shaped curve 
of the sech2 function. Kermack and McKendrick’s figure had become the emblem-
atic curve of an epidemic.

The shape of Covid-19, however, differs from Kermack and McKendrick’s curve 
for the following reason. The downward movement of the SIR shape, that is the right 
side of the bell shape, is caused by an increase of the immune class R, that is the 
number of people who became immune of the disease. For Covid-19, this latter 
number is very low,6 thus cannot explain the downward movements of the graphs 
of Covid-19. In other words, the immune class R does not play a significant role in 
understanding the dynamics of Covid-19. A simpler model is needed, actually a SIS 
model, to describe a disease with no immunity against re-infection, in other words to 
indicate that the transit from individuals is from the susceptible class to the infective 
class and then back to the susceptible class.

Such a “simple model” that better describes the “essentials of the dynamical inter-
action” of Covid-19 is model A of Anderson and May (1981). This “simplest case” 
consists only of S(t), the number of susceptibles and I(t), the number of infected, so 
that S(t) + I(t) = H. The net rate of transmission of the infection is βSI, where β is the 
transmission parameter. Uninfected are assumed to die at the rate b. The parameter α 

6  In July 2020 the percentage is not known yet, but it seems to be only a few percent.
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represents the rate of disease-induced mortality, and γ is the assumed recovery rate. 
As a result, the rate of change in the number of infected individuals is

If we rewrite this equation by taking into account that S = H − I, using the dimen-
sionless variables i = I/H and t’ = (α + b + γ)t, and the dimensionless reproduction 
rate R = βH/(α + b + γ), the dynamical equation becomes

In representing the dynamics in the dimensionless variables and parameters, 
Anderson and May observed that: “It is immediately evident that the dynamics of 
the infection, the shape of the curve i(t’), depends only on the quantity R . The scale 
of the time axis depends on (α + b + γ), and the absolute scale of the infected popula-
tion I depends on H, but the qualitative nature of the host-parasite interaction here 
depends only on R ” (Anderson and May 1981, p. 460).

For the cases where R > 1 and is constant, the shape of the epidemic curve is 
that of a sigmoidal function, an upward sloping S-shaped curve that eventually 
approaches a steady value of i = 1 − 1/R . For the cases where R = 1 or R < 1, and is 
constant, the shape is downward sloping, where i(t) decreases asymptotically to the 
value of 0. For R < 1 the slope is steeper than for R = 1. In other words, for all these 
cases, the slopes are proportional to ( R − 1).

This means that when R is lowered, there is no bell-shape that is “flattened.” The 
shape of Covid-19 is not predetermined, it depends on the course of R. The curve 
moves up and down proportional to whether ( R − 1) is positive or negative. Covid-
19 also has no smooth course, which is suggested by the mathematical models, but 
its erratic shape is influenced by idiosyncratic social and political interactions. As 
the shape depends on how the measures for social distancing are followed, there is 
no ‘natural law’ that ensures that the curve will smoothly go down.

7 � Conclusions

The curve that needs to be flattened, the one published in The Economist of Febru-
ary 2020 and in the CDC Guidance is not an empirical curve but is the graphical 
representation of the mathematical solution of the differential equations of a SIR 
model. These equations describe the dynamics of an epidemic in the world of the 
model. It is a deterministic world and the closer this model is to reality, the better it 
can predict the development of a real epidemic. However to evaluate how close it is 
to reality or if it can be seen as a representation of an existing epidemic depends on a 
lot of empirical knowledge of the epidemic. This knowledge is not available when a 
new virus is identified to the world, such as the Corona virus.

Regarding the use of models, these warnings for policy design were made in the 
several planning guidances and discussions of mathematical models. For example, 
Mahmoud’s (2006) Letter Report contained a large section on the “strengths and 
weaknesses of the models presented, and strategies to improve predictive ability and 

dI∕dt = �SI− (� + b + �)I

di∕dt
�

= i[(R− 1) −Ri]
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usefulness”. Several of its recommendations pointed at the need for more empirical 
input. The usefulness of models is not only their representational role but equally 
important is their role to organise the relation between science and policy:

Models serve to organize and synthesize data from a variety of sources, iden-
tify data gaps, and to set priorities for further data acquisition. Modeling can 
also be used to promote dialogue between scientists, policymakers, and stake-
holders about alternatives, uncertainties, assumptions and value judgments 
that underlie decisions. (Mahmoud 2006, pp. 3–4).

Anderson and May (1981, pp. 453–4) called their mathematical models “mathemati-
cal metaphors” that should be tested against empirical evidence. This means that 
with the appearance of a new epidemic one should try to find out which model is 
most appropriate to use. Nonetheless, the typical model includes the immune class 
R(t), which is responsible for the curve eventually going down (the right side of the 
bell shape). Maybe this is the reason why politicians believed that Covid-19 is a 
wave that will inevitably subside. The flattening was only meant to lower the pres-
sure on hospitals.

To say that the only policy target is to lower the pressure on hospitals is not meant 
to undervalue its importance and relevance. The rationale of this target is to prevent 
overwhelming personnel and material resources of hospitals—which can increase 
morbidity and mortality—and to give additional time to develop effective treatment 
protocols, see the three goals in Fig. 3.7

There is also another important issue that makes that the slogan “flattening the 
curve” gives a wrong perception of the nature of control that plays a role with Covid-
19. This has to do with the changing connotation of R

0
 . It originated in demog-

raphy, ecology and population genetics, and only recently moved to epidemiology. 
These natural science origins ensured that at the start R

0
 only captured the ‘natural’ 

characteristics of an epidemic, such as population densities. This had the implication 
that control of an epidemic only focused on changing these ‘natural’ characteristics. 
The natural world is usually assumed to be governed by natural lawlike relations. In 
the compartment models these ‘laws’ are represented by their dynamical equations. 
It is of no coincidence that the various models used to represent a purely biological 
epidemic match the data so well. Control in this context is indeed close to changing 
the parameters of the model, with a resulting change in the shape of the epidemic 
curve.

Since SARS R also came to capture social factors, it is important that epidemic 
models capture both natural relationships and social behaviour. This implies that 
control should also capture social behaviour which is not governed by natural laws. 
Also when social behaviour is controlled by legal laws, humans may not obey them 
or interpret them in different ways.

The curve of Covid-19 is not determined by natural laws which would imply that 
control is re-shaping the smooth curve of a phenomenon (“happening”) governed by 
these laws. The curve of Covid-19 is determined by the course of R

0
 which mainly 

reflects social and political attitudes. This not only makes the curve erratic but its 
future development unpredictable.
7  I thank one of the anonymous referees for rightly emphasizing this point.
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