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Abstract  There are many tangled normative and technical questions involved in 
evaluating the quality of software used in epidemiological simulations. In this paper 
we answer some of these questions and offer practical guidance to practitioners, 
funders, scientific journals, and consumers of epidemiological research. The heart of 
our paper is a case study of the Imperial College London (ICL) covid-19 simulator, 
set in the context of recent work in epistemology of simulation and philosophy of 
epidemiology.
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1  Introduction

There are many tangled normative and technical questions involved in evaluating 
the quality of software used in epidemiological simulations. In this paper we answer 
some of these questions and offer practical guidance to practitioners, funders, scien-
tific journals, and consumers of epidemiological research. The heart of our paper is 
a case study in which we provide an analysis of the Imperial College London (ICL) 
covid-19 simulator. This simulator has been extensively used by the United King-
dom to help formulate public-health policy; it has been used to a somewhat lesser 
extent in public-health policy decision-making in the United States. Developed 
primarily to predict the effects of public-health interventions such as shutdowns, 
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quarantines, social-distancing, and the administration of vaccines, it can be viewed 
as a complicated data-driven variant of the “susceptible-infected-recovering” (SIR) 
family of epidemiological models, first described in Kermack and McKendrick 
(1927).

Our case study, combined with reflection on the state of the art in the philosophy 
of epidemiology and the ethics of engineering, serves as the basis for our recom-
mendations for future epidemiological modeling projects. We contend that epidemi-
ological simulators should be engineered and evaluated according to a set of public 
norms. We take as our model for the kinds of norms that we regard as appropriate, 
the framework of safety–critical standards developed by consensus of the software 
engineering community for applications such as automotive and aircraft control sys-
tems. To achieve that goal, the development and use of epidemiological simulators 
must have high levels of transparency, explainability, and reproducibility for stake-
holders. Furthermore, we recommend that such standards be mandated by funding 
agencies for epidemiological contexts that have direct and significant public policy 
implications.

The structure of our argument is straightforward. In Sect.  2 we explain some 
recent work on the role computation in the philosophy of epidemiology. In Sect. 3 
we highlight relevant research on the epistemology of computational modeling and 
simulation. In Sect. 4, we introduce a development framework that has evolved over 
the past four decades in the software engineering community. The purpose of this 
framework has been to provide a principled approach to balancing development cost 
and schedule against the possible harms of using software in high-risk venues. In 
Sect. 5, we evaluate, within the framework introduced in Sect. 4, the ICL covid-19 
simulator. Our study of this simulator demonstrates that it does not satisfy the stand-
ards for safety–critical software in established industry and government practice.

We recognize that the ICL simulator has been subject to intense critical scrutiny 
because of its role in government decision making during the covid-19 pandemic, 
and our purpose here is not to pile additional criticism on the work of the ICL team. 
In this paper, we focus solely on the publicly available artifacts associated with the 
simulator. We do not assess the empirical assumptions or epidemiological method-
ology employed by the ICL team. Instead, we hope that by carefully considering this 
high-profile epidemiological simulator, we can encourage scientific and philosophi-
cal communities to reflect on the norms governing the engineering of scientific soft-
ware in a wide range of important contexts.

Philosophers of science are beginning to understand the trade-offs that are at play 
in computational science and are becoming increasingly sensitive to the implications 
of software-intensive scientific inquiry for traditional issues in philosophy of sci-
ence (Symons and Horner 2014). Philosophers have also recognized that we cannot 
understand appropriate norms for scientific practice solely by reasoning about them 
a priori—we must take empirical evidence and technical constraints into account. 
Most relevantly for this paper, for example, we cannot arrive at norms for evaluating 
the correctness of software without attention to the actual constraints facing soft-
ware engineers. Developers of any large piece of software cannot escape practical 
and theoretical constraints on error correction. These constraints are not discovera-
ble from the philosophical armchair (Horner and Symons 2019; Symons and Horner 
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2019). Consequently, determining appropriate software standards for epidemiologi-
cal simulators requires an ongoing interdisciplinary effort.1

While we rely on existing standards and norms in software engineering in our 
analysis, we are not insisting that the norms governing high-risk engineering con-
texts should be mapped directly and uncritically onto epidemiological modeling 
projects. However, we will argue that the norms governing epidemiological practice 
are not solely a matter for epidemiologists themselves. In addition to questions of 
social value and moral responsibility, epidemiological simulators are often informed 
or constrained by a range of epistemic, mathematical, economic, and technological 
considerations. It is clear that many aspects of epidemiological modeling already 
fall outside of the expertise of epidemiologists. The standards governing the devel-
opment of important epidemiological simulators cannot be left solely to practition-
ers. The development of these standards requires careful normative reasoning that is 
often beyond their expertise.

In addition to falling outside of the epidemiologists’ area of scientific specializa-
tion, normative deliberation governing scientific inquiry involve balancing the inter-
ests of the practitioners themselves with those of others. Standards for the develop-
ment of epidemiological simulators must accordingly accommodate a complex set 
of stakeholders. We must balance the interests of the producers and consumers of 
epidemiological research along with the interests of the broader communities that 
are affected by the public policy decisions influenced by this research. In the fraught 
context of epidemiology this task inevitably involves balancing competing social 
values.

2 � Some recent work on the role of computation in the philosophy 
of epidemiology

Computing technologies have played an important role in medical and biological 
practice in economically developed societies since at least the 1960s (See e.g. Keller 
2002). Evaluating the role and usefulness of data-driven computational models and 
simulations is complicated in biological contexts for reasons others have explored 
in detail (See e.g. Leonelli 2011, 2012, 2016; Stevens 2017 for example). Epide-
miology is an even more challenging context for evaluating the role of computa-
tional models and simulations than, for example, in molecular biology for reasons 
we will discuss below. More generally, as many philosophers have noted, compu-
tational models in biology have distinctive technical and epistemological features 
that make them uniquely difficult to assess.2 While philosophers have addressed the 
role of data science and computational modeling in biological contexts for two dec-
ades there has been relatively little scholarly attention given to the norms governing 

1  Much of the philosophical literature about software does not consider the philosophical import of gen-
eral engineering constraints on software. See Sect. 2 for further detail.
2  See for example López-Rubio and Ratti (2019) for a discussion of the trade-offs between mechanistic 
explanation and prediction in applications of machine learning to molecular biology.
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the engineering practices underlying these models. Likewise, while philosophers 
of epidemiology have correctly emphasized the normative and political aspects of 
research in epidemiology, they have largely neglected the norms guiding engineer-
ing practices in the development of epidemiological models and simulations. Since 
models and simulations are fundamental to epidemiological predictions and recom-
mendations, they should also be subject to critical scrutiny.

In the context of epidemiology, computational modeling and simulation tech-
niques have become indispensable research tools (See Smolinski et  al. 2003). As 
Boschetti and colleagues have noted, computational modeling is sometimes our only 
way of advancing scientific inquiry in contexts where ethical considerations or prac-
tical constraints prevent the use of traditional experimental techniques (Boschetti 
et al. 2012). In epidemiology, complicated simulations and the manipulation of large 
data sets, along with the ethical and practical obstacles to experimentation have 
meant that computational methods have become centrally important research tools.

During the COVID-19 pandemic in particular it was widely reported that the 
results of computer simulations provided by the ICL team weighed decisively in 
public policy deliberations in both the United Kingdom and United States govern-
ments (Landler and Castle 2020). Government officials are reported to have relied 
on epidemiological modeling and simulation to predict mortality due to the virus 
and to anticipate its effects on the healthcare system. These simulations are also used 
to assess the relative merit of alternative interventions and public health responses to 
the pandemic (Freedman 2020).3 In an emergency decision making context, it is rea-
sonable to turn to acknowledged experts on the relevant topics and throughout the 
pandemic, political decision makers in the United Kingdom government have been 
eager to present their decisions as grounded in the best available scientific evidence 
(UK Government 2020). The extent to which decision makers have or have not ‘fol-
lowed the science’ has become a fraught and highly politicized matter in many dem-
ocratic societies (Stevens 2020; Sharma 2020).

In these discussions it is often mistakenly assumed that policy is fully determined 
by our best epidemiology. As we explain below, this assumption involves a misun-
derstanding of both the nature of epidemiology and its proper role in decision-mak-
ing in democratic societies. Difficult trade-offs between different kinds of societal 
values and moral obligations will not, generally, be resolved by scientific expertise. 
Epidemiologists cannot tell us, for example, in the case of the COVID-19 epidemic 
whether public health interventions ought to value the well-being or education of 
children more highly than reducing the health risks to the elderly. These are moral 
and political decisions that are not illuminated directly by increased scientific under-
standing or better models and simulations. There is, moreover, an obvious depend-
ence of deliberations in epidemiological contexts on the reliability of software tools 
that help to inform those deliberations: we cannot make software-informed ethical 

3  Perhaps the most important policy role of these simulations has been their perceived predictive power. 
For a discussion of the predictive role of computational models see Boschetti and Symons (2011) and 
Symons and Boschetti (2013). See Ioannidis et al. (2020) for an assessment of the predictive power of 
prominent covid-19 modeling efforts to date.
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decisions unless the software is doing what we think it should be doing. All else 
being the same, to achieve that end, we want to minimize, as far as is practical, the 
frequency of errors in epidemiological software.

The role and status of computer simulations frequently figures, albeit unsystemat-
ically, in debates about what it means for governments and institutions to ‘follow the 
science’. It is clear from reporting and from the actions of the United Kingdom gov-
ernment that the simulation results provided by the ICL team were decisively impor-
tant in policy deliberations in March and April of 2020 (Landler and Castle 2020).4 
It is also clear that the ICL group occupied a high position of scientific authority and 
trust from the perspective of political decision makers.

‘Follow the science’ presumably means ‘follow the best science’. However, deter-
mining which epidemiological recommendation is best is not a straightforward 
matter. Given the complexity of the factors relevant to decision making during a 
pandemic, the public in democratic societies and their political representatives have 
placed great trust in the community of epidemiologists. This is understandable, but 
often, public declarations of trust have implicitly projected an idealized and unre-
alistic level of neutrality and objectivity onto epidemiological research. This runs 
counter to our best critical understanding as drawn from the history and philosophy 
of epidemiology. As we will explain below, disagreement among epidemiologists 
can stem from differences with respect to values (Stevens 2020).5

The way we have assigned trust to the epidemiological community is not unrea-
sonable, but it involves oversimplification that can lead us to misunderstand our 
responsibilities as consumers of their research. We are operating with something 
like the following commonsense understanding of the relationship between scientific 
expertise and policy making:

Commonsense view of scientific evidence as a guide to policy making

Decisions that involve risk of serious harm require us to deliberate as carefully 
as is feasible. Policy makers often have to rely on expert advice since our best 
available evidence and guidance for decision-making in many matters comes 
from scientific experts. In such contexts, it is usually rational to follow the 
advice of the relevant scientific community in order to increase the likelihood 
that our decisions promote our values and interests. Commonsense recognizes 
that natural science cannot tell us what we ought to value or what our policy 
goals ought to be. Nevertheless, under ideal circumstances science can provide 
an understanding of the facts in a way that helps us to act consistently with the 
moral or political principles we share.

4  In mid-March, the ICL model was predicting that absent any public health interventions, the UK would 
suffer half a million deaths from COVID-19 (2 million deaths in the U.S.).
5  See Stevens (2020) for a discussion of the confusion around ‘follow the science’ rhetoric in UK policy 
making. He writes: “A provisional and contested set of statements about how the world is cannot be used 
directly as a rule for what governments should do. Ministers have to decide for themselves. They must 
take responsibility for these decisions and their own inevitable mistakes, rather than relying on science 
as if it were an apolitical and indisputable tablet of stone.” https​://doi.org/10.1038/s4156​2-020-0894-x.

https://doi.org/10.1038/s41562-020-0894-x
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Much in the commonsense view is in our view correct. However, it draws a 
sharp distinction between social values and norms and scientific inquiry in a way 
that is especially difficult to achieve in the case of epidemiology for reasons we will 
explain below. The assumption that epidemiology is value neutral makes our insist-
ence on the importance of high standards for scientific software seem like an unwar-
ranted intrusion on scientific practice. However, there are degrees of neutrality in the 
sciences when it comes to values. For example, when one turns to an epidemiologist 
for advice, one cannot be as confident of the relatively value neutral nature of their 
scientific judgment as one would be in discussions with a chemist.6 The history and 
philosophy of epidemiology have highlighted the complex moral and political land-
scape of the study of epidemics. In this context the standards governing how soft-
ware for simulations ought to be applied are similarly complex.

Disputes within epidemiology involve normative considerations in ways that 
disputes between chemists or physicists, for example, almost never do. Consider 
debates concerning the social determinants of health, where disputants may offer 
causal stories about the origins of some public health concern that assume, or are 
motivated at least in part by their preferred socio-political values.7 In epidemiology, 
social, political, and other considerations are difficult to disentangle from the man-
ner in which scientific questions are framed. The way epidemiologists think about 
causation, agency, possible interventions, relevant populations, risk, disease, and 
responsibility, are all informed by the values governing their practice.8

Public reflection on norms is relevant for the practice and not just the application 
of epidemiology. In order to explain why, consider a disease like type-2 diabetes. 
There are interventions that would be effective in stopping the spread of this dis-
ease that we would regard as unconscionable violations of individual autonomy, or 
that most of us would presently regard as contrary to the ultimate goals of public 
health.9 For example, we might reject heavy taxation on calorie dense foods, man-
datory exercise programs, etc. as possible responses to the disease because of the 
importance of other kinds of social goods. Generally speaking, the set of accept-
able interventions that are given scientific consideration will be shaped by a range of 
social values.

8  As mentioned above, for example, during the early stages of the COVID-19 crisis, harm to the educa-
tion of the young and risks to the life of very elderly people were weighed against one another without 
a great deal of explicit public deliberation. The assumptions about social priorities that motivated school 
closures and other interventions that harmed children and young people may well be defensible. The 
kinds of interventions that were attempted in the early stages of the pandemic are all defensible given 
some set of social values. In most cases, epidemiologists did not engage in explicit and public delib-
eration concerning their presuppositions about social values when they offered their initial recommenda-
tions with respect to interventions.
9  See Tabish et al. (2007) for a defense of categorizing diabetes as an epidemic.

6  There are philosophers of science who will object here, pointing to the role of value considerations 
in all sciences, even in chemistry. Our point here is not to say that chemistry is perfectly neutral with 
respect to value considerations. We are simply noting that there are degrees to which social values, politi-
cal considerations, etc. play a role in science. It is a mistake to say that because there is some political or 
social element to all sciences, there is no difference of degree.
7  See Broadbent (2012) for a discussion of causal reasoning in epidemiology.
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In addition to disagreeing with respect to what would count as an acceptable 
intervention in public health, social groups may also disagree over what kinds of 
health issues should be classified as diseases or as epidemics. There is considerable 
disagreement over, for example, the claim that common mental health problems like 
anxiety and depression should be regarded as epidemics.10 Claims that obesity or 
attention deficit hyperactivity disorder are at epidemic levels in the United States, 
for example, are difficult to state categorically without reference to a large set of 
controversial normative assumptions. Ultimately, social values are negotiable. Peo-
ple with differing values can attempt to persuade one another with respect to the rel-
ative importance of conflicting values. Given the role of social values in determining 
the space of acceptable public health interventions, the characterization of health, 
and the taxonomy of disease, epidemiological inquiry will always be situated within 
a particular social context and cannot be entirely neutral with respect to normative 
questions.

Attempts to characterize the subject matter of epidemiology will also generally 
require reference to concepts that have normative features. Mathilde Frérot and col-
leagues surveyed the literature from 1978 to 2017 in order to determine the ways 
that epidemiologists understand their enterprise and how that understanding has 
changed through time. They examine 102 definitions of ‘epidemiology’ and found 
that five terms were present in more than 50% of definitions: “population”, “study”, 
“disease”, “health” and “distribution” (Frérot et al. 2018). Philosophers of epidemi-
ology have noted that definitions of epidemiology will vary depending on the social 
and political contexts involved. In their introduction to the recent Synthese volume 
on philosophy of epidemiology, Jonathan Kaplan and Sean Valles emphasize this 
contested nature of epidemiology (Kaplan and Valles 2019).11 They contend that 
“since the welfare of populations and communities are always at stake in epidemiol-
ogy, the issues at hand are directly or indirectly political issues” (Kaplan and Valles 
2019).

Our task in this paper is to encourage attention to the norms governing software 
engineering in epidemiology. The significance of these models for policy deci-
sions that affect many of us in significant ways is clear. Given that epidemiology 
is not neutral with respect to social values, non-practitioners have a right and an 
interest to concern themselves with the standards governing software engineering in 
this discipline. In addition, funders, journals, policy makers, and the broader public 

10  See Baxter et  al. (2014) for an argument against considering common mental health problems like 
anxiety and depression as epidemics.
11  They contrast what they see as the divergence between the views of the World Health Organization 
and the United States Centers for Disease Control. While they do not provide evidence for divergence 
between these two organizations, they do note two conflicting characterizations of epidemiology, both of 
which are drawn from Dicker et al. (2006): “Epidemiology is the study of the distribution and determi-
nants of health-related states or events in specified populations, and the application of this study to the 
control of health problems.” (2006, I-1) and later in the same document: “in epidemiology, the ‘patient’ 
is the community” (2006, I–4). See Frérot et al. (2018) for a careful empirical assessment of the variety 
of ways that epidemiology has been characterized in recent decades.
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are entitled to require standards are sufficiently high to ensure that simulations are 
trustworthy.

In the next section we discuss some of the most important epistemic aspects of 
trustworthiness for computer simulations. As we shall argue, part of determining the 
standards for what count as good software engineering practice will be determined 
by the level of risk involved in the deployment of the simulation.

3 � The epistemology of epidemiological computer simulations

There has been significant public interest in the epistemic trustworthiness of epi-
demiological modeling efforts.12 Most criticisms have raised doubts concerning the 
assumptions and the quality of the data that go into the models rather than with 
respect to the quality of the software underlying simulations. Our focus in the fol-
lowing is on properties of the software as software, rather than the scientific status 
of the assumptions, the mathematical models, or the quality of the data driving these 
simulations. Critics have occasionally pointed to weaknesses in the publicly avail-
able code for simulators (Lewis 2020).13 We will address some of these criticisms 
below, Public concern over the status of computational modeling has also involved 
more abstract epistemological themes. For example, Kreps and Kriner (2020) note 
that populist media figures have cast doubt on computational modeling as a scien-
tific enterprise. In addition, the influential Fox News personality Tucker Carlson has 
asserted that computational models of Covid-19 are “completely disconnected from 
reality” (Sider and Ward 2020). In recent years philosophers have addressed some of 
the central epistemic problems associated with computer simulations in science.14 
Epidemiological simulations are subject to all such problems, and in this section, we 
review some of this philosophical literature.

One standard approach to understanding why scientific communities come to 
trust simulations relies on an analogy with the ways that epistemic entitlements 
work in other less controversial forms of inquiry (see for example Barberousse 
and Vorms 2014). In ordinary life, for example, we are generally entitled to 
trust the testimony of other people, the reliability of our senses, and the capac-
ity of our basic cognitive faculties, such as our memory to transmit information 

12  Kreps and Kriner (2020) provide an assessment of public trust in covid-19 models, highlighting the 
role of uncertainty and the revision of models in deterioration of public trust. Through a series of experi-
mental surveys, they attempt to show how the shifting scientific consensus can be reconciled with public 
trust in epidemiology. In their discussion, they present many examples of the ways in which media and 
political actors cast doubt on modeling. Notably, some of the most corrosive criticisms blend attacks 
on the empirical assumptions driving the models with broadly philosophical criticisms of computational 
models as “completely disconnected from reality”. For more on this line of criticism in populist media 
and politics see Sider and Ward (2020).
13  There has been considerable popular attention to the issue of the quality of code in epidemiological 
simulations during the COVID-19 pandemic. The quality of these analyses is mixed, for a flavor of some 
of the commentary see for example Lewis (2020).
14  See Juan Durán (2018) and Winsberg (2019) for an overview of the epistemic issues related to com-
puter simulation.



1 3

Software engineering standards for epidemiological models﻿	 Page 9 of 24  54

without altering it in epistemically significant ways. This use of the idea of epis-
temic entitlement, largely drawn from Tyler Burge’s (1993; 1998) arguments, 
has been highly influential among philosophers in debates over the epistemology 
of computer simulation (Barberrouse and Vorms 2014; Beisbart 2017). Symons 
and Alvarado disagree, arguing instead that the analogical account of epistemic 
warrants is not appropriate in the context of computer simulations. They have 
insisted on epistemic standards of the kind we apply to traditional scientific 
instruments (Symons and Alvarado 2019; Alvarado 2020). On this view, com-
puter simulations are not experts and should not be treated as such. Instead, they 
are built by teams of experts or by experts working alone who may not be expert 
software engineers. Thus, given the interdisciplinary integration necessary in a 
team, the use of the analogy with trusting experts is inappropriate. The analogy 
is even less fitting in the specific case of epidemiological simulation than it is 
in science more generally, given that epidemiology relies on interdisciplinary 
teams with distinct sets of disciplinary standards. Furthermore, the resulting 
simulations are heavily mediated by what Eric Winsberg called motley practices 
(Winsberg 2010).

The fact that we are not able to trust computer simulations by analogy with 
the manner in which we trust individual scientific experts leaves us with the 
problem of how policy makers and the public should decide which simulations 
and which models to rely upon. There are many dimensions to this challenge, 
and it is beyond the scope of this paper to address this broader problem (see, 
for example, Symons and Alvarado 2019). Trusting simulations involves many 
complicated criteria. However, for the remainder of this paper we will argue that 
at least one obvious and necessary condition for justifiable use of simulations for 
public policy is that they be funded, managed, specified, designed, implemented, 
and maintained in accordance with the best available software engineering prac-
tices, in order to help minimize, as much as practical, the frequency of the kinds 
of errors that occur in all software development, regardless of application. We 
contend in this paper that these practices are as important to epidemiological 
policy-making as good experimental methods are in non-software-intensive sci-
entific regimes. And not least, sound decision-making in epidemiological con-
texts that depends on epidemiological simulators must be able to assume that 
errors in that software have been minimized as much as practical. Among other 
things, that minimization requires adhering to software engineering practices 
that have (empirically) been shown to help minimize software error.

Our recommendations will, in the near term, increase the cost of these sim-
ulation efforts and will require increased collaboration between scientists and 
software engineers. However, we contend that the risks involved in decisions 
based on epidemiological modeling efforts warrant the additional resources and 
effort that we recommend here. During the Covid-19 pandemic it has become 
clear that public trust in epidemiology is undermined by the perception that its 
simulators are not developed according to the kind of rigorous standards that 
we expect in traditional scientific practice. In the following section we explore 
standards that can help ensure that simulators are not only trusted, but also 
trustworthy.
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4 � Standards for software engineering

As with all aspects of epidemiology, engineering standards governing the devel-
opment of simulations are a matter where normative considerations overlap with 
technical and mathematical constraints. Because of this, critical scrutiny of these 
simulations is not the exclusive purview of any subset of scientific experts as we 
argued above. Practical guidelines for developers of scientific software are described 
and defended below. We did not invent these standards. Instead, our recommenda-
tions draw upon the history of software engineering. For the past five decades, the 
software engineering community has sought to codify practices and procedures that 
have been empirically determined to help minimize development cost, schedule, and 
risk (Boehm 1973; Myers 1976; Boehm, Abts, Brown, Chulani, Clark, Horowitz 
et  al. 2000). This effort has produced an evolving series of software engineering 
standards, one of the most recent of which is ISO 2017.

We note that scientific-inquiry software is generally not developed according to 
standards as demanding as those required for safety–critical software by ISO 2017. 
Thus, our recommendations will be controversial and may be regarded as exces-
sively restrictive for those who view epidemiology solely in terms of scientific 
inquiry.

Perhaps the most controversial feature of our proposal is the application of an 
approach drawn from engineering ethics to a discipline that primarily regards itself 
as scientific inquiry.15 While the responsible practice of engineering is generally 
sensitive to the harms involved in various projects (Roddis 1993; Lynch and Kline 
2000), one might argue that a science like epidemiology is different. The ethics of 
scientific inquiry, that argument would contend, are very different from the ethics of 
engineering. Most philosophers of science are likely to agree. The kinds of simula-
tions that epidemiologists have produced have been regarded by philosophers, for 
example, as either formal or abstract objects or as special forms of experiments 
capable of yielding empirical information about the systems they simulate.16 This 
view of simulators (more generally, software), however, by fiat ignores a wide range 
of general “engineering” issues that directly bear on the reliability and trustworthi-
ness of simulators. For example, questions about how we can help to ensure that a 
developer of a component in a simulator clearly understands how the software h/
she develops integrates with software written by others, and what documentation 
programming, and verification practices help to maximize reliability, do not arise if 
we consider simulator software to be an abstract object or a special form of experi-
ment. Following Alvarado (2020) we believe that in addition to serving as formal 

15  Epidemiologists sometimes present their work as a basic science for clinical practice in medicine. See 
eg. Sackett et al. (1985) and Bonita et al. (2006).
16  Weisberg (2012) and Pincock (2011) regard computer models as formal extension of mathematical 
representation. Morrison (2009, 2015) regards computer simulations as being a form of scientific experi-
mentation (Ruphy 2015). Morrison and others have argued that computer simulations involve extra-
mathematical considerations (Winsberg 2010). These include measurement practices (Morrison 2009), 
representations and imaging (Barberousse et al. 2014), and hypothesis testing and generation (Hartmann 
and Frigg 2005). For a comprehensive overview of the state of philosophical discussions of computer 
simulations see Durán (2018).
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models or experiments, epidemiological simulations should also be understood as 
engineered scientific instruments. In general, scientific instruments are expected to 
meet “fail-safe” engineering development standards that address engineering issues 
of the kind just mentioned.

As Roddis (1993) notes, in engineering ethics, the standards governing instru-
ments and practices are determined, at least in part, by the harms that can result 
from failures. We contend that high risk-management standards are required for 
software engineering in epidemiological simulators given the high costs of failure 
involved in the deployment of these instruments in public policy decision making.

We argue that where great harms can result, scientists, funding agencies, and gov-
ernments ought to adopt standards of software engineering that are at least as high 
as the standards that societies routinely demand in, for example, critical infrastruc-
ture, aviation, or military contexts. Because of the nature and extent of the harm to 
societies that errors in these simulations can cause, epidemiological modelers are 
subject to a special obligation to adhere to high standards in the development of 
their software.

One objection to insisting on such standards is the risk that convergence to a sin-
gle set of standards might inhibit or slow the development of scientific inquiry. We 
believe that this risk is not significant in the long term and that open and transparent 
scientific software built to high risk-management standards is likely to help rather 
than hinder the scientific enterprise.

Standards like ISO 2017, by virtue of the empowerment clauses they contain, are 
highly tailorable to specific risk regimes. For example, these standards would cer-
tainly permit some simulators, for example, those used solely to assist inquiry, to 
be developed in a way that does not have to meet “fail-safe” standards. ISO 2017 
requires that other simulators, such as those used to verify the safety of nuclear reac-
tors be built to “ultra-paranoid” safety standards. The key point here is that engi-
neering standards are consciously shaped by the judgment of risk involved in the 
development of the system in question. Epidemiological simulators involved in pub-
lic policy decision making obviously involve extremely high risks of harm.

5 � Software engineering standards in pandemic policy‑making

Since the late 1960s, the software engineering community has sought to codify con-
sensus software development practices and procedures that have been (empirically) 
determined to help minimize development cost, risk (both developmental and opera-
tional), and to help ensure that the products of such projects reflect user needs and 
values (Boehm 1973; Myers 1976; Boehm, Abts, Brown, Chulani, Clark, Horowitz 
et al. 2000), where values include the normative interests of all stakeholders. These 
codification efforts have produced a series of software engineering standards.17 One 
of the most recent and widely used software engineering standards is ISO 2017.

17  Such a standard is not a contract; in the absence of a contract, compliance with a standard is therefore 
voluntary. A contract, however, can make compliance with a standard mandatory.
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As noted in Sect.  4, the standards allow extensive tailoring or as a function of 
cost, schedule, risk to property and life, and other harms of comparable conse-
quence. ISO 2017 permits software whose failure would result in inconsequential 
loss of property, life, or revenue, or harms of comparable consequence, for example 
software developed solely for personal use, can be developed with little formality In 
contrast, ISO 2017 requires that software whose failure could result in large loss of 
property or life (e.g., aircraft or automobile control), or other harms of comparable 
consequence, be developed with extensive formality.18

Although there is some variation among these standards, they characterize soft-
ware projects in terms of lifecycle phases, each with formal review and documenta-
tion requirements, both which directly contribute, as needed, to the transparency, 
explainability, and reproducibility of the software (for the relevant community of 
stakeholders) developed under those standards. These phases are:

1.	 Specification
2.	 Logical design
3.	 Physical design
4.	 Implementation
5.	 Test
6.	 Maintenance

The economic and risk-management rationale for a phase-structured approach to 
software development and management is based on two major premises (Boehm 
1981, 38):

	 I.	 In order to create a “successful” software product, we must, in effect, execute 
all of the phases at some stage anyway.

	 II.	 Any different ordering of the phases will produce a less successful software 
product.

Rationale (I) follows directly from questions that inevitably arise in the develop-
ment of any software system: “What is the software supposed to do?” (Specification 
phase), “How do we ensure that everyone who helps to develop part the software 
understands how his/her part of the software correctly integrates with the rest of the 
software?”, especially if not all personnel know all aspects of the system (logical, 

18  For further information about software standards for high-consequence applications, see Boehm, 
Abts, Brown, Chulani, Clark, Horowitz et  al. (2000), Hatton (1995), ISO 2017, Koopman (2014), 
MISRA (2004, 2008), NASA (2004), Rierson (2013), RTCA (2012), FDA (2002).
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and physical, design phases),19 and “How do we determine that the software is doing 
what is supposed to do” (Test phase).

Rationale (II) derives directly from empirical studies of the costs of fixing an 
error in a software system as a function of the phase in which the error is detected 
and corrected. These studies show that in a large (> ~ 50,000 source lines of code 
(SLOC; Boehm, Abts, Brown, Chulani, Clark, Horowitz et al. 2000, 395)) or highly 
technical software project, a typical error is 100 times more expensive to correct in 
the maintenance phase than in the specification phase; in small projects (< ~ 10,000 
SLOC), a typical error is 20 times more expensive to correct in the maintenance 
phase than in the specification phase (Boehm 1976, 1981, 40).

Each of phases 1–6 imposes requirements on, or equivalently, allocates require-
ments to the processes and products of one or more successor phases. Taken end-to-
end, the resulting requirements-allocation induces a hypergraph (Berge 1973) span-
ning the elements (documentation, processes, and code) in the system.

Documentation is crucial to ensuring the transparency, explainability, and 
reproducibility of software. Even though this point seems self-evident, it is some-
times incorrectly argued that the code in a software system determines what that 
software is intended to do. So, the argument goes, we do not need documentation: 
code is “self-documenting”. Why is this view incorrect? Very simply, the syntax 
and semantics of programming languages are far from sufficient to determine the 
intended application semantics (what the code is intended to do) of a given body 
of software. Any program, regardless of what the code seems to be about, could 
be used solely to show that the machine on which it runs will in some sense cycle 
the program, without regard to anything else that program might be intended to do. 
Only the combination of the specification, the logical design documentation, the 
physical design documentation, various test suites, and the code proper, can hope to 
capture the semantics of what the code is supposed to do.

There is no guarantee that using a software development process of the kind 
described in this section will yield an error-free product.20 Empirical studies of soft-
ware error and its causes show, however, that if such a framework is not used, with 
very high probability, software will contain at least 10 times as many errors software 
developed within such a framework (Boehm 1973, 1976, 1981; Myers 1976, 40).

While informal software development is often tolerated in academic contexts, 
standards must be higher in the case of epidemiological modeling that is used in 
public-health policy-making. Why? The epidemiological simulators used in policy-
making are typically used in a way that errors in those simulators could lead to sub-
stantial loss of property or life, or to other harms of comparable consequence. To 

19  On average, five years after initial deployment of a software system, only 20% the original developers 
of the software remain on the project ( Boehm, Abts, Brown, Chulani, Clark, Horowitz et al. 2000, 48). 
10 years after initial deployment, on average, none of the original developers remain on the project. On 
small projects, furthermore, the loss of even a single key team member can force the project to restart or 
be abandoned. Detailed documentation is the only way to help mitigate these risks.
20  See Horner and Symons (2019b) for a discussion of whether it is even possible, in all cases of interest, 
to determine that we have produced error-free software.
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make informed public-health policy, decisions-makers must be able to assume that 
every practical effort has been made to minimize error in software.

The development of general software engineering standards has combined a rec-
ognition of both general principles of engineering ethics and attention to the empir-
ical features of software engineering practice. In the next section we apply these 
standards to the ICL covid-19 simulator.

5.1 � A case study

During the period from late-March through late-May 2020, we assessed how well 
the publicly accessible artifacts associated with the ICL covid-19 simulator con-
form to ISO 2017 when that standard is tailored to maximize reliability. Our assess-
ment was based on informed software engineering judgment, reading those artifacts, 
building and executing some of the code, and applying various analysis tools (identi-
fied below) to the artifacts in that archive.

Our assessment was constrained by some important limitations. Most importantly, 
to our knowledge there is no publicly accessible documentation that officially identi-
fies the baseline for the ICL covid-19 simulator project, though a cursory inspection 
of publicly available materials might suggest otherwise. For example, as of 12 June 
2020, an ICL covid-19 project website (ICL 2020c) appears to identify the mapping 
between certain code archives and various team papers and reports. Our analysis 
revealed, however, that the code archives identified on this website contained modi-
fication date/time stamps that are later than the issuance dates of these papers and 
reports. We further discovered that some of the graphics that appeared in the papers 
and reports referenced on the website were not directly produced by any of the code 
in the associated code archives. (It is possible, of course, that some of these graph-
ics were produced by applying software that is not identified in the reports/papers or 
on the website to the outputs of code that does appear in the archives.) In addition, 
according to Eglen 2020, the code in the publicly accessible ICL covid-19 simula-
tor archive (ICL 2020b) is not identical to the version of the code that produced the 
tables in ICL (2020a) (“Report 9”), which was fundamental to COVID-19 policy 
decision-making in the UK and the US in early 2020. Eglen reports that an assess-
ment of ICL (2020b) produces results that agree with the content of some tables in 
ICL 2020b for the test cases run in Eglen 2020. It is therefore not possible to infer 
from this website, or from the papers/reports linked at this website, the identity of 
the specific code used produce the results reported in those documents.

We note that there is, at present, no legal or institutional requirement for the ICL 
simulator project to make any software-development artifact of that project acces-
sible to the general public. It is not surprising, therefore, that, even if they exist, 
many of the artifacts identified in the consensus software engineering standards are 
not publicly available in the ICL simulator project. In our judgement, however, it is 
highly likely that ICL (2020b) is closer to the actual ICL covid-19 simulator pro-
ject baseline than any other publicly available archive; accordingly, we chose ICL 
(2020b), along with the published articles and reports identified in ICL 2020c, as the 
baseline for the analysis reported here.
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Assuming ICL (2020b) as the baseline for our assessment, Sects.  5.1.1–5.1.6 
describe, at a high level, the major features of each phase of the software engi-
neering process described in ISO 2017 and assess how well, within the limitations 
described above, ICL (2020b) conforms to that standard.

5.1.1 � Specification phase

The principal function of the specification phase of a software project is to gen-
erate an agreement (called the specification) among stakeholders that states what 
objectives a software system must achieve. Among other things, the specification is 
intended to reflect the results of the negotiation of stakeholder values. In the case of 
epidemiology simulator development projects, such tradeoffs can concern negotia-
tions of the tradeoffs between the rights of the younger and the elderly, or tradeoffs 
in optimizing on the social-distancing directives/guidelines that collide directly with 
other activities that all but require person-to-person physical contact. (In several 
stakeholder communities, these tradeoffs (as of mid-2020) have yet to be resolved.) 
In some policy-making venues, furthermore, the general public is a stakeholder and 
thus can legitimately claim a right to have, in a timely way, access to all policy-
related artifacts such as simulator rationale, design, and implementation (a view 
institutionalized, for example, in UK Government Office for Science 2010):

73. SACs [Scientific Advisory Committees] and their secretariats should aim 
to prepare papers in accessible language. Where issues require technical dis-
cussion, consideration should be given to separate, and additional, production 
of a ‘lay summary’ to ensure that all matters are accessible to all interested 
parties regardless of specialist knowledge. (UK Government Office for Science 
2011, 18).

Examples of publicly negotiated specifications include the Internet protocol stand-
ard (Internet Engineering Steering Group 2020), the GPS signal specification (US 
Air Force 1995), nuclear reactor control simulation (Oak Ridge National Laboratory 
2020), and pacemakers (Boston Scientific 2007).

Justifiable decision-making typically requires transparency and explainability 
– even insuring, in some cases, some level of lay understanding.21 Policy makers 
cannot be expected to be able to evaluate models and simulations at the level of 
technical detail, but modelers should be transparent with respect to, for example, 
the degrees of uncertainty involved in their predictions. In complex decision-mak-
ing problems facing policy makers, modelers must therefore represent the extent 
to which their predictions should be believed. Trusting experts is unavoidable and 

21  European Union law establishes a right to explanation in relation to the use of technology in impor-
tant decisions affecting individual citizens. See for example https​://eur-lex.europ​a.eu/legal​-conte​nt/EN/
TXT/?qid=14654​52422​595&uri=CELEX​:32016​R0679​ Rectital 71 (accessed June 8 2020). French 
national law establishes the right to explanation in the 2016 Loi pour une République numérique. See 
also Morely, Cowls, Taddeo, and Floridi (2020). Such a right is not categorical, however. In the case of 
code and documentation that contains information whose disclosure could compromise national security, 
access to these artifacts must be restricted.

https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1465452422595&uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1465452422595&uri=CELEX:32016R0679
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fully appropriate in certain domains, especially those with high technical content. 
However, as we discussed above, expertise in technical, scientific, or engineering 
domains (such as epidemiology), does not imply expertise with respect to societal 
goals and values.

Relevant value considerations and assumptions shaping the development of the 
simulation should be explicitly stated in the specification to the extent possible. 
The degree to which precautionary or other values enter into the choice of param-
eters, data sources, etc. should also be captured in the specification, because they 
can affect our understanding of the meaning of the predictions derived from the 
simulation.

Unfortunately, there is no publicly accessible specification for ICL (2020b). Ide-
ally, future iterations of this and related simulators ought to be generated according 
to publicly negotiated specifications. At the very least, the specifications stipulated 
by the modelers themselves should be made available to the public.

Modelers and their funding organizations might protest that epidemiological sim-
ulation is a time-sensitive project whose urgency precludes such public deliberation. 
We contend, however, that the trust invested in epidemiologists by the public and 
their political representatives in these contexts means that they must be able to pro-
vide a well-articulated and understandable specification. A clear specification will 
explain the purpose and assumptions of the simulator in ways that will help ensure 
its trustworthiness and will permit all stakeholders to evaluate its import for their 
decisions.

5.1.2 � Logical design phase

The objective of the logical design phase is to generate an abstract description, 
called a Logical Design Document, of a system that satisfies the requirements of the 
specification. Understanding what “satisfaction” means in the software development 
process is not simple and it involves considerations beyond the scope of this paper. 
For an explanation of the notion of satisfaction in the context of software develop-
ment projects, see Symons and Horner (2019).

The abstract description that satisfies the specification assumes no particular 
implementation in hardware, software, or human procedures. Various languages can 
be used to express the logical design. In current practice, the Unified Modeling Lan-
guage (see, for example, Rumbaugh, Jacobson, and Booch 1999) is often used for 
this purpose. No software is generated during this phase. There is no publicly acces-
sible Logical Design document in ICL (2020b). This is not unusual for software 
used in scientific inquiry, but it does violate the consensus standards for software 
deployed in high-risk/reliability contexts.

5.1.3 � Physical design phase

The objective of the physical design phase is to generate a concrete description, 
typically called the Physical Design Document, or Detailed Physical Design Doc-
ument, of how specific machines, software, and human processes, and their inter-
actions, will satisfy the requirements allocated to them from prior phases. The 
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software-specific component of the Physical Design Document is often called the 
Software Design Document, or SDD. (For a detailed description of an SDD, see 
US Department of Defense 1988). Assuming ~ 50 software statements per page of 
source code, this document typically contains ~ 10 pages per page of source code. 
No software is generated is generated during this phase. There is no publicly acces-
sible SDD for ICL (2020b). However, a few items that would be contained in an 
SDD are included in the inline comments of the source code in ICL (2020b).

5.1.4 � Implementation phase

This phase implements on actual machines, and in software and human procedures, 
an operational product that satisfies the requirements allocated to it from prior 
phases. The software developed during implementation phase is typically required 
to satisfy certain programming-language-specific standards (sometimes called “cod-
ing guidelines”). These standards prescribe programming-language-specific prac-
tices that are, and proscribe practices that are not, acceptable. (Such requirements 
are often stated in, and inherited by allocation from, the specification.) The primary 
role of these programming-language-specific standards is to minimize program-
ming-language-specific coding errors.22

By manually analyzing ICL (2020b) along with the reports and papers nominally 
associated with that archive we determined that the source code in ICL (2020b) 
was intended primarily to study the effect of “interventions” (e.g., school closings, 
social distancing) and population-distribution details on the course of a pandemic. 
Based on our analysis of inline comments in the source code, and on the style of the 
code itself, the code in ICL (2020b) appears to have descended from a multi-thou-
sand-statement simulator written in the C language by one developer in the early 
2000s. In its current form, the code is almost entirely implemented in the C lan-
guage subset of C +  +. For example, ICL  (2020b) makes no use of C +  +  classes or 
polymorphism.23

By applying the static source code analyzer Understand (Scientific Tools 2020) 
to the source code in ICL (2020b) we found that the code consists of ~ 1000 declara-
tive/definitional, and ~ 10,000 executable, statements, distributed across approxi-
mately 30 files. Half of these statements are in a single file that contains the source 
for the simulator’s main routine.

The complexity of software serves as a rough measure of the intelligibility and 
the maintainability of the code (Symons and Horner 2014). All else being equal, 
software engineering attempts to minimize the complexity of a software system 
while satisfying all other requirements on that system. There are many way to meas-
ure software complexity. One of the more widely used measures of software com-
plexity is McCabe complexity. Informally put, McCabe complexity is the number 

22  For examples of such standards, see Hatton (1995), Evans (2003), Perforce (2013), Google (2020).
23  We made this assessment by reading the ICL (2020b) source code, and by analyzing the ICL 2020c 
source code with the documentation tool doxygen (van Heesch 2020) and the static source code analyzer 
Understand (Scientific Tools 2020).
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of distinct execution paths through the code (McCabe 1976). Statistically, the fre-
quency of errors in software is an increasing function of McCabe complexity (Basili 
and Perricone 1984). ~ 50% of ICL (2020b) has extremely high McCabe complexity. 
Most of this complexity comes from deeply nested “if, then” statements, primarily 
in function main, the understanding of which requires the reader or developer of the 
code to maintain awareness of complex chains of conditionality.

A simulator typically requires that the user enter input values for the parameters 
that are relevant to the model underlying the simulation. “Manual” analysis of the 
ICL (2020b) source code and its input files reveals that in order to generate a simu-
lation, one must enter 40–50 distinct data-items, such as boundaries of geographic/
jurisdictional regions, populations, and intervention types and dates, among oth-
ers. For the most part these are data are intended to be derived from public health 
sources,  but in some cases it is less clear how these assignments are determined. 
The high number of parameters in this simulator and its resulting complexity cannot 
be avoided at some level if the model is to assess the effects of even the interven-
tion regimes that have already been deployed by various countries. As a result, ICL 
(2020b) is unavoidably more difficult to comprehend, correctly use, calibrate, and 
maintain than lower-fidelity epidemiological models such as SIR (for a description 
of SIR, see Vynnycky and White 2010; Nowak and May 2000). Arguably, only the 
authors of the code can reliably use it in its current form. For the stakeholders, trans-
parency with respect to these parameters is important in order to ensure the trust-
worthiness of the simulator.

ICL (2020b) performs little to no sanity-checking (such as plausible-range-of-
value testing) of its inputs, relying instead on users and external data suppliers to 
perform essentially all data curation. In actual practice, the data used as input to ICL 
(2020b) has proven to be of highly variable reliability.

With the exception of the high-complexity portion of the code mentioned above, 
the ICL simulator is, as of 15 September 2020, being modified in a way that is gener-
ally in accordance with at least some of ISO 2017. The scope of those modifications 
has to date been relatively limited. Based on time-stamps in ICL (2020b), the code 
has experienced, on average, average annual change traffic (number-of-statements-
of-software-changed/total-number-software-statements in the system) of ~ 5%. This 
fraction is typical of software that has undergone relatively minor modifications, not 
of software that has been wholly re-engineered (Boehm 1981, 543; Boehm, Abts, 
Brown, Chulani, Clark, Horowitz et al. 2000, 28).24

It strongly appears, furthermore, that the ICL covid-19 simulator is in the pro-
cess of being re-engineered from the C ++ language to the R language. Among other 
things, this re-engineering has replaced several large segments of C ++  statistical-
methods software with what is intended to be equivalent high-level public R library 
functions. There is no publicly available documentation about how the project 
has shown, or intends to show, whether that the C ++ , and the nominally corre-
sponding R, code agree (or whether they should). It is worth noting that the public 

24  This assessment was based on manually analyzing the source code in ICL (2020b) and our experience 
with software engineering standards and practices.
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R-library curation protocol does not assign responsibility to anyone for ensuring that 
the functions in the library perform correctly or are suitable for any particular pur-
pose. This fact has direct implications for the reliability of the re-engineered product 
(which might, but not because of any binding legal reason, be more reliable than the 
original).

5.1.5 � Test phase

This phase determines whether the product generated in the Implementation phase 
(Sect.  2.5) satisfies all requirements allocated to the software. Testing is typically 
performed at various software-build levels. There is no publicly accessible Test 
Plan, Test Report, or official Regression Test for ICL (2020b). (ICL (2020b) does 
contain some test files, but what quality-control role those files are intended to sup-
port is not identified in ICL (2020b)). Eglen 2020 reports the results of porting, 
without modification, the source code in ICL (2020b) to two small supercomput-
ing platforms. Using test files provided by the ICL covid-19 simulator team (it is 
not clear these are the test files included in ICL (2020b)), the ported code produced 
results that were the “same” as the results of some tables in ICL 2020b (“Report 
9”). It should be noted, as Eglen 2020 does, that these demonstrations show nothing 
about the correctness of ICL (2020b).

5.1.6 � Maintenance phase

This phase iterates the phases described in Sects.  5.1.1–5.1.5 after the product is 
deployed, as needed. Maintenance policies and procedures are documented in a 
Maintenance Manual.

There is no publicly accessible Maintenance Manual for ICL (2020b).
In summary, ICL (2020b) was not developed in accordance with the requirements 

of ISO 2017, or any comparable software-engineering-practice standard, tailored 
for high-reliability/safety–critical applications. As noted above there is compelling 
empirical evidence that failing to adhere to such a standard typically leads to at least 
an order of magnitude higher frequency of errors than if standards like ISO 2017 
were followed (Boehm 1981, 381–386).

6 � Discussion and conclusions

Evaluating, understanding, and controlling the quality of, software used in epi-
demiological simulations requires us to address a complex of interdependent 
normative and technical questions. In this paper, we have explained that epide-
miological simulators are de facto integral to epidemiological policy making. 
Justifiable policy-making in epidemiological crises such as the current COVID-
19 pandemic involves trades among diverse values. Some of these values, such 
as tradeoffs between the rights of children and the rights of the elderly, lie out-
side the scope of epidemiology proper. Some of the values, including the need to 
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assess the objective effects of various interventions, clearly lie within the scope 
of traditional epistemology. Furthermore, normative considerations play a role in 
determining what counts as an epidemic and what counts as an acceptable form 
of public health intervention.

Our analysis began by reviewing some recent work on the role of computation 
in philosophy of epidemiology. We then highlighted relevant research on the epis-
temology of computational modeling and simulation. From there, we described 
a consensus framework for software engineering that has developed over the 
past four decades in the software engineering community. The purpose of this 
framework is to provide a principled approach to balancing development cost and 
schedule against the possible harms of using software in high-risk venues. Within 
that framework, we evaluated the publicly accessible simulator archive of the 
Imperial College London (ICL) covid-19 simulator (ICL 2020b). Our assessment 
shows that ICL (2020b) does not satisfy the standards for safety–critical software 
identified above (ISO 2017).

We have explained why the norms from high-risk engineering contexts should 
be adopted in epidemiological contexts that have direct and significant public pol-
icy implications. In all projects of this kind, we urge teams to adopt methods that 
support transparency, explainability, and reproducibility within the framework 
of consensus safety–critical software engineering standards. We urge journals 
and funding agencies to require that published results include access to a base-
line instance of relevant software along with all the relevant documentation in 
order to ensure reproducibility and transparency. More specifically, we contend 
that epidemiological simulators should be engineered and evaluated within the 
framework of safety–critical standards developed by consensus of the software 
engineering community (ISO 2017, tailored for safety–critical applications).

This analysis serves as the basis for our recommendations for software engi-
neering standards for future epidemiological modeling projects. Furthermore, we 
recommend that these standards be mandated by funding agencies for epidemio-
logical contexts that have direct and significant public policy implications.
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