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Abstract 
Purpose Eastern Africa has a complex hydroclimate and socio-economic context, making it vulnerable to climate change-
induced hydrological extremes. This review presents recent research on drivers and typologies of extremes across different 
geographies and highlights challenges and improvements in forecasting hydrological extremes at various timescales.
Recent Findings Droughts and floods remain the major challenges of the region. Recently, frequent alterations between 
droughts and floods have been a common occurrence and concern. Research underlines the heterogeneity of extremes and the 
impact of climate change as increased intensity and duration of extremes. Moreover, the importance of local and antecedent 
conditions in changing the characteristics of extremes is emphasized.
Summary A better understanding of these drivers and how they interact is required. Observational and modeling tools must 
capture these relationships and extremes on short timescales. Although there are improvements in forecasting these extremes, 
providing relevant information beyond meteorological variables requires further research.
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Introduction

Hydrologic extremes such as floods and droughts are 
becoming more frequent and severe with increased nega-
tive impacts (e.g., [1, 2]). The Intergovernmental Panel on 
Climate Change (IPCC) reports that the changing climate 
has caused a 30% increase in the frequency of extreme pre-
cipitation events globally [3]. The intensification of extreme 
precipitation at a global scale was evident in two-thirds of 
high-quality precipitation stations analyzed by Sun et al. [4]. 
Worldwide, it is estimated that the number of people at risk 
of floods will increase from 1.2 to 1.6 billion from 2010 to 
2050 [5]. Moreover, Naumann et al. [6] showed that two-
thirds of the global population will experience a progressive 
increase in drought conditions with global warming.

The context for these changing hydrologic extremes is a vari-
able and changing climate. Global average surface temperatures 

have risen by 1.1 °C since the late nineteenth century [3, 7, 8], 
mainly due to anthropogenic climate change. According to the 
World Meteorological Organization (WMO), the warmest years 
on record have occurred since 2015, with the top three warmest 
years being 2016, 2019, and 2020 [9]. Changes in atmospheric 
circulation patterns have been observed, including changes in 
the strength and frequency of wind systems that, in turn, influ-
ence storm intensity and distribution [3, 10, 11]. The El Niño-
Southern Oscillation (ENSO) has a significant influence on the 
global atmospheric circulation. An extreme El Niño event (warm 
phase) occurred in 2015–2016, while 2020–2022 experienced 
unusually consecutive La Nina years (cold phase). These events 
contributed to high global temperatures during 2013–2022 with 
a 1.14 °C increase in global temperature above the pre-industrial 
baseline [9]. Different parts of the globe experienced floods and 
droughts associated with these events. For instance, [12] showed 
the triple-dip La Nina’s contribution to Pakistan’s flooding and 
droughts in southern China, while the Horn of Africa experi-
enced multi-season droughts during this period [13•].

Hydrologic extreme events have overwhelming impacts 
on vulnerable and low-income communities that are already 
at risk due to their weak socioeconomic status, low adaptive 
capacity, and current and future high population growth 
[14–16]. The East Africa region is one of these vulnerable 
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areas exposed to water-related disasters, both floods and 
droughts [13•, 17, 18]. Understanding the impacts of the 
changing climate on hydrologic extremes is useful for adap-
tation planning and protecting communities and the envi-
ronment for current and future generations [15, 16].

This review paper presents progress and current themes 
in research of hydrologic extremes through the lens of East 
Africa and its complex climate, hydrological, and data 
context and attempts to answer the following questions:

• What kind of hazards, or multi-hazard events, are becom-
ing common drivers of hydrologic extremes?

• Is there improvement in forecasting and projecting hydro-
logical extremes in short and long timeframes?

This paper used a narrative review approach using pub-
lications within the last five years related to the research 
questions raised above. The next section describes the 
East African region, followed by an overview of the state 
of research on hydrologic extremes in the East African 
region. Sections four and five answer the two research 
questions, followed by conclusions.

East Africa

This study focuses on East Africa, including Burundi, Djibouti, 
Ethiopia, Eritrea, Kenya, Rwanda, Somalia, South Sudan, 
Sudan, Tanzania, and Uganda (Fig. 1). The region has a diverse 

climate, ranging from hot, dry regions to cooler, wetter highland 
regions, with considerable variability in seasonal rainfall [19] 
and a very complex topography. It is largely influenced by large-
scale seasonal atmospheric patterns and the warm waters of the 
Indian Ocean [16] and Atlantic Ocean [20–22]. The rainfall is 
characterized by an unimodal cycle with a wet season from July 
to September (JAS) for the northern parts of the region within 
the Nile basin (Ethiopia, Sudan) [23] and a bimodal annual cycle 
in the rest of the region, featuring long rains from March to May 
(MAM) and the short rains from October to December (OND) 
[11]. The extreme rainfall magnitudes differ geographically as 
can be seen from Fig. 1 based on the last decade’s (2013–2022) 
 95th percentile rainfall. This region’s economy mainly depends 
on agriculture, with a large percentage of the population relying 
on subsistence rain-fed agriculture and pastoralism. The frequent 
occurrence of hydrological extremes, like droughts and floods, 
harms the already vulnerable population suffering from severe 
poverty and economic turmoil [14]. Food and water insecurity, 
conflict, and migration are some of the dire implications of 
climate change on the region’s population, leading to massive 
humanitarian needs.

Geographical heterogeneity of climate 
change impacts

As climate change is a complex phenomenon, different 
geographic regions may experience varying patterns 
and magnitudes of change with effects that differ across 

Fig. 1  Location map of the Eastern African countries and extreme rainfall defined as the  95th percentile of rainfall during the last decade, 2013–
2022. Data source: CHIRPS v2.0 rainfall
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regions [24]. Although global-scale drivers of change in 
rainfall and temperature might be similar, their local reali-
zations are heterogeneous. The translation and modulation 
of large-scale change and variability to local hydrological 
extremes are critical in understanding disaster risk prepar-
edness and adaptation strategies.

The Eastern African region experiences the impacts of 
climate change in different forms. For instance, below-
average rainfall occurred for six consecutive rainy seasons 
in the Horn of Africa during the period 2020–2023 [25] 
leading to the third longest and most widespread drought 
on record [26] with dire implications for food security. 
Conversely, other parts experienced extreme floods, e.g., 
the 2020 floods in Ethiopia, Rwanda, Kenya, Burundi, 
and Uganda, and the 2022 floods in South Sudan [16, 18, 
27, 28]. However, the impacts of the “triple-dip” La Nina 
[27] related event during 2020–2022 were felt differently 
across the region as La Nina is correlated with drought in 
the Horn of Africa [13•] and in the eastern bimodal areas 
of Ethiopia and higher rain rates in the unimodal western 
areas of Ethiopia [22, 29].

Rainfall

Looking at historical rainfall extreme trends, Gebrechorkos 
et al. [30] showed that the number of consecutive wet days 
decreased statistically significantly in western Ethio-
pia, eastern Kenya, and some parts of Tanzania based on 
data from 1981 to 2016. Moreover, consecutive dry days 
increased considerably by up to 150 days in some parts of 
Eastern Ethiopia, Kenya, and Tanzania for the same period. 
Due to very low rainfall in the most critical rainfall season 
of JAS, the drought in 2015 impacted millions of people 
in Ethiopia, reported to be the worst in five decades [31], 
corresponding to the exceptionally strong El Niño event. 
On the other hand, the 2019 OND rainy season across 
East Africa was one of the wettest seasons on record, with 
several locations receiving more than double the climato-
logical rainfall, leading to floods [11, 32]. This occurred 
during an anomalously positive phase of the Indian Ocean 
Dipole (IOD) but neutral ENSO conditions [32]. In August 
2019, Sudan experienced exceptional wet conditions where 
most parts of the country received a high proportion of 
their August rain in a two-day storm [33]. The Lake Vic-
toria basin, which encompasses Burundi, Kenya, Rwanda, 
Tanzania, and Uganda, experienced extensive floods in 
2019–2020 and anomalous drought conditions in early 
2022 [34]. In 2023, Ethiopia experienced anomalously 
high rainfall in March and April, which is abnormal for 
a secondary rainy season in the country, and low rainfall 
in the primary rainfall season in July and August, show-
ing shifts in rainfall occurrences. These recent events are 

a testament to the geographical heterogeneity of rainfall 
extreme occurrences.

Large‑scale drivers

This heterogeneity in extremes is due to cascading com-
plexity in the interactions of large-scale to localized driv-
ers. Rainfall variability over Eastern Africa is attributed 
to variability in tropical Pacific Sea Surface Temperatures 
(SSTs) through the ENSO and the Pacific Decadal Oscilla-
tion (PDO) [11]. ENSO is associated with interannual vari-
ability in rainfall with heterogeneous correlations across the 
region. Slower modes of variability like the PDO can lead 
to the Pacific SST gradients that favor the La Nina phase of 
ENSO, which is associated with droughts in the bimodal 
zones of East Africa and flooding in the dominant JAS sea-
son in Ethiopia [35]. The IOD is an extremely important 
driver of rainfall variability in East Africa and can intensify 
the effect of ENSO conditions. For instance, positive IOD 
and El Nino conditions can cause high rainfall and flood-
ing in the OND season due to their collective weakening 
impact on the Walker circulation. However, moisture flows 
and convergence (or divergence) have a substantial effect 
on rainfall variability [11]. The Congo Air Boundary [36] 
is an important feature that defines the convergence between 
westerlies of Atlantic origin and easterlies from the Indian 
Ocean. It is gaining more attention as a driver of rainfall 
variability from Ethiopia to South Africa, influenced by the 
Atlantic and Indian Ocean variability and moisture. Moreo-
ver, the Madden–Julian Oscillation (MJO) associated with 
eastward propagating low-level wind and convection anoma-
lies [37] impacts coastal and inland areas differently at an 
intra-seasonal scale, which means that rainfall anomalies 
within Kenya, for example, can be out of phase [18, 38]. The 
combined impact of and feedback between these drivers of 
variability signify that the conditions for rainfall extremes 
can be compounded across timescales in ways that can be 
challenging but crucial to predict so that the impacts of 
hydrological extremes can be managed effectively.

Antecedent conditions

Another player in the heterogeneity of extremes and their 
impacts are antecedent conditions that are more frequently 
linked to impacts of extreme flood and drought. The nature and 
importance of these antecedent conditions also have different 
characteristics at different timescales [39], potentially adding 
important information that can be used to adapt to hydrologi-
cal extremes. Woldemeskel and Sharma [40] have suggested 
an antecedent precipitation index to highlight the importance 
of moisture conditions before extreme rainfall in the modula-
tion of floods and that this is an important part of the climate 
change story for flooding and droughts. The heterogeneity of 
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land surface conditions also suggests that examining the devel-
opment of extremes like droughts must be done in both time 
and space [41]. Along with rainfall and temperature changes 
at the local and regional scale, the land-surface context has a 
role in the heterogeneity of hydrological extremes.

Typology of common extremes

The Eastern African region experiences diverse forms of 
hydrologic extremes. The list below includes some basic 
definitions used to describe event types.

• Riverine flood: An overflow of water that inundates a 
normally dry area caused by rising water from a river, 
stream, or drainage ditch. Flooding can be caused by 
anomalous and prolonged rainfall, and it may last days 
or weeks [42].

• Flash flood: A flood caused by heavy or excessive rainfall 
in a short period, also influenced by infiltration capacity. 
They can occur relatively quickly after rainfall events [43].

• Drought: An event characterized by below-average pre-
cipitation, which can last for months or years and develop 
slowly and is a complex natural hazard. There are dif-
ferent types of droughts, including meteorological, agri-
cultural, and hydrological. Hydrological droughts result 
from a lack of water in the hydrological system, manifest-
ing abnormally low streamflow in rivers and unusually 
low levels in lakes, reservoirs, and groundwater [44].

• Flash drought: Droughts that arise rapidly and change condi-
tions from “normal” to problematically dry in weeks [45].

• Dry spell: A dry spell was first defined as a period of at 
least 15 consecutive days with no day receiving ≥ 1.0 
mm of precipitation [46]. Paton [47] puts the plainest 
meaning of a dry spell in a physical sense as a string of 
consecutive days with zero rainfall. The minimum num-
ber of consecutive dry days required to define a dry spell 
depends on local context and application. This is also the 
case for prolonged dry spell days. However, prolonged 
dry spells are less severe than drought.

Viewing these extreme events as compound events pro-
vides a framework that can help to break down the different 
drivers of extremes and the relative severity of their impacts 
[48, 49]. Understanding the drivers of these extreme typolo-
gies is crucial to understanding how they might change in the 
future. As some research suggests, concurrent extremes (e.g., 
flooding and extreme heat or droughts and heatwaves) will 
become the norm rather than the exception in East Africa 
[50]. Examples from other regions and types of extremes 
include research on conditional concurrent extremes in vari-
ables like wind and precipitation [51] and humid heat waves 
[52]. Ward et al. [1] argue that most research on hydrological 

risks tends to focus on either flood risk or drought risk. How-
ever, floods and droughts are extremes of the same hydro-
logical cycle and must be considered together. Indeed, where 
successive extreme events occur, such as flooding followed 
by drought conditions, one extreme event might create the 
antecedent conditions for a subsequent event, which will 
have a much different impact than if they occurred in more 
neutral conditions. Prioritizing a compound framework that 
incorporates such antecedent conditions will be useful to 
better understand impacts along with drivers.

Droughts

In Eastern African countries, drought is a widespread and per-
sistent problem in the region [53, 54]. Haile et al. [55] summa-
rized that around 100 drought episodes have been recorded in 
East Africa since the 1970s. In contrast, drought has occurred 
every three years since 2005, with a drought event extending 
over two or more rainy seasons at times. The most common 
drought conditions in recent years have been reported due to 
very low MAM rainfall in most East African countries [55, 
56]. It affects agricultural, pastoral, and agro-pastoral commu-
nities in southern Ethiopia, northeastern Kenya, and most low-
land areas of Somalia. Some parts of East Africa are known for 
persistent drought conditions, e.g., the Horn of Africa [13•]. 
Other parts of East Africa experience shorter period droughts 
that range in 2–6-year cycles [57].

Most research activities in the region focus on meteoro-
logical drought, and there is limited understanding of how 
this meteorological drought translates to hydrological and 
agricultural droughts. In terms of forecasts, there are several 
regional institutions, such as the Intergovernmental Author-
ity on Development (IGAD) Climate Prediction and Appli-
cations Centre (ICPAC) and Nile Basin Initiative (NBI), that 
provide drought forecasts and early warning information [58, 
59]. However, translating these forecasts to the most criti-
cal impacts on local agriculture and hydrological variables 
requires further research. Studies that attempted to show the 
effect of drought on streamflow from a future projection per-
spective are limited (e.g., [60, 61]). At the same time, there are 
several climate change impact studies on meteorological vari-
ables and average flow conditions. A recent study by Odongo 
et al. [62] found that the wet western areas of the Horn of 
Africa have a precipitation accumulation period of about 1–4 
months, while in the dryland regions, about 5–7 months of 
precipitation accumulation can guide forecasting and manage-
ment of droughts. Such research helps translate meteorologi-
cal drought to relevant sectors of hydrology and agriculture.

Floods

Floods in Eastern African countries are hydrologi-
cal extremes that result in loss and damage of lives and 
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property [2]. Reported examples include flood damages in 
African cities [63], regional floods [29], and flood fatalities 
[64]. Most flood research is hindered by a lack of observa-
tion of long-term streamflow extremes [65], and this is more 
so in data-scarce regions such as the Eastern African coun-
tries. Using hydrological and hydrodynamic models, the 
Eastern Nile flood forecasting system uses satellite prod-
ucts to simulate streamflow forecasts at selected locations 
[59]. This is a common modeling approach implemented 
in such data-limited conditions. The other possibility is 
looking at the changes in the antecedent conditions before 
rainfall, as demonstrated by Woldemeskel and Sharma [40]. 
They noted that in some large catchments, increased wet-
ness leads to higher floods when antecedent wetness is the 
main flood-causing factor, whereas, in small catchments, 
increased extreme daily rainfall will cause higher floods. 
For example, in Kenya’s Nzoia River, both heavy and high 
antecedent rainfall were identified as critical drivers of 
flooding [29]. As described above, one key point is under-
standing the large-scale drivers that influence drought or 
flood-prone conditions and whether these are prolonged or 
whether there is a relatively immediate oscillation between 
these conditions. Omondi and Lin [57] have highlighted the 
importance of a 2–6-year interannual cycle in East Africa 
and related this to ENSO. Also, there have been long-term 
changes in the Standard Precipitation Evapotranspiration 
Index in the twentieth century that highlight how changes 
to these oscillations and oscillations on longer timescales 
can impact conditions in which extremes can occur. For 
instance, the prevalence of two-year La Nina events has 
been highlighted as a relatively predictable feature [13•]. 
Similarly, research suggests that multi-year La Nina events 
(longer than two years) tend to be preceded by a strong El 
Nino event in both observations and climate models [66]. 
Even though there is some encouraging predictability for 
forecasting such events, there are complex interactions that 
can contribute to characteristics of these large-scale condi-
tions [67] and they are modulated by long-term changes 
in temperature and local conditions on shorter timescales. 
Some studies have shown an increase in ENSO SST vari-
ability, but the strength of the consensus on this increasing 
change among studies may be sensitive to the model genera-
tions used and to the length of periods used in the analy-
sis [68]. For instance, observations in the last two decades 
have shown a decrease in variability; however, this period 
is sensitive to the phase of decadal-scale oscillations [68]. 
This change in variability is associated with an increase in 
extreme El Nino and La Nina events and an increase in fluc-
tuation between extreme El Nino and La Nina events [69]. 
Unfortunately, future projections of ENSO characteristics 
are fraught with uncertainties, and changes to characteristic 
teleconnections are no different [70]. East Africa has been 
shown as a potential hotspot for increased low-intensity 

precipitation reversal under the high-emissions scenario 
using the Community Earth System Model large ensem-
ble. However, some areas of East Africa are also at risk of 
becoming hotspots for precipitation whiplash or extreme 
reversals between drought and pluvial conditions [71].

Flash floods and flash droughts

Getting to grips with these reversals requires a good under-
standing of events that occur on short timescales and can 
include both river and flash flooding events as well as flash 
droughts. Flash droughts, explained as droughts that arise 
rapidly and change conditions from “normal” to problemati-
cally dry in a matter of weeks, are increasing in frequency 
due to global temperature increase [45]. Such sudden onset 
and rapid intensification of droughts are challenging for 
drought early warning [72] and may have dire implications 
for areas dependent on crop production. Christian et al. 
[73] showed increasing flash drought risk in croplands at 
the global scale. However, there is limited information on 
whether there is an increase in flash droughts in the Eastern 
African region. Nevertheless, the concept that faster-onset 
droughts in a warmer future will be common [74] might be 
an important aspect to be investigated in the region in rela-
tion to adaptation to climate change.

Flash flooding is increasing in different parts of Eastern 
African countries due to human-induced climate change and 
land use modifications in rural and urban settings. Two types 
of flash floods, riverine flash floods, and storm flash floods 
are common in the Eastern Nile region [58]. The classic 
example of frequent flash floods in Ethiopia occurs in Dire 
Dawa town [75, 76], while the Dodoma region in central 
Tanzania is susceptible to flash floods every year [77]. Urban 
cities such as Addis Ababa are experiencing increased flash 
flooding during rainy seasons that disrupt transportation, in 
addition to causing damage to infrastructure and loss of lives 
and properties [78]. Rural areas are also prone to flash flood-
ing, including arid areas such as Turkana in Kenya, where 
drought is hard to measure as conditions are persistently 
dry but punctuated by extreme flash flooding [79]. Flash 
floods occur very quickly; thus, observing flash floods is 
a challenge in gauging sparse areas because of their short 
timescales relative to satellite overpasses if one wants to 
use remotely sensed products. Their prediction and man-
agement are similarly difficult. The Weather Research and 
Forecasting (WRF) model is commonly used to simulate 
heavy precipitation events and riverine floods in different 
parts of Eastern Africa [58, 79]. However, the use of this 
model is limited in forecasting flash floods. Research in the 
areas of better early warning systems, flood forecasts, flood 
protection measures, and improved catchment conservation 
approaches is needed to avoid the negative consequences of 
flash floods.
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Challenges and advancements in forecasting 
hydroclimatic extremes

A key to reducing the impacts of hydroclimatic extremes 
is to be able to anticipate when, where, and how much pre-
cipitation will fall and generate streamflow or lack thereof 
[65, 80]. Producing such forecasts has only become possi-
ble in recent years due to the integration of meteorological 
and hydrological modeling capabilities, improvements in 
data, satellite observations, and increased computer power 
[81–83]. Satellite- and radar-based monitoring provides 
near-real-time climate data with high spatiotemporal reso-
lutions [84, 85]. Several statistical and diagnostic tools are 
available to preprocess and assess estimates, significance 
tests, and the likelihood of hydroclimatic extreme events 
(e.g., [82, 86–88]. There are significant advancements on a 
global scale. However, the application of these approaches 
in the Eastern African region is challenged by different fac-
tors. For instance, hydroclimatic extremes prediction and 
assessment are challenged by limited data availability, pro-
cess understanding, modeling and prediction methods, and 
definition of extreme events that can affect the outcome of 
extreme value analysis [65, 89, 90].

Seasonal forecasts and forecasts with lead time of days 
are usually used in flood early warning systems. Recently, 
a system that forecasts riverine flooding and provides early 
warning called Flood-PROOFS East Africa is operational 
for the Greater Horn of Africa with a forecast range of 5 
days supporting the African Union Commission and the 
Intergovernmental Authority on Development (IGAD) 
Disaster Operation Center [91]. ICPAC provides region-
wide climate forecasting and early warning at different 
timescales, from weekly to seasonal forecasts primar-
ily focusing on precipitation and temperature. Recent 
advancement in predicting droughts is reported by Funk 
et al. [92•] who stated how climate change interaction 
with La Nina events are producing extreme but predictable 
Pacific SST gradients, leading to the possibility of drought 
prediction with a lead time of eight months. Improved 
sub-seasonal to seasonal forecasts are facilitated by a bet-
ter mechanistic understanding of dynamical model skill 
of relevant drivers’ variability and by co-producing these 
forecasts with users as demonstrated in the African Sci-
ence for Weather Information and Forecasting Techniques 
(SWIFT) project [93, 94]. Advancements in the accessibil-
ity of forecasts through systems such as Next Generation 
(NextGen) and the Python Climate Predictability Tool 
(PyCPT) tool also support the expanded use of dynamical 
forecasts at relevant timescales in East Africa [95]. Such 
advancements are important in providing relevant infor-
mation for decision-makers and communities to increase 
preparedness for hydrological extremes.

Forecasting beyond meteorological variables on hydro-
logical and agricultural relevant variables is still in the early 
stages. One such development is being piloted in Africa by 
Tropical Applications of Meteorology using Satellite data 
and ground-based observations: Agricultural Early Warning 
System (TAMSAT-ALERT) provides reliable forecasts of 
soil moisture conditions at timescales from weeks to months 
to inform germination up to crop yield [96]. It is done by 
using meteorological variables to drive a land surface model. 
Forecasting drought conditions using machine learning for 
vegetation health with the Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite information has also 
been trailed over Kenya, showing that forecast information 
might be diversified without developing complex mechanis-
tic models [97]. Nakalembe [98] argues that urgent invest-
ment is needed in Sub-Saharan African countries in earth 
observation-based systems to support agricultural early 
warning and monitoring for this to materialize.

Scope of climate model projections

At the climate change time scale, limited publications for 
East Africa evaluate the projected future impacts of climate 
change on hydrological extremes. Most climate change 
impact research outputs focus on the mean hydrological 
conditions. There is consistency in the increasing trend of 
temperature rise in all scenarios, climate models, and time 
periods until the end of the twenty-first century. However, 
there are significant differences in the precipitation projec-
tions depending on the climate model, selected scenario, and 
future horizon [17, 30, 61]. A critical issue in East Africa is 
that models project a wide range of precipitation futures for 
the region and these coupled models have predicted increas-
ing rainfall in the historical MAM season when observations 
showed decreasing rainfall [99, 100]. This highlights that the 
first step in projecting future hydrologic extremes in East 
Africa is fraught with uncertainty due to how models cap-
ture key atmospheric processes or coupling between SSTs, 
regional climate [101], and local conditions.

These differences also translate to unclear projections 
on hydrological extremes that are usually expressed as high 
flows and low flows or the  95th and  5th percentiles. Gen-
erally, climate change impact assessment on hydrologi-
cal extremes involves a chain of steps. Typically, one has 
to choose climate models, future scenarios, downscaling 
methods, hydrological models, calibration parameters, and 
the selection of appropriate extreme indices. Each step has 
uncertainties related to the choices made [102, 103•, 104]. 
Making choices in these tools and methods based on pro-
cesses and contextual applicability rather than convention 
or convenience is critical. Selecting climate models based 
on their performance on a range of metrics is not enough, 
ensuring that key physical processes are captured is critical 
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[101]. Downscaling methods for future projections range 
from dynamic to statistical, but in both cases, assumptions 
and methods should be addressed and evaluated before 
application, especially in the case of extremes [105]. Simi-
larly, choosing hydrologic models should consider appro-
priate catchment characteristics to adequately capture the 
influence of temperature or land surface changes [106].

Conclusions

Research on hydrologic extremes in East Africa has heav-
ily focused on quantifying the characteristics of historical 
events to understand future extremes in a changing climate. 
Hydrologic extremes in East Africa include a host of event 
typologies that challenge planning and disaster risk manage-
ment: oscillation between droughts and floods, seesawing 
between chronically wet and dry periods, and fluctuations 
between short-term flash flooding and extreme drought.

Many studies report contradictory changes to hydrologic 
extremes over time for a given location or basin at historical 
timescales (e.g., [22, 102]). There is a general sentiment 
that those changes are linked to climate change. However, 
the impact of choices on data type (gauge observed data, 
satellite, reanalysis), the period used for the analysis, and 
the possibility of natural variations or changes due to human 
factors are not usually fully explored. Therefore, there is a 
lack of information on the attribution of obtained trends to 
historical climate change, natural variability, or other factors 
related to land use change and human interventions. These 
aspects are potential areas for further research.

A key feature highlighted by research on hydrologic 
extremes in the region is the heterogeneous distribution 
of extremes experienced in space and time. For instance, 
El Nino can cause droughts in one part of the region and 
floods in the other. This is also a common situation within a 
country, e.g., in Ethiopia. The recent years with consecutive 
droughts followed by floods are a testament to the need to 
better forecast these kinds of events and their impacts.

To better model, predict, and manage hydrologic 
extremes, a better understanding of their drivers is required. 
This necessitates that studies go beyond focusing on rain-
fall and temperature and include other variables and param-
eters, such as soil moisture, vegetation, and evaporation, in 
their assessments. This will also require research focusing 
on antecedent conditions and oscillations between drought 
and flood conditions at various timescales. Taking a multi-
variate, multi-driver, or compound event approach is neces-
sary to understand the impacts of changing baseline con-
ditions. Understanding these mechanisms is essential to 
improve projections of events. For instance, reducing the 
uncertainty in projections of future change of key large-scale 
drivers such as ENSO is important. This is in terms of a 

better understanding of regionalized teleconnections and 
how climate models project these changes.

The tools required to quantify and measure hydrologic 
extremes and their drivers are undergoing continuous 
development, and forecasting such extremes will remain 
an important part of adapting to climate change. There has 
been a lot of progress on tools to measure and model hydro-
logic extremes. Still, some key areas require further effort, 
including measuring and forecasting intra-seasonal extremes 
like flash floods and droughts and combining dynamical and 
process-based modeling with new statistical and machine 
learning techniques.

In a changing climate, risk-based decision-making is 
becoming more relevant. At seasonal scales, providing infor-
mation on hydrological and agricultural relevant variables 
beyond the standard meteorological variables is important 
for practical decisions. Currently, limited efforts are there 
to translate climate information into water availability and 
operational water management practices such as irrigation 
scheduling and dam operations. The challenge for policy-
makers and water managers is to make sound decisions in 
the face of uncertainty [100]. For strategic-level decisions 
that require climate change timescale projections, several 
improvements are required from climate models’ representa-
tion of the region’s climate to monitoring hydrological vari-
ables and improvements in the types of hydrological models 
used for such long-range projections. Studies that reduce the 
uncertainty in the chain of assessing climate change’s impact 
on hydrological extremes are encouraged to boost policy-
makers’ confidence in scientific data, tools, and information.

Managing changing extremes will require a multi-
disciplinary and, ideally, transdisciplinary approach to 
understanding the complex drivers of extremes. Hence, 
sustained co-production of information among meteorolo-
gists, hydrologists, decision-makers, and local stakeholders 
is required to develop more relevant and useful metrics and 
responses to hydrological extremes. This will also drive new 
and more locally relevant physical research programs. Phys-
ical research can drive better preparedness and responses 
to expected hydrological extremes due to climate change, 
although there are factors driving the impacts of extremes 
that are not only physical. These include the complex socio-
political setting of the Eastern African countries, their insti-
tutional set-ups, relationships among different levels of gov-
ernment, and resource limitations. There is also a need to 
understand differences in rural and urban settings as well as 
the socio-economic differences of communities in terms of 
adapting to the expected changes.

Finally, although there are advancements in tools and data 
pertaining to climate variables, the impact on hydrological 
extremes is still unclear. Moreover, there is a disconnect 
between information generated from the research commu-
nity and how that can be translated into practical changes 
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on the ground in terms of practices on better water manage-
ment, disaster risk prevention, and improving livelihoods. 
This will be an important pathway for future research for 
the development sector in addition to improving our knowl-
edge of which extremes are becoming more extreme and 
how their spatial and temporal distributions are changing.
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