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Abstract How sensitive the climate system is to the atmo-
spheric concentration of CO2 is one of the most important
and long-standing questions in climate science. This prob-
lem is well-suited to the Bayesian approach. Early estimates
were highly uncertain, but recent research appears to show
some convergence with both high and low values excluded
with increasing confidence. There is, however, increasing
evidence that many of these estimates ignore some sig-
nificant sources of uncertainty, correctly accounting for
which would probably broaden the estimates somewhat.
Conversely, different lines of evidence tend to generate con-
sistent results, and it should be possible to synthesise these
so as to decrease our uncertainties.
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Introduction

The equilibrium climate sensitivity (henceforth S) is a fun-
damental parameter in determining the long-term response
of the climate system to the anthropogenically induced
increase in atmospheric CO2 concentration. It is a first-
order determinant of the carbon budget implied by the
UNFCCC “dangerous” 2 ◦C warming threshold that society
has committed to not exceeding [8] and more generally is
one of the principal parameters by which we understand the
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behaviour of the climate system. Thus, it has long been an
important topic of research, and it has featured prominently
in [9] and the subsequent IPCC Assessment Reports. Here,
I review recent developments in Bayesian methods and
applications for the estimation of S and discuss prospects
for future progress. In Section “Subjective and Objective
Approaches to the Bayesian Paradigm”, I introduce the topic
of Bayesian probability and discuss recent results using both
subjective and objective approaches to estimate S. I then dis-
cuss some recent evidence in Section “Model Inadequacy”
which points to important limitations of these estimates. In
Section “Combining Multiple Constraints”, I consider the
potential for combining estimates which arise from differ-
ent lines of evidence into an overall synthesis, and finally,
in Section “Constraints on Shape and Tails of pdfs”, I dis-
cuss how well we can constrain the probability of very
high sensitivity, sometimes referred to as the problem of the
“fat tail”.

Subjective and Objective Approaches
to the Bayesian Paradigm

The Bayesian paradigm applies the methods and language
of probability to describe uncertainties concerning the real
world. The climate sensitivity is not intrinsically a random
parameter, rather it is fixed but its value is unknown to
us, and thus, it is a suitable subject for such a treatment.
Although linguistic imprecision can occasionally be found
in the literature, uncertainty regarding S is not a property
of the real world (i.e. “the probability of high/low sensi-
tivity”) but rather under the subjective Bayesian paradigm,
the uncertainty attaches to the researcher (“my/our proba-
bility for high/low sensitivity”). The Bayesian paradigm has
long been popular in the estimation of S (e.g. [10, 31]) and
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continues to feature strongly in recent research [17, 26, 30,
33]. Probabilities are typically presented in the form of a
probability density function (pdf) which can easily be inter-
preted in a variety of ways such as credible intervals or
probability of exceeding a threshold. By far, the most com-
mon application of the Bayesian approach for estimating the
equilibrium climate sensitivity (including all papers cited
above) is in the interpretation of the warming during the
observational period, roughly the twentieth century, though
it is now usual to use what data are available from the late
nineteenth and of course early twenty-first centuries.

A powerful argument in support of the Bayesian
paradigm for interpreting uncertainty comes from decision
theory: any admissible decision rule (where “admissible”
means that no decision rule can be found which is better
in all circumstances) can be viewed as the minimisation of
expected loss under a Bayesian posterior (e.g. Chapter 8 of
[27]). Thus, if we wish to make admissible decisions, we
have little alternative but to implement a de facto Bayesian
approach. Note however that the application of Bayes’ The-
orem requires the specification of the “prior” P(S). There
are two main doctrines in the selection of P(S). In the
subjective Bayesian approach, P(S) represents (at least in
principle) the belief of the researcher prior to making the
observations and thus can be chosen at will. The credibility
of their posterior will of course depend on the reasonable-
ness of the prior, and it is commonplace for this to be tested
by sensitivity analyses in which a range of priors are consid-
ered. Nevertheless, the dependence on a subjectively chosen
prior is frequently a basis for criticism of the subjective
Bayesian paradigm. Alternative approaches to prior specifi-
cation have been developed under the umbrella term of the
“objective Bayesian” approach [6, 16, 18] in which prob-
ability is viewed as a rational interpretation of the data.
The goal here is to automatically determine a so-called
“non-informative” prior which maximises the influence (in
some mathematically definable manner) of a data set on the
posterior. Although in earlier work, some researchers used
uniform priors under the assumption that these represented
a minimally informative prior state, this is typically not
the case, and more recently, there has been a more sophis-
ticated application of objective Bayesian ideas in climate
science, in particular by [20, 21]. However, it is important to
remember that even a prior that satisfies particular the math-
ematical properties which are denoted by the term “non-
informative” actually does convey specific information with
direct consequences for any subsequent decision-making.
As [7] note, “There is no ‘objective’ prior that represents
ignorance” and additionally “every prior specification has
some informative posterior or predictive implications”. This
argument is explored with particular reference to climate
sensitivity in [4], who demonstrate how the historically

popular choice of uniform prior carries with it an expectation
of very high climate sensitivity and therefore extremely high
costs (in an economic analysis) due to future climate change.

The priors used by [20–22] decay strongly for high val-
ues of S, and the resulting posterior pdfs have median esti-
mates a little lower than 2 ◦C with 5–95 % credible intervals
that vary from about 1–3 to 1–4.5 ◦C. While these results
are rather lower than many of those reported earlier in the
literature (e.g. [10, 11]), they are not so dissimilar to recent
results using the subjective paradigm [1, 17, 26, 30]. These
researchers found best estimates ranging from 1.8–2.8 ◦C
and the latter two studies generated upper 95 % bounds of
3.2 ◦C. This downward shift of estimates in recent years
is likely due to a combination of several factors, includ-
ing changes in priors (which generally no longer emphasise
high values so strongly), longer time series of more accurate
data through extension into the past and/or the accumula-
tion of additional years in real time for both atmosphere
and ocean, and recent evaluation of aerosol forcing towards
lower values [24]. These data updates reduce the probability
of high sensitivity even when a uniform prior is used.

All aspects of the research involve a number of subjec-
tive decisions, so that even the most innocuous-seeming
observation is actually “theory-laden” [19]. The focus on
priors should not be allowed to overshadow the importance
of decisions made elsewhere in the process. One impor-
tant decision in the Bayesian analyses discussed here is the
choice of underlying model, which is now discussed in more
detail in the following section.

Model Inadequacy

Estimates of sensitivity using the warming throughout the
observational record typically rely on a relatively simple
model of the climate system, in which the radiative balance
is described by a zero or low-dimensional equation of the
form

�N = �F − λ × �T

in which all � terms are usually defined as anomalies
from an assumed quasi-equilibrium pre-industrial state.�N

is the total heat uptake (primarily in the ocean, which
may be modelled in a variety of ways), �F is the net
radiative forcing at the top of the atmosphere, �T is the
global mean temperature anomaly and λ is the radiative
feedback parameter. In this model, it is assumed that the
total radiative feedback can be described by a constant
feedback coefficient λ multiplied by the globally averaged
surface temperature anomaly. However, much evidence has
accumulated from model simulations that suggests that this
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may not be the case in reality. For many state of the art cli-
mate models, the “effective” feedback (that is, the value of
(�F − �N)/�T at a specific point in time) can change,
typically (though not always) decreasing in standard scenar-
ios of increasing greenhouse gas forcing [2, 5]. A decrease
in this feedback implies that the effective sensitivity early
in the warming will be lower than the equilibrium sensitiv-
ity, and this suggests that methods which use the historical
period for estimation may underestimate the true equilib-
rium sensitivity. Furthermore, the sensitivity to qualitatively
different forcings may also vary, and/or combine in nonlin-
ear ways, and there is evidence from state of the art climate
models that this is indeed the case over distant past climates
[35, 36]. While these issues are an interesting challenge for
climate science, they complicate our attempts to understand
and predict the response to greenhouse gases. They could
in principle be accounted for by using more complex cli-
mate models in the Bayesian analysis, but this would greatly
increase the computational cost and complexity of the esti-
mation process and also reduce the identifiability of the
parameters, especially since the historical period is too short
and its data too uncertain to strongly constrain any nonlinearity.
Better understanding and quantification of these nonlinearities
would seem to be an important area for future research.

Combining Multiple Constraints

A well-established lemma of probability theory is that we
always expect to learn from additional information [23].
Note that we can be unlucky in the sense that new infor-
mation can cause an increase in our uncertainty, and [12]
demonstrates some situations where observing additional
years of warming could rationally lead to an increase in
our uncertainty on S. However, prior to making an obser-
vation, our expectation is that it will lead to a reduction
of uncertainty. In light of this, it is important to consider
how to combine evidence arising from multiple sources.
The issue of combining constraints on climate sensitivity
were brought to prominence by the papers of [14] and [3],
although multiple sets of observations had already often
been implicitly assumed to provide independent constraints
in previous work [10].

In particular, as well as using the transient warming over
the modern observational period, we may consider evidence
from the paleoclimatic records such as ice cores and sedi-
mentary records [29] and also that emerging from physical
principles as embedded in state of the art climate system
models. To first order, these two additional lines of argu-
ment both point to a sensitivity around the canonical value
of 3 ◦C [9]—perhaps a little higher than estimates based on
the observational warming, but certainly highly consistent

with them—but each approach has significant uncertainties
and inbuilt assumptions. A simple but possibly naive way to
treat these estimates would be that the errors and uncertain-
ties of the different likelihoods are statistically independent.
This assumption of independence has the convenient prop-
erty that the joint likelihood will then simply be the product
of the individual likelihoods, and thus, combining the evi-
dence would be a simple matter of multiplying together the
different likelihood functions. However, this may be too
optimistic. If two analyses use the same (or even similar)
models, they may share biases due to model inadequacy and
thus an assumption of independence would not be appropri-
ate. It is also possible that the assumption of independence
is too pessimistic, with complementary observations gen-
erating a more precise result when properly handled [32].
It would be useful to analyse the inbuilt assumptions and
uncertainties of the various methods in a more clear and
formal approach which might allow a more careful and
convincing synthesis of the various lines of evidence.

Constraints on Shape and Tails of pdfs

As discussed in Section “Subjective and Objective
Approaches to the Bayesian Paradigm”, formally a pdf for
S is generally considered to be a representation of the sub-
jective belief of a researcher (in the case of “objective”
methods, it is still influenced by many subjective decisions),
and as such there can be no absolute constraints on its shape
or form. However, in practice there is widespread agreement
on what is reasonable. It has been known for many years that
observational analyses based on the modern warming period
will tend to generate distributions with long tails that decline
only slowly at high values (e.g. [4, 13, 28]). This is primar-
ily because the likelihood arising from data uncertainties
is roughly symmetric for the radiative feedback (inverse of
sensitivity) and inverting from even a Gaussian distribution
on feedback results in a highly skewed distribution for sen-
sitivity. Thus, it can be argued that any reasonable likelihood
function for S arising from observations over the twentieth
century will be essentially flat and non-zero for S above
some (high) threshold [4]. Weitzman [34] goes further than
this, arguing that a simple form of Bayesian learning will
always generate a pdf for S which is unbounded and decays
only quadratically at high values (i.e. as S−2). When this is
integrated into an economic analyses in which the negative
utility due to climate change is a rapidly escalating func-
tion of warming, then this “fat tail” implies an unbounded
loss which will always dominate our decision-making.
However, Nordhaus [25] and more recently [15] dispute
various details of the analysis and present alternative inter-
pretations with bounded cost. Whether the “fat tail” is in



266 Curr Clim Change Rep (2015) 1:263–267

principle inevitable or not, this result may be best viewed
as a (somewhat theoretical) problem with economics rather
than a fundamental difficulty in climate science. Recent
analyses based on the observational record increasingly
assign only very small probabilities to high values for the
equilibrium sensitivity (e.g. [17, 30]), so it may be rea-
sonable to conclude that this problem is largely resolved.
However, there will always be a concern that model limita-
tions mean that assessing low probability (but high impact)
events will remain largely a matter of judgement.

Conclusion

The subjective Bayesian approach is now widely utilised for
estimation of the equilibrium climate sensitivity. Progress
has been steady, although even the newest estimates can
be seen to have limitations. While estimates based on the
recent observational record are increasingly converging to
a moderate value with a best estimate rarely far from 2 to
2.5 ◦C, and a range which is confidently bounded between
about 1 and 4.5 ◦C (or less), these estimates are themselves
conditional on approximations that are now recognised to
introduce significant additional uncertainties (and perhaps
a bias) into the results. The real climate system is more
complex than any model, and the concept of an equilib-
rium sensitivity may not be precisely definable in the real
world. Therefore, there must be a limit to how accurately
this parameter can be meaningfully estimated. Neverthe-
less, there is no reason to presume we have yet reached this
limit, and it provides a useful basis for predicting the magni-
tude of future climate change. There are many opportunities
for improving our estimates, and better understanding and
quantifying our uncertainties. One area for research that has
not been explored in much detail is the possibility of synthe-
sising different lines of research, all of which inform on the
equilibrium sensitivity. Such an analysis has the potential
for generating a more precise and credible result.

Acknowledgments Thanks are due to Julia Hargreaves and three
anonymous reviewers for many helpful comments and suggestions for
the paper.

Conflict of interest The corresponding author states that he has no
conflict of interest.

References

1. Aldrin M, Holden M, Guttorp P, Skeie RB, Myhre G, Berntsen
TK. Bayesian estimation of climate sensitivity based on a simple
climate model fitted to observations of hemispheric temperatures
and global ocean heat content. Environmetrics. 2012;23(3):253–
271. doi:10.1002/env.2140.

2. Andrews T, Gregory JM, Webb MJ. The dependence of radiative
forcing and feedback on evolving patterns of surface tempera-
ture change in climate models. J Clim. 2015;28(4):1630–1648.
doi:10.1175/jcli-d-14-00545.1.

3. Annan JD, Hargreaves JC. Using multiple observationally-based
constraints to estimate climate sensitivity. Geophys Res Lett.
2006;33(L06704).

4. Annan JD, Hargreaves JC. On the generation and interpreta-
tion of probabilistic estimates of climate sensitivity. Clim Change.
doi:10.1007/s10584-009-9715-y. 2009.

5. Armour KC, Bitz CM, Roe GH. Time-varying climate sensitivity
from regional feedbacks. J Clim. 2013;26(13):4518–4534.

6. Berger J. The case for objective Bayesian analysis. Bayesian Anal.
2006;1(3):385–402.

7. Bernardo JM, Smith AFM. Bayesian theory. Chichester: Wiley;
1994.

8. Cancún Agreement. Framework convention on climate change:
report of the conference of the parties on its 16th session, held
in Cancún from 29 November to 10 December. Technical report,
FCCC/CP/2010/7/Add. 1. 2010.

9. Charney JG. Carbon dioxide and climate: a scientific assessment.
Washington: NAS; 1979.

10. Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD.
Quantifying uncertainties in climate system properties with the
use of recent climate observations. Science. 2002;295(5552):113–
117.

11. Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA,
Gregory JM, Collins M, Allen MR. Constraining climate
forecasts: the role of prior assumptions. Geophys Res Lett.
2005;32(L09702).

12. Hannart A, Ghil M, Dufresne J-L, Naveau P. Dis-
concerting learning on climate sensitivity and the uncertain
future of uncertainty. Clim Change. 2013;119(3–4):585–601.
doi:10.1007/s10584-013-0770-z.

13. Hansen J, Russel G, Lacis A, Fung I, Rind D. Climate response
times: dependence on climate sensitivity and ocean mixing. Sci-
ence. 1985;229:857–859.

14. Hegerl GC, Crowley TJ, Hyde WT, Frame DJ. Climate sensitiv-
ity constrained by temperature reconstructions over the past seven
centuries. Nature. 2006;440:1029–1032.

15. Horowitz J, Lange A. Cost–benefit analysis under uncer-
tainty — a note on Weitzman’s dismal theorem. Energy Econ.
2014;42:201–203. doi:10.1016/j.eneco.2013.12.013.

16. Jeffreys H. Theory of probability. Oxford: Oxford University
Press; 1939.

17. Johansson DJA, O’Neill BC, Tebaldi C, Häggström O. Equilib-
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