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Abstract Mangrove forests have survived a number of cata-
strophic climate events since first appearing along the shores
of the Tethys Sea during the late Cretaceous-Early Tertiary.
The existence of mangrove peat deposits worldwide attests to
past episodes of local and regional extinction, primarily in
response to abrupt, rapid rises in sea level. Occupying a harsh
margin between land and sea, most mangrove plants and as-
sociated organisms are predisposed to be either resilient or
resistant to most environmental change. Based on the most
recent Intergovernmental Panel on Climate Change (IPCC)
forecasts, mangrove forests along arid coasts, in subsiding
river deltas, and on many islands are predicted to decline in
area, structural complexity, and/or in functionality, but man-
groves will continue to expand polewards. It is highly likely
that they will survive into the foreseeable future as sea level,
global temperatures, and atmospheric CO, concentrations
continue to rise.

Keywords Climate change - Ecological impacts -
Greenhouse - Predictions - Mangroves - Sea level rise -
Tropics

Introduction

Living at the interface between land and sea in the low lati-
tudes, mangroves are sentinels for climate change. Their in-
tertidal environment is physically and geologically dynamic,

This article is part of the Topical Collection on Ecological Impacts of
Climate Change

D. M. Alongi (<)

Australian Institute of Marine Science, PMB 3,
Townsville MC, QLD 4810, Australia

e-mail: d.alongi@aims.gov.au

@ Springer

and it is primarily these forces, within the confines of chang-
ing climatic and environmental conditions, that sculpt man-
grove ecosystems over time.

Mangroves exhibit a high degree of ecological stability and
community persistence in the face of environmental incon-
stancy. Their survival is due to a variety of key features that
in toto result in ecosystems having properties of both terres-
trial and marine biomes plus a few uniquely their own, such as
large below-ground storage and transformation rates of carbon
and nutrients; simple architecture and self-design; highly effi-
cient but complex biotic controls; species redundancy; and
multiple feedbacks which serve to either facilitate and aug-
ment recovery from, or resilience to, natural and anthropogen-
ic disturbances [1, 2].

Human impacts on mangroves, including climate change,
have received much attention of late mainly because man-
grove deforestation is occurring at a rate of 1-2 % per year,
which implies that most forests will disappear within this cen-
tury [1]. Despite high rates of destruction, mangroves still play
an important role in human sustainability and livelihoods in
developing nations where poverty is rife and population
growth is high [1]. Mangroves are important nursery grounds
and breeding sites for fish, crustaceans, birds, reptiles, mam-
mals, and many other semiterrestrial and estuarine organisms;
they help to ameliorate coastal erosion and the impacts of
extreme events, such as tsunamis and cyclones; they are a
renewable source of wood for fuel and housing, and of food
and traditional medicines; and they are biogeochemically im-
portant sites of sediment, carbon, nutrient, and contaminant
accumulation [1].

The object of this review is to critically assess the impact of
climate change on mangrove ecosystems. Sea level rise is the
main focus considering their tidal nature, but changes in tem-
perature, salinity, and rainfall patterns, and increases in green-
house gas concentrations, especially CO,, are also considered.
First, however, it is important to consider the evidence for how
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mangroves respond, and have responded, to environmental
change; their history of adaptation that will likely offer some
insight into their future.

Responses to Sea-Level Change

Mean sea levels are currently rising as a result of both thermal
expansion of ocean water due to increasing temperatures and
the melting of polar and land ice [3]. The rise in sea level is not
globally uniform as a result of water buildups in some areas,
differences in water density due to varying sea temperatures,
and the weight of ice sheets. Over geological time, as sea level
has waxed and waned in relation to alternating periods of
glaciation and warming, mangroves have had to adjust (or
not) to rises and falls in sea level.

Surface Elevation Adjustments in Relation to Sea Level

A number of local and regional short- and long-term processes
affect mangrove surface elevation relative to sea level. Eustat-
ic changes in sea level, isostatic changes, subsidence, and
changes in the subsurface volume of fluids (e.g., oil, water)
are the major long-term processes; short-term processes in-
clude accretion of fine sediment particles, litter, and algal mats
[4e¢], erosion, subsurface expansion due to root growth and
filling of soil interstices, and subsidence due to compaction
and drainage of interstitial water and microbial decomposition
[5-7].

Differences in rates of sediment accretion partly determine
how mangroves may change in relation to rates of sea level
rise [8¢]: (1) if the mangrove forest floor rises at a rate exceed-
ing the local rate of sea level rise, terrestrial plants will invade
from landwards as the mangrove forest recedes, but intertidal
flats and banks will likely accrete seawards to allow for man-
grove colonization and expansion; (2) if the rate of sediment
accretion equals the rate of sea level rise, the forest survives
and is stable during this period; and (3) if the rate of soil
accretion is slower than the rate of sea level rise, the forest
drowns seawards but invades land newly flushed by tides.
Actual changes may deviate from these scenarios due to local
morphological/topographical features (e.g., slope of the forest
floor) as well as local events, such as storms [9] and earth-
quakes [10].

Historical Evidence

Mangroves descended from terrestrial rainforest plants during
the Late Cretaceous-Early Tertiary period [11], first appearing
along the shores of the Tethys Sea. Since their evolution and
dispersal, mangroves have endured numerous climatic events
up to the present day. During the Quaternary, mangroves ex-
perienced a sea level that was 120—125 m lower than present
at the Last Glacial Maximum, with two periods of very rapid

rise (>20 m) at both 14 and 11 ky BP as a result of quite abrupt
climatic shifts during the transition from the last glacial into
the present interglacial [12].

The legacy of past responses to climatic change is reflected
in the current distribution of mangroves, but the existence of
relic pollen and peat deposits provides abundant evidence of
dramatic change over geologic time, especially in relation to
late Quaternary sea-level change [13-22]. Analysis of sedi-
ment cores for organic geochemical markers, peat deposits,
and palynological proxies indicate an overall pattern of paleo-
ecological succession of mangroves in response to changes in
sea level.

The geological record indicates that mangroves have kept
pace with rising sea level, but in regions experiencing more
rapid rise, mangroves have gone locally extinct and in some
cases been replaced by freshwater plants. A number of histor-
ical patterns have been reconstructed [18-22] all showing sig-
nificant ecological change depending on the rate of sea-level
rise and the influence of other factors, such as rates of subsi-
dence or uplift.

Deep mangrove peat deposits under existing mangroves
constitute compelling evidence that over thousands of years,
mangroves, such as in the Caribbean [6], have kept pace with
sea level rise. However, in other regions, mangrove peat lies
below Holocene sediment deposits in shallow coastal and in-
shore areas [23]. For example, mangrove peat is buried be-
neath 1-2 m of carbonate deposits within drowned river chan-
nels beneath the Great Barrier Reef. These peat deposits are
ca. 9.2 calkp BP (Fig. 1). However, very abrupt changes in the
vertical pattern of peat and carbonate deposits suggest that the
mangroves drowned fairly quickly (Fig. 1), supporting other
evidence of rapid sea-level change about 9-11 kp BP [12].
Buried mangrove peats lie in other coastal waters, such in
the Caribbean [13] and the northern Indian Ocean [23]. And
while the thicknesses of these peat deposits indicate that man-
groves were able to keep pace with the rise in sea level for
long time periods, the rate of sea level increased beyond a
critical threshold at which mangroves were not able to keep
up [8e].

Pollen records reveal a response scenario of oscillations in
mangrove succession in synchrony with changing sea level,
such as on the island of Borneo [15], on the Caribbean coast of
Colombia [16], on the Sunda Shelf in Southeast Asia [17], in
East Africa [21] and off the Galapagos [24], and tropical West
Africa [14]. Mangrove change also occurs when fluctuating
sea-level changes coincide with seismic events, resulting in
abrupt changes in mangrove succession and recovery [20,
25¢]. This pattern suggests a lowering of surface elevation
most probably by seismic activity, but perhaps further affected
by hurricanes [26] and peat collapse [8¢].

Mangroves have responded not only to sea-level change,
but also to changes in long-term shifts in temperature and
precipitation. Excellent records of such climatic shifts come
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Fig. 1 Photograph of a 1.5-m-long sediment core taken in 22 m water
depth at the Russell Island group (Latitude 17° 13.5" S, Longitude 146°
05’ E) on the Great Barrier Reef Shelf in February 2003. Note the abrupt
demarcation halfway up the core between brown mangrove peat and
more recent fine carbonate gray sand. Mangrove peat on the shelf is
typically aged at 9.3-9.1 ka BP [87]

from Oman on the Arabian Peninsula [19] and along the
southwest coast of India [22, 27].

Modern Evidence

Mangroves continue to respond to changes in sea level [8¢].
Modern responses have been well-documented during the past
50 years using a variety of techniques including time series
analysis of photos, remote sensing images, and digital terrain
models to estimate mangrove expansion or contraction [10,
28,29, 30, 31¢], as well as methods to estimate modern rates
of sediment accretion [5-7, 9, 32].

The modern evidence implies that mangrove responses to
sea level rise correspond roughly to the patterns of surface
elevation change described by Mclvor et al. [8]. For instance,
along the Pacific coast of Mexico, rise in sea level accompa-
nied by warm waters of El Nifio events have drowned man-
groves fringing the shoreline, but has resulted in a net increase
in mangroves driven inland [29]. Local variability plays a key
role in predicting whether or not mangroves of a specific re-
gion will survive or not, as local factors such as geomorphol-
ogy are important. Also, mangroves occupy a range of tidal
settings making it difficult to offer simple prognostications.
The situation is similar on the Pacific High Islands of Micro-
nesia [32] where mangrove sedimentation is sufficient to off-
set elevation losses in some locations, but not in others; low
intertidal mangroves are more susceptible to loss of elevation
and subsequent flooding than in more landward zones.
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Two coastal settings that mangroves readily inhabit but
where their future is in doubt are river deltas and low islands.
On low islands of the Pacific, such as in Samoa [33], man-
groves are migrating landward with rise in sea level, but on
many islands, landward migration is obstructed by coastal
development. There are many low islands in Micronesia and
Melanesia where sea-level rise spells local extinction for man-
groves [13]. Worldwide, other low isles are habitats without a
future, as are deltas of a number of large tropical rivers [34,
35]. The exemplar is the Sundarbans along the Indian and
Bangladesh coast, where subsidence and disappearance of
many deltaic islands is ongoing. A time series analysis
(1924-2008) indicates that subsidence, a decline in sediment
input from the Ganges and other rivers due to damming, and
rising sea level, have resulted in a dramatic decline in man-
groves on islands in the central and eastern sectors of the
Sundarbans [23, 30]. In other river deltas, sea level rise,
storms, and cyclones enhanced subsidence and declines in
sediment supply, resulting in a shift of mangroves landwards
but with a net contraction [35]. In and proximate to some river
deltas where large, migrating mud banks cyclically accrete
and erode (e.g., the Amazon), the 18.6-year nodal tidal cycle
(tidal amplitude affected by the 18.6-year lunar cycle of as-
cending and descending nodes of its orbit) is one of the main
drivers of shoreline change [36].

Experimental studies have offered some insight into how
mangroves respond individually and collectively to sea level
rise. A number of studies show species-specific tolerances to
prolonged water logging [37—40]. Common mangroves, such
as Avicennia marina, exhibit a high degree of tolerance to
water logging, but responses are highly variable in relation
to length and water depth of immersion, salinity, temperature,
and other environmental factors [41, 42].

Species-specific differences in flooding resistance may not
be the only biological response by mangroves to sea level rise
[43, 44]. A recent review by Yanez-Espinosa and Flores [45]
highlights the fact that mangroves exhibit differences in mor-
phology and anatomy in relation to environmental change. For
a large number of species, leaf anatomy, vascular vessel den-
sities, diameter, grouping and length, and fiber wall thickness
are affected by variations in salinity and flooding. Vessel den-
sity, for instance, increases in most species from low to high
salinity, from high- to low-flooding level, and from short- to
long-flooding period [45]. A few species (e.g., Avicennia
germinans, Laguncularia racemosa) have also demonstrated
modification to bark anatomy in response to prolonged
flooding, typically formation of hypertrophied lenticels, ad-
ventitious roots, and increased aerenchyma development in
the bark. Over the past 165 years, specific leaf area of
A. marina has correlated positively with atmospheric
CO, concentration and latitude, suggesting thicker,
heavier leaves in future because of net photosynthetic
carbon gain [46¢].
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Mangroves of the future may very well look and function
differently, and be denser in terms of number of individuals
per unit area [47, 48]. But, are mangrove forests keeping pace
with current rates of sea level rise? A statistical analysis
(Fig. 2) of mangrove sedimentation rates (mm year ') versus
mean sea level rise (mm year ') suggests that, on average,
accretion rates are keeping pace with sea level rise (see regres-
sion equation and line, Fig. 2). However, roughly one-half of
the data are below the 1:1 relationship (red dotted line) which
indicates that these mangroves are not keeping pace; nearly all
of these data were derived from mangroves inhabiting low
islands and coastal lagoons in the Caribbean and the Pacific,
and in subsiding river deltas, such as the Mekong [18] and the
Sundarbans [49]. Conversely, the three most rapid accretion
rates were from Chinese, Indian, and Brazilian mangroves
inhabiting highly populated and impacted catchments. The
large scatter of data points underscores how mangroves of
disparate coastal settings respond so differently to the same
rate of sea-level rise in different parts of the world. These
century-scale accretion rates derived from radionuclide distri-
butions (e.g., 2'°Pb) are unlikely to be reliable indicators of the
net result of elevation capital, the accretion rate, and water
level. Thus, although the linear regression analysis is signifi-
cant, the reality is that mangroves may respond in complex
ways to sea level rise.

Responses to Rising Atmospheric CO,

Higher CO, concentrations can enhance the growth of man-
groves, but responses are species-specific, with many species’
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Fig. 2 The relationship between measured rates of mangrove sediment
accretion (mm yearfl) and current rates of mean sea level rise
(mm year ') across the globe. The sea level rise data are from satellite
altimetry data available on the website: http://www.nodc.noaa.gov/
General/sealevel.html. Mangrove sedimentation data are from
references in Alongi [2] and updated with more recent data [88—100].
Dotted red line delimits a 1:1 relationship and the solid blue line is the
linear regression for the untransformed data

responses confounded by variations in salinity, nutrient avail-
ability, and water-use efficiency [50-55]. The first studies
showed that growth of Rhizophora stylosa, Rhizophora
apiculata, and Rhizophora mangle was enhanced by increas-
ing CO, concentrations at low salinity but not at high salinity;
all three species showed earlier maturation than control plants
[51]. Net primary productivity of R. mangle, A. germinans,
and Conocarpus erectus was not affected by enhanced CO,
concentrations, but L. racemosa showed a decline in produc-
tivity; in these experiments, all four species exhibited in-
creases in transpiration efficiency but a decline in stomatal
conductance and transpiration with increasing CO, concentra-
tion [52].

These data imply that mangrove responses to increasing
atmospheric CO, will be complex, with some species thriving
while others decline or exhibit no or little change. The inter-
active effects of increased CO, with salinity and nutrient avail-
ability (and temperature, see next section) imply that coastal
location may be an important determinant in mangrove re-
sponse. For instance, species patterns within estuaries may
change based on the ability of each species to respond to
spatial and temporal differences in salinity, nutrient availabil-
ity, and other drivers in relation to increasing CO, levels. This
scenario is possible, as indicated by results from modeling
exercises. Using the biogeochemical model Biome-BGC and
empirical data for A. marina, Kandelia obovata, and
Sonneratia apetala in China, a simulation analysis [56¢] pre-
dicted that increasing atmospheric CO, concentrations will
affect each species differently with only a small (7 %) increase
in net primary productivity (NPP). A doubling of current CO,
concentrations with a 2 °C increase in temperature would
result in a 14-19 % increase in NPP across geographically
separate forests and by 12-68 % among monocultural stands
of the three species [56¢]. The simulation analysis suggests
that temperature changes will be a more important driver than
increasing CO, and that different mangrove species will differ
in their sensitivity to increases in both drivers. Furthermore,
feedbacks may exist between CO, concentrations, root bio-
mass, and elevation gain [57].

Responses to Increasing Temperatures and Changes
in Precipitation

The physiological response of an organism to increasing tem-
perature follows a sigmoid curve, in which an initial rapid rise
in functional processes (e.g., respiration, growth rate) slows,
plateaus, and then declines as a critical lethal threshold is
reached and then exceeded [58]. Mangrove plants and animals
presumably respond so, but the critical temperatures at which
functionality plateaus and organisms begin to die are uncer-
tain. Rates of leaf photosynthesis for most species peak at
temperatures at or below 30 °C [58], and leaf CO, assimilation
rates of many species decline, either sharply or gradually, as
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temperature increases from 33 to 35 °C [58]. Photosynthesis
in exposed leaves is often depressed due to photoinhibition;
mid-day declines of assimilation have been observed ensuring
survival for the photochemical machinery.

What has been the response of mangroves in the field to the
ongoing rise in temperature? Temperature increases alone are
likely to result in faster growth, reproduction, photosynthesis,
and respiration, changes in community composition, diversity,
and an expansion of latitudinal limits [59]. Field data indicate
that mangroves are indeed currently expanding into higher
latitudes in North America [60, 61, 62, 63¢], New Zealand
[64], Australia [65, 66], southern Africa [67], and southern
China [68]. This global expansion polewards is most likely
in response to the global rise in sea surface temperatures [69].

As these changes are occurring in the subtropics and tro-
pics, mangrove expansion may also be coupled to changes in
precipitation [70]. In an analysis of mangrove latitudinal
changes, Quisthoudt et al. [71] found that temperature alone
does not delimit the latitudinal range of Rhizophora and
Avicennia due partly to large regional differences in monthly
temperature change, for instance, warmest month tempera-
tures are higher at the latitudinal limits in the northern, than
in the southern, hemisphere. While mangrove expansion and
salt marsh contraction are consistent with the poleward in-
crease in temperature [72¢¢] and the reduction in the frequency
of extreme cold events [73¢], other variables such as changes
in precipitation cannot be ruled out as co-factors [74].

The expansion of mangroves at the expense of salt marshes
suggests that a number of complex ecological interactions are
operating during the transition [63e, 75, 76]. Proffitt and
Travis [76] propose that this migration may be facilitated by
increasing propagule abundance from greater reproductive
rates and greater genetic variation caused by outcrossing.
From field surveys conducted along the Atlantic and Gulf
coasts of Florida, they found that reproductive frequencies
varied significantly, but increased with latitude and more
strongly along the Gulf coast, with a concomitant increase in
outcrossing. The migration of mangroves is self-re-enforcing;
more colonizers lead to more propagules and outcrossing
leads to enhanced genetic variation, thus perpetuating and
promoting adaptation to a new environment.

What effect has the rise in temperature had and/or will have
on mangrove-associated fauna? No studies have yet demon-
strated a change in mangrove fauna associated with global
warming, but the results from a few studies [77-79] of
macro- and megafauna from adjacent habitats have implica-
tions for mangrove organisms. An experimental study [79]
has shown that juvenile mullet (Liza vaigiensis) and crescent
terapon (Terapon jarbua) frequenting tropical seagrass beds
can be acclimated to higher water temperatures, approaching
the critical limits for marine vertebrates. Other organisms such
as tropical gastropods [78] may respond actively by seeking
cooler sites to survive when temperatures exceed 33 °C.
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However, tropical organisms are closer to their upper thermal
thresholds than boreal and temperate organisms, and are thus
more vulnerable to rising temperature [80, 81¢].

Mangrove responses to increasing or decreasing precipita-
tion are more straightforward, but such changes are likely to
co-occur with rises in sea level, temperature, and atmospheric
CO, concentration. Compared to arid-zone stands, mangrove
forests in the wet tropics have greater biomass and producti-
vity, consist of less dense but taller trees, and tend to inhabit
finer sediment deposits, but there are no clear species richness
or diversity patterns between high and low precipitation areas
[82]; low species richness may be attributable to high variabi-
lity in annual rainfall. But mangroves clearly thrive in wet
environments where they can likely deal less stressfully with
lower salinity and more available fresh water.

Global Predictions

What then are we to predict about the global future of man-
groves in the face of climate change? There have been a num-
ber of general and local prognostications [1, 28, 33, 83], es-
pecially in regard to sea level rise [4+e, 8¢, 31¢], but there have
been few attempts at global prediction [2, 84ee]. There has
been only one sophisticated attempt to forecast mangrove dis-
tributions under climate change [84e¢]. Using several man-
grove databases for 30 species across 8 genera, Record et al.
[84¢¢] used the BIOMOD model to make predictions of man-
grove species and community distributions under a range of
sea level rise and global climate scenarios up to the year 2080.
The model runs came up with two clear predictions: (1) some
species will continue migrating polewards but experience a
decline in available space; and (2) Central America and the
Caribbean will lose more species than other parts of the world.
The latter prediction is in agreement with the work of Polidoro
et al. [85¢+¢] in which extinction risk of threatened species was
assessed and the main geographical area of concern was found
to be the Atlantic and Pacific coasts of Central America.

The recent climatological forecasts by the Intergovernmen-
tal Panel on Climate Change (IPCC) [3, 86] for until the end of
this century predict that globally (1) sea surface temperatures
will rise by 1-3 °C, (2) oceanic pH will decline by 0.07-0.31,
and (3) mean atmospheric CO, concentrations will increase to
441 ppm (from 391 ppm in 2011). Regional differences
(Table 1) will occur for some parameters such as (1) sea level,
which will continue to rise globally at an average rate between
1.8 and 2.4 mm year '; (2) precipitation will increase and
decrease in some regions such that arid areas will become
more arid and the wet tropics will become wetter; and (3)
salinity will change in tandem with changes in precipitation.
Considering these climatic predictions and the known and
likely responses of mangroves to changes in temperature, sa-
linity, sea level rise, etc., I offer some predictions (Fig. 3):
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Table 1 IPCC projected regional changes in salinity, precipitation, and sea level rise for 20812100 (relative to the 19862005 reference period)

Region Salinity®
N South America 0t00.51
E South America 0t00.51
Caribbean & W Central America 0.5to 1.0
Central West Africa 0to1.5]
Central East Africa 0t02.0]
Red Sea/Arabian Peninsula No change
South Asia 0t00.51
SE Asia 0to 1.0]
N Australia No change
E Australia No change
Oceania No change

Precipitation” Sea level rise®
—10to 40 %] 0.22-0.24 m
0to +10 %7 0.18-0.20 m
—20to 10 %] 0.18-0.20 m
10 to 20 %7 0.20-0.24 m
10 to 50 %7 0.20-0.24 m
—10to 10 % < 0.22-0.24 m
—40to 10 %] 0.18-0.24 m
0to 20 %? 0.18-0.20 m
0to 10 %] 0.18-0.20 m
—10to 0 %] 0.18-0.20 m
0to 10 %7 0.18-0.22 m

#The range of projected sea surface salinity changes for 2081-2100 relative to the 1986-2005 reference period. Data from Collins et al. [86]

® The range of projected changes in December to February precipitation for 20812100 relative to 1986-2005. Data from Collins et al. [86]

¢ The range of ensemble mean projections of the time-averaged dynamic and steric sea level changes for the period 2081-2100 relative to 1986-2005.

Data from Church et al. [3]

* Prediction 1 (red lines): Mangrove forests along arid
coasts will decline as salinities increase, freshwater be-
comes most scarce, and critical temperature thresholds
are reached more frequently (e.g., NW Australia, Pakistan,
Arabian Peninsula, both Mexico coasts).

» Prediction 2 (orange lines): Mangrove forests will decline
as sediment yield declines, salinity increases, and sea level
rises in tropical river deltas subject to subsidence intervals
(e.g., the Sundarbans; the Mekong, Zaire, Fly Rivers).

» Prediction 3 (purple lines): Mangrove forests will decline
as sea level rises and there is little or no upland space to

colonize (e.g., low islands of Oceania, many Caribbean
islands).

* Prediction 4 (blue lines): Mangroves forests will continue
to expand their latitudinal range as temperature and atmo-
spheric CO, concentrations increase (New Zealand, USA,
Australia, China).

Some assumptions were made in making these predictions:
(1) the predicted contraction or expansion of mangroves as-
sumes complex (but difficult to forecast) changes in floral and
faunal species composition, morphology, biodiversity,

Equator

90°W 0°

/
0

Fig 3 Predictions of climate change impacts on the world’s mangrove
forests, based on IPCC forecasts for climate to the end of the twenty-first
century. Prediction 1 (red lines) decline as salinities increase, freshwater
becomes most scarce, and critical temperature thresholds are reached
more frequently (e.g., NW Australia, Pakistan, Arabian Peninsula, both
Mexico coasts); prediction 2 (orange lines): mangrove forests will decline
as sediment yield declines, salinity increases, and sea level rises in
tropical river deltas undergoing subsidence (e.g., the Sundarbans; the

Mekong, Zaire, Fly Rivers); prediction 3 (purple lines): mangrove
forests will decline as sea level rises, and there is little or no upland
space to colonize (e.g., Oceania, many Caribbean islands); prediction 4
(blue lines): mangroves forests will continue to expand their latitudinal
range as temperature and atmospheric CO, concentrations increase (New
Zealand, USA, Australia, China). Mangroves in some geographical
regions that are currently in decline due to deforestation (e.g., Central
and South America, Asia) are not circled on the map
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biomass, physiology, growth, and productivity; (2) the decline
on ocean pH will have little or no impact on mangroves con-
sidering that they are subject to diurnal changes in tidal water
and soil pH [1]; (3) mangrove functionality (growth, respira-
tion, productivity, etc.) will increase in line with increases in
temperature, precipitation, and atmospheric CO, concentra-
tions up to critical physiological thresholds, but only when
other environmental conditions are favorable as suggested
from the complex interactive effects observed in many growth
experiments discussed in the previous section; and (4) most
mangroves will survive the predicted global rate of sea level
rise unless other factors, such as subsidence, significantly im-
pact overall surface elevation.

Conclusions

Mangroves will survive into the future but there have already
been, and will continue to be, more negative than positive
impacts due to climate change. Mangroves are expanding their
latitudinal range as global temperatures continue to rise. Man-
grove forests will either experience little change or some pos-
itive impact in areas where precipitation is forecast to increase,
such as in SE Asia and along the western and central coasts of
Africa. But mangrove forests will decline as aridity increases
in parts of the Caribbean, Central and South America, and
South Asia. The greatest current threat to mangrove survival,
however, is deforestation and such continuing losses must be
considered in tandem with the impact of climate change.
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