
Complex Analysis and its Synergies           (2024) 10:10 
https://doi.org/10.1007/s40627-024-00134-0

RESEARCH

Analyticity and supershift with irregular sampling

F. Colombo1 · I. Sabadini1 · D. C. Struppa2 · A. Yger3

Received: 30 December 2023 / Accepted: 16 February 2024
© The Author(s) 2024

Abstract
The notion of supershift generalizes that one of superoscillation and expresses the fact that the sampling of a function in an
interval allows to compute the values of the function outside the interval. In a previous paper, we discussed the case in which
the sampling of the function is regular and we are considering supershift in a bounded set, while here we investigate how
irregularity in the sampling may affect the answer to the question of whether there is any relation between supershift and
real analyticity on the whole real line. We show that the restriction to R of any entire function displays supershift, whereas
the converse is, in general, not true. We conjecture that the converse is true as long as the sampling is regular, we discuss
examples in support and we prove that the conjecture is indeed true for periodic functions.
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1 Introduction and preliminary definitions

The notion of supershift (in itself a generalization of the
notion of superoscillation arising in quantum mechanics but
also studied from themathematical point of view, see e.g. [1–
9, 12, 13, 15–17, 26]) expresses the fact that the sampling of
a function in an interval allows to compute the values of the
function far from the interval. In a recent paper, see [14],
we studied the relation between supershift and real analyt-
icity. In particular, we used a classical result due to Serge
Bernstein (see [11, 19, 23] for more information) to show
that real analyticity for a complex valued function implies a
strong form of supershift. On the other hand, we used a para-
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metric version of a result by Leonid Kantorovitch to show
that the converse is not true in the sense that we can construct
an example of a smooth function that exhibit supershift on a
bounded set and yet is not real analytic on that same set, see
[22].

In [14], we restricted our attention to what we called a
regular sampling. In this paper, instead, we study the more
general case where the sampling points can be distributed
in an interval with no regularity, but we consider the more
difficult situation in which supershift occurs on the whole
real line.

The first class of results, see Section 2, shows the super-
oscillatory phenomenon arises even in the case of irregular
samplings in a way generalizing the standard one. The
most general configuration of sampling points is treated via
Lagrange-Hermite polynomials, see Theorem 2.6 and The-
orem 2.7, even though a well-known example of Erdös and
Vértesi, see [20, 21], shows that such polynomials fail to
approximate continuous functions almost everywhere (and in
particular it is always possible to find continuous functions
for which the supershift fails even for regular samplings).
This leads to the fact that the restriction to R of any entire
function displays supershift phenomena, see Theorem 2.4
which gives, using Proposition 2.3 and Theorem 2.6, respec-
tively, Example 2.5 and Theorem 2.7.

This leads us naturally to Section 3 where we obtain
some results that suggest the following conjecture (Conjec-
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ture 3.4): is any regular C-supershift on R (in the sense
of Definition 1.8) necessarily the restriction of an entire
function? Proposition 2.9 and Remark 2.10, which are inher-
ited from Kantorovich’s example, suggest that the regularity
hypothesis on the sampling is natural for our conjecture to
hold.
More precisely, Proposition 2.9 shows that slightly irregular
samplings on [−1, 1] allow the construction of non-real ana-
lytic functions onRwhich can be extrapolated, uniformly on
any compact set, from their sample values on [−1, 1].

As a support for Conjecture 3.4, we prove it for periodic
regular C-supershifts on R, see Theorem 3.6.

We now review some preliminary definitions which will
be useful in the sequel.

Let

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1,0, . . . , h1,ν(1)

h2,0, h2,1, . . . , h2,ν(2)
...

hN ,0, hN ,1, hN ,2, . . . , hN ,ν(N )

...

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.1)

be a collection of real numbers (interpreted as frequencies)
which all belong to the closed interval [−1, 1] with hN ,ν ≥
hN ,ν+1 for N ∈ N

∗ and 0 ≤ ν ≤ ν(N ) − 1.

Definition 1.1 Asequenceof generalized trigonometric poly-
nomials (TH ,N )N≥1 of the form

TH ,N (x) =
ν(N )∑
ν=0

CH ,ν(N ) exp(i xhN ,ν),

(with CH ,ν (N ) ∈ C for N ∈ N
∗, 0 ≤ ν ≤ ν(N ))

is called an H-sequence of generalized trigonometric
polynomials.
Given an open subset A ⊂ R, an (A, H)-sequence of gener-
alized trigonometric polynomials {TH ,N [a] : a ∈ A}N≥1 is
by definition an A-parametrized H -sequence of generalized
trigonometric polynomials such that each complex amplitude
CH ,ν(N , a) depends continuously on a ∈ A, for any N ∈ N

∗
.

Definition 1.2 (Superoscillating sequence). An (A, H)-
sequence of generalized trigonometric polynomials is said
to be superoscillating if there are two continuous func-
tions gH : A → C and CH : A → R such that both
V = {a ∈ A : CH (a) �= 0, |gH (a)| > 1} and the open
subset U of points x ∈ R about which

lim
N→+∞ TH ,N [a] (x) = CH (a) exp(i gH (a) x), (1.2)

locally uniformly with respect to (a, x), are non-empty open
subsets, respectively, of A and R. The set U is then called

the superoscillating subset of the (A, H)-superoscillating
sequence {TN [a] : a ∈ A}N≥1.

Definition 1.3 (Regular sampling). We will call regular sam-
pling of the frequency interval [−1, 1] the sampling defined
by H ε = [hε

N ,ν] where ε = (εN )N≥1 is a sequence of ele-
ments in [0, 1[which tends to 0 when N tends to infinity and

hε
N ,ν = 1 − 2

(
ν + εN (N − ν)

N

)
, 0 ≤ ν ≤ N . (1.3)

Example 1.4 The (R, H ε)-sequence {T ε
N [λ] : λ ∈ R}N≥1,

where

T ε
N [λ] (x) =

N∑
ν=0

(
N

ν

)(
1+λ

2

)N−ν(1−λ

2

)ν

exp
(
ihε

N ,ν x
)

= exp(i εN x)

(
cos

(
x
1 − εN

N

)

+i λ sin

(
x
1 − εN

N

))N

(1.4)

is superoscillating on U = R.

From now on, we will mostly consider (R, H)-superoscilla
ting sequences.
The definition of superoscillating functions can be extended
to include more general cases as follows:

Definition 1.5 (Supershift Property (SP)F ) Let A be an open
interval of R, possibly R itself, which contains [−1, 1] and
ψ : a ∈ A 
−→ ψa ∈ F be a continuous map from A to a
topological C-vector space F . Let

⎧⎨
⎩TH ,N [λ](x) =

ν(N )∑
ν=0

CH ,ν (N , λ) exp(i xhN ,ν) : λ ∈ R

⎫⎬
⎭

N≥1

be an (R, H)-superoscillating sequence and assume that all
the complex functions CH ,ν(N , λ) are continuous in λ. The
map ψ is said to satisfy the Supershift Property (SP)F on
A with respect to {TH ,N [λ] : λ ∈ R}N≥1 if the sequence of
functions

a ∈ A 
−→
ν(N )∑
ν=0

CH ,ν(N , a) ψhN ,ν
∈ F ,

N = 1, 2, ... (1.5)

converges toψ in the space of continuous functionsC(A,F ),
with respect to the topology of uniform convergence on any
compact subset, i.e.

lim
N→∞

ν(N )∑
ν=0

CH ,ν(N , a) ψhN ,ν
= ψa .
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Remark 1.6 The reader will notice that when

Cν(N , a) :=
(
N

ν

)(
1 + a

2

)N−ν (1 − a

2

)ν

this definition reduces to the original example of Aharonov,
where A = R, H = H0 := {1− 2ν/N : N ∈ N

∗, 0 ≤ ν ≤
N }.

The two definitions below were originally given in [14]:

Definition 1.7 (Translation-Commuting Supershift Property
(TCSP)F ) Let A be as above and for a ∈ A, let a ∈ A 
→
ψa ∈ F be a continuous map from A toF . Let {TH ,N [λ] :
λ ∈ R}N≥1 be a (R, H)-superoscillating sequence. The
continuous map ψ is said to satisfy the F -Translation-
Commuting Supershift Property (TCSP)F on Awith respect
to the superoscillating sequence {TH ,N [λ] : λ ∈ R}N≥1 if
the sequence of functions

⎛
⎝

ν(N )∑
ν=0

CH ,ν(N , a) ψa′+hN ,ν

⎞
⎠ ⊂ F , N = 1, 2, ... (1.6)

defined for

(a, a′) ∈ A := {
(a, a′) ∈ R × A : a′ + [−1, 1] ⊂ A, a + a′ ∈ A

}

converges to ψa+a′ in C(A,F ) with respect to the topol-
ogy of uniform convergence on any compact subset of A.

Definition 1.8 (RegularC-supershift) Let A be an open inter-
val of R with length R strictly larger than 2. A continuous
map ψ : A → C is called a regular C-supershift if the two
following conditions are fulfilled.

(1) The map ψ satisfies the (TCSP)C property with respect
to any superoscillating sequence {T ε

N [λ] : λ ∈ R}N≥1,
as in (1.3) and (1.4), where ε is any sequence in [0, 1[N∗

which tends to 0 when N tends to infinity.
(2) Given {(ει′,N )N≥1 : ι ∈ I ′} a family of such sequences,

such that the convergence of all sequences ει′ towards 0
is uniform with respect to the index ι′, the convergence
for (a, a′) ∈ A of the polynomial functions

N∑
ν=0

(
N

ν

)(
1 + a

2

)N−ν (1 − a

2

)ν

ψ

(
a′ +

(
1 − 2

(
ν + ει′,N (N − ν)

N

)))
,

N = 1, 2, . . . (1.7)

to ψ(a + a′) in C(A,C) is uniform with respect to the
index ι′ over the compact subsets of A.

2 Superoscillating sequences attached to
irregular sampling in [−1,1]

In this section, we consider superoscillating sequences with
irregular sampling and we will prove their convergence in
the space Exp(C).

Definition 2.1 We consider a collection of elements in [0, 1]:

� = {ξN ,k : N ∈ N
∗, 1 ≤ k ≤ N }

Let AN ,k be the set consisting of the two opposite points

± 1
N

(
1 − ξN ,k

N

)
and consider the Minkowski set addition

AN ,1 + . . . + AN ,N

that consists of at most 2N distinct points, all of them
contained in the interval [−1, 1]. After reordering them in
decreasing order, and using the Minkowski set addition, we
define

{h�
N ,ν : ν = 0, . . . , ν(N ) ≤ 2N } =

N∑
k=1

AN ,k .

The sampling defined by this set is said almost regular.

Definition 2.2 We say that the sampling of the domain
[−1, 1] defined by the matrix H in (1.1) is irregular if
∀ N ∈ N

∗, ν(N ) = N , and infinitely many rows HNι of
H are such that ν ∈ {0, . . . , Nι −1} 
→ hNι,ν − hNι,ν+1 > 0
is not constant.

To generalize the (R, H ε)-sequence {T ε
N [λ] : λ ∈

R}N≥1,we consider a collection�of elements in [0, 1] corre-
sponding to the almost regular sampling above, and {h�

N ,ν :
ν = 0, . . . , ν(N )}. The (R, H�)-sequence {T�

N [λ] : λ ∈
R}N≥1, where

T�
N [λ] (x) =

N∏
k=1

(
1 + λ

2
exp

(
i x

N

(
1 − ξN ,k

N

))

+1 − λ

2
exp

(
− i x

N

(
1 − ξN ,k

N

)))
(2.1)

is superoscillating (with gH�(λ) = λ and CH�(λ) ≡ 1) on
U = R.
When the matrix H in (1.1) is such that ∀ N ∈ N

∗, ν(N ) =
N , the sequence of Lagrange-Hermite interpolators (with
respect to the parameter λ)

{
x 
−→ T Lag

H ,N [λ](x)

:=
N∑

ν=0

⎛
⎝∏

ν′ �=ν

λ − hN ,ν′

hN ,ν − hN ,ν′

⎞
⎠ eihN ,ν x : λ ∈ R

}
N≥1

(2.2)
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is also superoscillating with respect to g : λ ∈ R → λ and
C : λ ∈ R → 1 since
∣∣∣eiλx − T Lag

H ,N [λ](x)
∣∣∣

≤
∏N

ν=0 |λ − hN ,ν |
(N + 1)! sup

|ξ |≤max(1,|λ|)

∣∣∣
(

∂

∂λ

)N+1

[eiλx ](ξ)

∣∣∣

≤
(
(|λ| + 1)|x |)N+1

(N + 1)! (2.3)

for any (λ, x) ∈ R
2 according to the expression of the

reminder term in Lagrange interpolation formula, see [5,
Theorem 2.2]. Such superoscillating sequence {T Lag

H ,N [λ] :
λ ∈ R}N≥1 may correspond to irregular sampling of the
low-frequency domain [−1, 1].
Using the sequence (2.2) in which we use z ∈ C instead of
the real variable x , we have

Proposition 2.3 For any almost regular sampling� as above
and any a ∈ R, the sequence of entire functions with expo-
nential growth

(
z 
−→ T�

N [a] (z)
)
N≥1

(2.4)

converges in Exp(C) towards z 
−→ eiaz . Moreover, there
exists a compact KR in R such that the convergence is uni-
form with respect both to a ∈ KR and to the collection�. As
a consequence, the (R, H�)-sequence {T�

N [a] : a ∈ R}N≥1

is superoscillating.

Proof We follow here the method that we previously used in
[17, Lemma 4.1]. For each a ∈ R, z ∈ C, ξ ∈ [0, 1], one has
∣∣∣1 + a

2
exp

(
i z

N

(
1 − ξ

N

))
+ 1 − a

2
exp

(
− i z

N

(
1 − ξ

N

)) ∣∣∣

=
∣∣∣ cos

(
z

N

(
1 − ξ

N

))
+ ia sin

(
z

N

(
1 − ξ

N

)) ∣∣∣

=
∣∣∣ cos

(
z

N

(
1 − ξ

N

))
+ ia

z

N

(
1 − ξ

N

)
sinc

(
z

N

(
1 − ξ

N

)) ∣∣∣

≤
(
1 + |a| |z|

N

)
exp

( |Im z|
N

(
1 − ξ

N

))

≤
(
1 + |a| |z|

N

)
exp

( |Im z|
N

)

since the entire function sinus cardinal z 
→ sinc (z) =
sin z/z satisfies in the whole complex plane the upper esti-
mate |sinc z| ≤ exp(|Im z|) in C. As a consequence, one has

|T�
N [a] (z)| =

∣∣∣
N∏

k=1

(
1 + a

2
exp

(
i z

N

(
1 − ξN ,k

N

))

+1 − a

2
exp

(
− i z

N

(
1 − ξN ,k

N

))) ∣∣∣

≤
(
1 + |a| |z|

N

)N

exp(|Im z|)
≤ exp

(
(|a| + 1) |z|),

which shows that the family of entire functions

{
z 
−→ T�

N [a] (z) : a ∈ KR, �
}
,

where KR is any compact subset of R, is a bounded subset
of Exp(C). It remains to prove that, given a compact subset
KC of the complex plane, the sequence of entire functions
(2.4) converges uniformly on KC towards z 
→ eaz , the con-
vergence being uniform both with respect to a ∈ KR and to
the collection �. For any w sufficiently close to 0 in C, one
has

cosw + ia sinw = 1 + iaw − w2

2
+ (|a| + 1) O(|w|3)

log(cosw + ia sinw) = log

(
1 + iaw − w2

2

)

+ (|a| + 1) O(|w|3)

= ia w + a2 − 1

2
w2(1 − O(|aw|)).

(2.5)

Then, for N large enough (depending on KC and of the com-
pact KR), one has

T�
N [a] (z) = exp

( N∑
k=1

(
ia wN ,k + a2 − 1

2
w2

N ,k

(
1 − O

(|awN ,k |
))))

,

where wN ,k = (z/N ) × (1 − ξN ,k/N ) for k = 1, . . . , N .
Therefore

T�
N [a] (z) = exp(iaz) exp

(
−iaz

∑N
k=1 ξN ,k

N 2

+a2 − 1

2

z2

N 2

N∑
k=1

(
1 − ξN ,k

N

)2

(
1 − O

(|awN ,k |
)))

.

The uniform convergence of this sequence of functions of z
on KC towards z 
→ eiaz follows immediately. Moreover,
the convergence is uniform with respect to a ∈ KR and to
�, and this concludes the proof. ��

The next result, and the following Example 2.5 show a
feature which is somewhat predictable from our previous
considerations, namely that restrictions to the real line of
entire functions inherit the (TCSP)C property with respect
to almost regular sampling on [−1, 1] subordinate to the
approximation of z 
→ eiaz in Exp(C) locally uniformly
with respect to the parameter a.
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Theorem 2.4 Let {TH ,N [λ] : λ ∈ R}N≥1 be a (R, H)

sequence of generalized trigonometric polynomials such
that, for any a ∈ R, the sequence of entire functions

(
z ∈ C 
−→

N∑
ν=0

CH ,ν(N , a)eihN ,ν z

)

N≥1

converges towards z 
−→ eiaz in Exp(C), the conver-
gence being locally uniform with respect to a ∈ R. Then,
any restriction ψ = F|R of an entire function F satisfies
the (TCSP)C-property with respect to the superoscillating
sequence {TH ,N [λ] : λ ∈ R}N≥1. In other terms, the
sequence of continuous functions

(
(a, a′) ∈ R

2 
−→
N∑

ν=0

CH ,ν(N , a)ψ(a′ + hN ,ν)

)

N≥1

converges towards (a, a′) 
−→ ψ(a+a′) in C(R2,C) locally
uniformly over the compact sets of R2.

Proof Let F be an entire function and F(−id/dz + a′) the
infinite order differential operator

F

(
−i

d

dz
+ a′

)
=

∞∑
κ=0

F (κ)(0)

κ!
(

−i
d

dz
+ a′

)

◦ κ times· · · ◦
(

−i
d

dz
+ a′

)
=

∞∑
κ=0

F (κ)(0)

κ!
(

−i
d

dz
+ a′

)κ

where a′ denotes a real parameter. Such an operator acts
from Exp(C) to itself as follows. Entire functions with expo-
nential growth are in bijective correspondence with analytic
functionals through the Fourier-Borel transform T ←→(
T̂ : z 
−→ 〈T (ζ ) , eζ z〉). If T ∈ H ′(C) is an analytic
functional, then the action of the infinite order differential
operator F(−id/dz + a′) on the Fourier-Borel transform of
T is given by

F

(
− d

dz
+ a′

) (
z 
−→ 〈

T (ζ ), eζ z 〉)

=
(
z 
−→

〈
T (ζ ), F(−iζ + a′) eζ z

〉)
. (2.6)

Such action is a continuous action from Exp(C) to Exp(C),
locally uniformly with respect to the parameter a′, see [8]
and [7, Proposition 2.10] (restricted here to the univariate
setting). Since for any N ∈ N

∗, one has that

F

(
−i

d

dz
+ a′

)(
z 
−→

N∑
ν=0

CH ,ν(N , a)eihN ,ν z

)

=
(
z 
−→

N∑
ν=0

CH ,ν(N , a)F(a′ + hN ,ν) e
ihN ,ν z

)
,

it follows from the hypothesis on {TH ,N [λ] : λ ∈ R}N≥1

that the sequence of functions

(
z 
−→

N∑
ν=0

CH ,ν(N , a)F(a′ + hN ,ν) e
ihN ,ν z

)

N≥1

converges in Exp(C) towards

z 
−→ F

(
− d

dz
+ a′

)(
z 
−→ eiaz

)
= F(a + a′) eiaz,

locally uniformly with respect to (a, a′) ∈ R
2. Such conver-

gence is in particular uniform on the compact subset {z = 0},
locally uniformlywith respect to the parameters (a, a′) ∈ R

2.
Theorem 2.4 is thus proved if one restricts F to the real line
thus obtaining ψ . ��
Example 2.5 Theorem 2.4 applies when {TH ,N [λ] : λ ∈
R}N≥1 = {TH ε ,N [λ] : λ ∈ R}, see Proposition 3.1 in [14],
which corresponds to a situation of regular sampling, but also
in the case where {TH ,N [λ] : λ ∈ R}N≥1 = {TH�,N [λ] :
λ ∈ R}, see Proposition 2.3, which corresponds to a situation
of almost regular sampling.

Let us now consider the general case where the matrix H
as in (1.1) is such that ν(N ) = N and the sampling may
be irregular. We will show that Lagrange-Hermite polyno-
mials allow to obtain superoscillations with respect to such
sampling (for a particular case see [9]).

Theorem 2.6 The sequence of entire functions depending on
the real parameter a, and defined by

⎛
⎝z 
−→ T

Lag
H ,N [a](z) :=

N∑
ν=0

⎛
⎝∏

ν′ �=ν

a − hN ,ν′
hN ,ν − hN ,ν′

⎞
⎠ eihN ,ν z

⎞
⎠

N≥1

(2.7)

converges in Exp(C) towards z 
→ eiaz , the convergence
being locally uniform with respect to the real parameter a.

Proof Let a ∈ R and �a : θ ∈ [0, 2π ] 
−→ (|a| + 2)eiθ . It
follows from Hermite remainder theorem, see for example
[18, Theorem 3.6.1], that for any z ∈ C and N ∈ N

∗,

∣∣∣eiaz −
N∑

ν=0

⎛
⎝∏

ν′ �=ν

a − hN ,ν′

hN ,ν − hN ,ν′

⎞
⎠ eihN ,ν z

∣∣∣

=
∣∣∣ 1

2iπ

∫
�a

(
N∏

ν=0

a − hN ,ν

ζ − hN ,ν

)
eiζ z

ζ − a
dζ

∣∣∣

≤ (|a| + 2)
e(|a|+2)|z|

(|a| + 2) − |a|
( |a| + 1

(|a| + 2) − 1

)N+1

123
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= (|a| + 2)
e(|a|+2)|z|

2
, (2.8)

which implies that the sequence of entire functions

⎛
⎝z 
−→ T

Lag
H ,N [a](z) =

N∑
ν=0

⎛
⎝∏

ν′ �=ν

a − hN ,ν′
hN ,ν − hN ,ν′

⎞
⎠ eihN ,ν z

⎞
⎠

N≥1

is a bounded sequence in Exp(C), locally uniformly with
respect to the real parameter a. On the other hand, it follows
from [5, Theorem 2.1 and Theorem 2.2] that for any a ∈ R

and N ∈ N
∗, the entire functions

z 
−→ eiaz , z 
−→ T
Lag
H ,N [a](z) =

N∑
ν=0

⎛
⎝∏

ν′ �=ν

a − hN ,ν′
hN ,ν − hN ,ν′

⎞
⎠ eihN ,ν z

share the same derivatives at the origin up to order less than
or equal to N , which implies that for any z ∈ C and N ∈ N

∗,

N∑
κ=0

((
d

dz

)κ

T Lag
H ,N [a]

)
(0)

zκ

κ! =
N∑

κ=0

(ia)κ

κ! zκ .

For each such z ∈ C and N ∈ N
∗, one has

T Lag
H ,N [a](z) −

N∑
κ=0

(ia)κ

κ! zκ =
∑
κ>N

γN ,κ [a]zκ

with

|γN ,κ [a]| Rκ ≤ (|a| + 2)
e(|a|+2)R

2

for all κ > N and any R > 0 according to the fact
that the sequence (2.7) is bounded in Exp(C). Therefore,
the sequence of entire functions

(∑
κ>N γN ,κ [a]zκ)N≥1

converges towards 0 on any compact subset ofC, the conver-
gence being locally uniformwith respect to the real parameter
a. It follows that the sequence (2.7) converges uniformly on
any compact of C towards z 
→ eiaz , the convergence being
locally uniform with respect to the real parameter a. This
concludes the proof. ��

As a consequence, we have the following result

Theorem 2.7 Any restriction ψ : a ∈ R 
→ ψa = ψ(a) ∈ C

of an entire function to the real line inherits the (TCSP)C
property on R with respect to any superoscillating (R, H)

superoscillating sequence {x 
→ T Lag
H ,N [λ](x) ; λ ∈ R}N≥1

as in (2.2), where H is as in (1.1) with ν(N ) = N for any
N ∈ N

∗.

Proof It follows from the combination of Theorem 2.6 with
the argument employed to prove Theorem 2.4. ��

Let now A be any open interval of R which con-
tains [−1, 1]. Consider the case where the superoscillating
sequence {TH ,N [λ] : λ ∈ R}N≥1 is attached to an irregular
sampling on [−1, 1], as before. Observe that continuous real
valued functions on A fail in general to satisfy (SP)C with
respect to {T Lag

H ,N [λ] : λ ∈ R}N≥1 since there is a continuous
function ψH : A → R which for which

mes
{
a ∈ [−1, 1] : lim sup

N→+∞

∣∣∣ψH (a)

−
N∑

ν=0

⎛
⎝∏

ν′ �=ν

a − hN ,ν′
hN ,ν − hN ,ν′

⎞
⎠ ψH (hN ,ν)

∣∣∣ < ∞
}

= 0, (2.9)

see [20, 21]. Even when the sampling is regular, namely
hN ,ν = 1 − 2ν/N , such is the case when ψH : a 
→ |a|
since one has in this case

∀ a ∈ [−1, 1] \ {0}, lim sup
N→+∞

∣∣∣|a|

−NN
N∑

ν=0

⎛
⎝∏

ν′ �=ν

a − (1 − 2ν′/N )

2(ν′ − ν)

⎞
⎠ ∣∣1 − 2ν/N |

∣∣∣ = +∞,

(2.10)

as proved in [10], see also [27] for updated results and ref-
erences which illustrate how poorly the Lagrange-Hermite
interpolation behaves under only the hypothesis of conti-
nuity, if one compares with properties (SP)C or (TCSP)C
attached to superoscillating sequences {T ε

N [a] : a ∈ R} sub-
ordinate to regular sampling as in [14].

The next proposition, together with subsequent Remark
2.10, shows how a well-known example of Kantorovich can
be used to construct a continuous function ψ : R → C

which satisfies (SP)C, provided such notion is slightly modi-
fied according to [7, Definition 4.7]. In particular, it indicates
that, if one tolerates irregular sampling, the extrapolation
(from their irregularly sampled values on [−1, 1]) of some
particular classes of functions, continuous but non-real ana-
lytic, through a sequence or real-analytic functions which
converges uniformly on any compact subset of R is indeed
possible.

To explicitly construct such functions, we recall the fol-
lowing result (see Theorem 3.7 in [14]).

Theorem 2.8 Let G− and G+ be two entire functions such
that

G−(1/2) = G+(1/2),
dG−

dz
(1/2) �= dG+

dz
(1/2) (2.11)

and let g : b ∈ R → C be the continuous map defined by

g(b) =
{
G−(b) if b < 1/2

G+(b) if b ≥ 1/2.
(2.12)
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There exists an open interval A0 =] − 1 − ρ0, 1 + ρ0[⊂ R

containing [−1, 1] such that the function

a ∈ A0 
−→ ψ0(a) = g((1 + a)/2)

is a regular C-supershift in A0. As a consequence, the fact
that ψ = ψ0 ∗ θ , for θ a regularizing test-function, is a
smooth regular C-supershift on some open interval A ⊂ R

with diameter strictly larger than 2 does not imply in general
that ψ is real analytic on A.

With the notations in this theorem, we now have

Proposition 2.9 Let A0 =]−1−ρ0, 1+ρ0[ andψ0 : A0 →
C be the smooth non-real analytic function defined in Theo-
rem 2.8. Let

�ρ0 : a ∈ R 
−→ α = 2(1 + ρ0)

π
arctan

(
a tan

π

2(1 + ρ0)

)

(2.13)

and, for any ε ∈ [0, 1[N∗
such that limN→+∞ εN = 0, let the

matrix H ε
ρ0

as in (1.1) be defined as follows: for any N ∈ N
∗

and 0 ≤ ν ≤ ν(N ) = N,

hε
ρ0,N ,ν = �−1

ρ0

(
1 − 2

ν + εN (N − ν)

N

)

= 2(1 + ρ0)

π
arctan

((
1 − 2

ν + εN (N − ν)

N

)
tan

π

2(1 + ρ0)

)
∈ [−1, 1].

(2.14)

Then, if ψ := ψ0 ◦ �ρ0 ∈ C(R,C), ψ is a non-real analytic
continuous function such that the sequence of real-analytic
functions

(
a ∈ R 
−→

N∑
ν=0

(
N

ν

)(
1 + �ρ0(a)

2

)N−ν

(
1 − �ρ0(a)

2

)ν

ψ(hε
ρ0,N ,ν)

)

N≥1
(2.15)

converges in C(R,R) uniformly over the compact sets
towards a 
−→ ψ(a), thus extrapolates ψ asymptotically
uniformly on any compact subset of R from its values in
[−1, 1]. Moreover, the convergence on each compact subset
of R is uniform with respect to ε, provided ε remains in a
family {ει′ ∈ [0, 1[N∗ : ι′ ∈ I ′} which elements tend to 0 at
infinity uniformly with respect to the index ι′.

Proof For any a ∈ R and N ∈ N
∗, one has

N∑
ν=0

(
N

ν

)(
1 + �ρ0(a)

2

)N−ν (1 − �ρ0(a)

2

)ν

ψ(hε
ρ0,N ,ν)

=
N∑

ν=0

(
N

ν

)(
1 + �ρ0(a)

2

)N−ν

(
1 − �ρ0(a)

2

)ν

ψ0
(
�ρ0(h

ε
ρ0,N ,ν)

)

=
N∑

ν=0

(
N

ν

)(
1 + �ρ0(a)

2

)N−ν (1 − �ρ0(a)

2

)ν

ψ0

(
1 − 2

ν + εN (N − ν)

N

)
.

The result follows then immediately from Theorem 2.8,
which asserts that ψ0 is a regular C-supershift on A0, which
is homeomorphic to R through the real-analytic homeomor-
phism �ρ0 (which restriction to [0, 1] realizes a continuous
automorphism of [−1, 1]). The non-real analyticity of� fol-
lows from the non-real analyticity of ψ0, together with the
real analyticity of �ρ0 . ��
Remark 2.10 If one considers instead of the function ψ0 the
restriction to A0 of the entire function ei(·)x : z ∈ C 
→ eiz x ,
where x ∈ R, the same proof than that of Proposition 3.2
in [14] shows that the sequence of real analytic functions

(
a ∈ R 
−→

N∑
ν=0

(
N

ν

)(
1 + �ρ0(a)

2

)N−ν (1 − �ρ0(a)

2

)ν

(
exp

(
i (·) x) ◦ �ρ0

)
(hε

ρ0,N ,ν)
)
N≥1

converges in C(R,C) uniformly over the compact sets
towards a 
−→ exp

(
i �ρ0(a) x

)
, the convergence being uni-

form bothwith respect to the parameter x provided x remains
in a compact subset of R and to the sequence ε provided ε

remains in a family {ει′ ∈ [0, 1[N∗ : ι′ ∈ I ′} which elements
tend to 0 at infinity uniformlywith respect to the index ι′. The
(R, H ε)-sequence of generalized trigonometric polynomials

{
x 
−→

N∑
ν=0

(
N

ν

)(
1 + �ρ0(λ)

2

)N−ν (1 − �ρ0(λ)

2

)ν

(
exp

(
i (·) x) ◦ �ρ0

)
(hε

ρ0,N ,ν) : λ ∈ R

}
,

is then a superoscillating (R, H ε)-sequence subordinate to
the pair of functions

gρ0 : λ ∈ R 
−→ �ρ0(λ), Cρ0 : λ ∈ R 
−→ 1.

Therefore, the continuous non-real analytic function ψ con-
structed in Proposition 2.9 inherits the property (SP)C with
respect to all (R, H ε

ρ0
) for any ε, provided the definition of

(SP)C is given in similar terms than in [7, Definition 4.7] (we
restrict ourselves here to the univariate situation).
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3 RegularC-supershifts on unbounded
intervals, periodic regularC-supershifts

Let A be an unbounded interval and let ψ : A → C be a
continuous regularC-supershift on A. We have the following
result:

Lemma 3.1 Let A be an interval of R and a0 ∈ R. The fact
thatψ is a continuous regularC-supershift on A is equivalent
to the fact that a 
→ ψ(a − a0) is a continuous regular C-
supershift on the shifted interval a0+ A = {a0+a : a ∈ A},
or that a ∈ −A 
−→ ψ(−a) is a continuous regular C-
supershift on the symmetric interval −A.

Proof The fact that ψ is a continuous regular C-supershift
on A is equivalent to the fact that a 
→ ψ(a − a0) is a
continuous regularC-supershift on a0+ A because (TCSP)C
commutes with translations. To prove the second part of the
statement, let ψ be a continuous C-regular supershift in A.
Then, for any (a, a′) ∈ −A = {(a, a′) ∈ R × −A : a′ +
[−1, 1] ⊂ −A, a + a′ ∈ −A}, for any ε ∈ [0, 1[N∗

with
limN→+∞ εN = 0 and any N ∈ N

∗,

N∑
ν=0

(
N

ν

)(
1 + a

2

)N−ν (1 − a

2

)ν

ψ

(
−
(
a′ + 1 − 2

(
ν + εN (N − ν)

N

)))

=
N∑

ν=0

(
N

ν

)(
1 − a

2

)N−ν (1 + a

2

)ν

ψ

(
−
(
a′ + 1 − 2

(
N − ν + εNν

N

)))

=
N∑

ν=0

(
N

ν

)(
1 − a

2

)N−ν (1 + a

2

)ν

ψ

(
−a′ + 1 − 2

(
1 − εN

N

)
ν

)

=
N∑

ν=0

(
N

ν

)(
1 − a

2

)N−ν (1 + a

2

)ν

ψ

(
−a′ + 2εN + 1 − 2

(
ν + εN (N − ν)

N

))
. (3.1)

Since ψ is a continuous regular C-supershift on A, one has,
if {ει′ = (ει′,N )N≥1 : ι′ ∈ I ′} is a family of sequences which
all tend to 0 at infinity uniformly with respect to the index ι,
that all sequences of functions

(
N∑

ν=0

(
N

ν

)(
1 − a

2

)N−ν (1 + a

2

)ν

ψ

(
−a′ + 2 ει′,N + 1 − 2

(
ν + ει′,N (N − ν)

N

)))

N≥1
,

for (a, a′) ∈ −A and ι′ ∈ I ′, converge uniformly on any
compact subset of −A towards (a, a′) 
−→ ψ(−a − a′),
the convergence being moreover uniform with respect to the
index ι′. It follows from the equalities (3.1) that a 
→ ψ(−a)

is a regular C-supershift on −A, which concludes the proof.
��

According to Lemma 3.1, we will now restrict our atten-
tion to one of the following two cases: A = R or A =
R>−1, where R>t = (t,+∞). Let B = ϒ−1(A), where
ϒ : t 
−→ 2t − 1, that is B = R or B = R>0, so that
B = {(b, b′) ∈ R× B : b′ + [0, 1] ⊂ B, b+ b′ ∈ B} equals
either R2 or {(b, b′) ∈ R × R>0 : b + b′ > 0}. Let ψ be
a continuous function on A and � = ψ ◦ ϒ : B → R. Let
b′ ∈ B. Given ε ∈ [0, 1[N∗

with limN→+∞ εN = 0, let, for
each N ∈ N

∗,

T
ε
N (�)(X , b′) =

N∑
ν=0

(
N

ν

)
Xν(1 − X)N−ν�

(
b′ + ν

1 − εN

N

)
∈ C[X ]. (3.2)

It follows from [14, Proposition 3.3] that

T
ε
N (�)(X , b′)

=
N∑

κ=0

N !
(N − κ)!

(�+
(1−εN )/N )κ [�](b′)

κ! Xκ

=
N∑

κ=0

⎛
⎝ ∏

0≤ j<κ

(
1 − j

N

)⎞
⎠

((
N/(1 − εN )

)
�+

(1−εN )/N

)κ [�](b′)
κ!

(
(1 − εN )X

)κ

=
N∑

κ=0

aε
N ,κ (�; b′) Xκ , (3.3)

where

(
�+

(1−εN )/N

)κ [�] (κ ∈ N)

denote the successive forward (+) differences of� evaluated
at b′ with sampling rate (1−εN )/N and

∏
j∈∅(1− j/N ) = 1.

Remark 3.2 Suppose that ψ is C∞ on A, which amounts to
say that � is C∞ on B. Then, for any ε ∈ [0, 1[N∗

with
limN→+∞ εN = 0, any b′ ∈ B, κ ∈ N and N ≥ κ ,

((
N/(1 − εN )

)
�+

(1−εN )/N

)κ [�](b′)
κ!

=
∫

τ∈�κ

�(κ)

(
b′ + 1 − εN

N
(τ0 + · · · + τκ−1)

)
dτ

123



Complex Analysis and its Synergies            (2024) 10:10 Page 9 of 13    10 

= 1

κ!
(
Re (�(κ))

(
b′ + κ

1 − εN

N
ξ ε
N ,κ (b′)

)

+i Im (�(κ))

(
b′ + κ

1 − εN

N
ηε
N ,κ (b′)

))
(3.4)

according to Rolle’s theorem, see for example [25, §1.3
(1.80)], where �k denotes the elementary simplex {(τ0, ..,
τκ−1) ∈ R

κ : 0 ≤ τ0 ≤ · · · ≤ τκ−1 ≤ 1} (or {0} when
κ = 0) with euclidean volume

∫
�κ

dτ = 1/κ! (or atomic
mass |dτ | = 1 when κ = 0) and ξ ε

N ,κ (b′), ηε
N ,κ (b′) ∈ [0, 1].

As a consequence, one can interpret (assuming only the sole
continuity of ψ on A) each polynomial Tε

N (�)(X , b′) ∈
C[X ] defined in (3.3), where ε ∈ [0, 1[N∗

is such that
limN→+∞ εN = 0, as a numerical substitute (in terms of
discrete differential calculus) for the Principal Part at order
N of the Taylor series of � about b′.

Since the concept of Taylor series of � at b′ ∈ B does not
make sense for continuous functions, Remark 3.2 suggests
to introduce, for each M ∈ N

∗ and ε ∈ [0, 1[N∗
such that

limN→+∞ εN = 0, the (ε, 1/M)-numerical Taylor series

S
ε
1/M (�)(X , b′) :=

∞∑
κ=0

aε
Mκ,κ (�; b′)Xκ ∈ C[[X ]] (3.5)

of � at b′ ∈ B. Here, M ∈ N
∗ and 1/M is interpreted

as a numerical precision. Finally, in order to describe the
behaviour of the sequence of continuous functions

(
(b, b′) ∈ B 
−→ T

ε
N (�)(b, b′)

)
N∈N∗ ,

where ε ∈ [0, 1[N∗
is such that limN→+∞ εN = 0, it is con-

venient to introduce the orthonormal basis {�ν : ν ∈ N} of
L2([0, 1],C, dξ) given by the shifted Legendre polynomial
functions

ξ ∈ [0, 1] 
−→ �ν(ξ) = √
2ν + 1 Lν(1 − 2ξ)

= √
2ν + 1

ν∑
κ=0

(−1)κ
(

ν

κ

)(
ν + κ

κ

)
ξκ ,

ν ∈ N. (3.6)

What suggests the introduction of the orthonormal basis of
shifted Legendre polynomials here is that any holomorphic
function G in the interior E0 of an ellipse with foci {0, 1}
which sum of semi-axis equals R0 > 0 admits in E0 (in
particular in [0, 1]) a Neumann expansion G = ∑∞

ν=0 γν�ν

with lim supν→+∞ |γν |1/ν ≤ 1/R0 [24]. For each R ≥ 0,
b′ ∈ B, N ∈ N

∗ and 0 ≤ ν ≤ N , let

γ ε
N ,ν(�)(R, b′) =

∫ 1

0
T

ε
N (�)(Rξ, b′) �ν(ξ) dξ, (3.7)

so that one has on L2([0, 1],C, dξ) the orthonormal decom-
position

T
ε
N (�)(Rξ, b′) =

N∑
ν=0

γ ε
N ,ν(�)(R, b′) �ν(ξ) (3.8)

with ‖Tε
N (�)(Rξ, b′)‖2

L2([0,1],C,dξ)
= ∑N

ν=0 |γ ε
N ,ν(�)(R,

b′)|2. It follows from the explicitation of the shifted Legendre
polynomials �ν as in (3.6) that one can rewrite (3.8) as

T
ε
N (�)(Rξ, b′)

=
N∑

ν=0

γ ε
N ,ν (�)(R, b′)

(√
2ν + 1

ν∑
κ=0

(−1)κ
(

ν

κ

)(
ν + κ

κ

)
ξκ

)

=
N∑

κ=0

(−1)κ

⎛
⎝

N∑
ν=κ

√
2ν + 1

(
ν

κ

)(
ν + κ

κ

)
γ ε
N ,ν(�)(R, b′)

⎞
⎠ ξκ

=
N∑

κ=0

(−1)κ
(
2κ

κ

)

⎛
⎝

N∑
ν=κ

√
2ν + 1

(
ν + κ

ν − κ

)
γ ε
N ,ν(�)(R, b′)

⎞
⎠ ξκ , (3.9)

which leads by identification with (3.3) to the set of relations

aε
N ,κ (�; b′) Rκ

= (−1)κ
(
2κ

κ

) N∑
ν=κ

√
2ν + 1

(
ν + κ

ν − κ

)
γ ε
N ,ν(�)(R, b′)

(3.10)

for any N ∈ N
∗, 0 ≤ κ ≤ N , b′ ∈ B, R ≥ 0 and ε ∈ [0, 1[N∗

such that limN→+∞ εN = 0. One can prove the following
result.

Proposition 3.3 Let A, B, ψ,� as above. Suppose in addi-
tion thatψ is aC-regular supershift on A. Then, for any b′ ∈
B, for any M ∈ N

∗ and ε ∈ [0, 1[N∗
with limN→+∞ εN = 0,

lim sup
κ→+∞

(
aε
Mκ,κ (�; b′)

)1/κ = 0. (3.11)

Moreover, for any M ∈ N
∗ and any family {ει′ : ι′ ∈ I ′}

of sequences ει′ which all converge towards 0, the conver-
gence being uniform with respect to the index ι′, the family
of continuous functions

{(z, b′) ∈ C × B 
−→ S
ει′
1/M (�)(z, b′) : ι′ ∈ I ′}

(holomorphic in z) is a bounded family onany compact subset
of C × B.
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Proof Since ψ is a C-regular supershift on A, then, for any
ε ∈ [0, 1[N∗

such that εN → 0 for N → +∞, the sequence
of continuous functions

(
(b, b′) ∈ B 
−→ T

ε
N (�)(b, b′)

)
N≥1

converges uniformly towards (b, b′) −→ �(b + b′) on any
compact subset of B. Moreover, given a family {ει′ : ι′ ∈ I ′}
of sequences in [0, 1[N∗

which all converge to 0, the conver-
gence being uniform with respect to the index ι′ ∈ I ′, the
convergence towards (b, b′) 
−→ �(b + b′) of the family of
sequences of continuous functions

{(
(b, b′) ∈ B 
−→ T

ει′
N (�)(b, b′)

)
N≥1 : ι′ ∈ I ′}

is uniform with respect to the index ι′ ∈ I ′. As a conse-
quence, for each b′ ∈ B, R ≥ 0 and ε ∈ [0, 1[N∗

with
limN→+∞ εN = 0, the sequence

((
γ ε
N ,ν(�)(R, b′)

)
ν∈N

)
N≥1

,

where γ ε
N ,ν(�)(R, b′) is defined by (3.7) when ν ≤ N and

by 0 when ν > N , converges in �2(N) towards

(∫ 1

0
�(Rξ + b′) �ν(ξ) dξ

)

ν∈N
. (3.12)

Moreover, given a family {ει′ : ι′ ∈ I ′} of sequences in
[0, 1[N∗

which all converge to 0, the convergence being uni-
formwith respect to the index ι′ ∈ I ′, and a compact subset K
of B, the convergence in �2(N) towards (3.12) of the family
of sequences

{ ((
γ

ει′
N ,ν(�)(R, b′)

)
ν∈N

)
N≥1

: ι′ ∈ I ′, b′ ∈ K
}

is uniform with respect to both b′ ∈ K and the index ι′ ∈ I ′.
Fix now M ∈ N

∗, b′ ∈ B and R > 0 and ε ∈ [0, 1[N∗

such that limN→+∞ εN = 0. It follows from the previous
considerations, together with relations (3.10) with N = Mκ ,
Cauchy criterion in �2(N) and Cauchy-Schwarz inequality,
that for κ in N large enough (depending on M , b′ and R)

|aε
Mκ,κ (�; b′)|

(
e(M + 1)

2

)3

R
)κ

≤ √
κ

(
2κ

κ

)(
(M + 1) κ

(M − 1) κ

)√
M(2Mκ + 1). (3.13)

It follows from Stirling’s formula (whenM ≥ 2, hence (M−
1)κ ≥ κ) that, provided the choice of κ large enough is
updated,

(
(M + 1) κ

(M − 1) κ

)
= 1

(2κ)!
((M + 1)κ)!
((M − 1) κ)!

≤ 3

2

e−2κ

(2κ)!
√

M + 1

M − 1

((M + 1)κ)(M+1)κ

((M − 1)κ)(M−1)κ

= 3

2
e−2κ (2κ)2κ

(2κ)!(
M + 1

M − 1

)(M−1)κ+1/2 (M + 1

2

)2κ

≤ 3

2
e−2κ (2κ)2κ

(2κ)!

((
1 + 2

M − 1

)M−1
)κ

(
M + 1

2

)2κ √
M + 1

≤ 3

2
e−2κ (2κ)2κ

(2κ)!
(
e
M + 1

2

)2κ √
M + 1

≤ 1√
πκ

(
e
M + 1

2

)2κ √
M + 1. (3.14)

Substituting (3.14) in the right-hand side of (3.13) leads to

|aε
Mκ,κ (�; b′)|

(
e(M + 1)

2

)3

R
)κ

≤
√
2κ

π

(
e
(M + 1)

2

)2κ

(M + 1) ≤
√
2κ

π

(
e
(M + 1)

2

)3κ

,

hence to

|aε
Mκ,κ (�; b′)| Rκ ≤

√
2κ

π
(3.15)

for κ large enough, which proves the first assertion of the
proposition. The second assertion follows from the fact that
estimates (3.15) remain valid when ε is replaced by ει′ and
b′ by an arbitrary element of a compact subset K of B, still
for κ large enough (independently of ι′ ∈ I ′ and b′ ∈ K ). ��

Proposition 3.3, combined with Remark 3.2, suggests nat-
urally the following conjecture, where the regularity of the
sampling has a crucial role.

Conjecture 3.4 A C-valued continuous function ψ on the
real line is a C-regular supershift if and only if ψ is the
restriction to the real line of an entire function.

Remark 3.5 If true, such conjecture would imply that for
some class of potentials x ∈ U 
−→ V (x) (for example,
U = R and V smooth, real, 2π -periodic and non-constant),
the evolution a 
→ ψa(t, x) through the Cauchy prob-
lem for the Schrödinger equation would be such that, for
some ϕ ∈ D((0, T ) × U ,C), the continuous map a 
→
〈ψa(t, x), ϕ(t, x)〉 fails to inherit either Property (1) or (2) in
Definition 1.8. Such a result would be of great interest with
respect to quantum studies considerations.

We present first a positive result within the quite specific
setting of continuous periodic functions on the real line.
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Theorem 3.6 Let T > 0 and ψ be a T -periodic continuous
regularC-supershift onR. Then, there is a T -periodic entire
function F : C → C such that ψ = F|R.

Proof Let

ψ(a) =
∑
κ∈Z

γκ exp

(
2iπκ

T
a

)

be the Fourier expansion of the T -periodic continuous func-
tion ψ in L2(R/TZ). Here, the spectrum ψ̂ = (γκ)k∈Z
belongs to �2(Z). Then, the T -periodic continuous function

ψ̃ : a 
−→ 1

T

∫ T

0
ψ(a − τ) ψ(τ) dτ =

∑
κ∈Z

γ 2
κ exp

(
2iπκ

T
a

)

remains a T -periodic continuous C-supershift on R (with
spectrum (c2κ )κ∈Z ∈ �1(Z)) since one has for any ε ∈ [0, 1[N∗

such that limN→+∞ εN = 0, for any (a, a′) ∈ R
2 and any

N ∈ N
∗, that

N∑
ν=0

(
N

ν

)(
1 + a

2

)N−ν (1 − a

2

)ν

ψ̃

(
a′ +

(
1 − 2

(
ν + εN (N − ν)

N

)))

= 1

T

∫ T

0

( N∑
ν=0

(
N

ν

)(
1 + a

2

)N−ν (1 − a

2

)ν

ψ

(
a′ − τ +

(
1 − 2

(
ν + εN (N − ν)

N

))))
dτ.

Since (a, a′ − τ) remains in the compact subset K − {0} ×
[0, T ] when (a, a′) ∈ K and τ ∈ [0, T ], one needs just
to use the fact that, according to the hypothesis on ψ , for
each family {ει : ι ∈ I ′} such that limN→+∞ ει′,N = 0, the
sequence of functions

(
(τ, a, a′) 
−→

N∑
ν=0

(
N

ν

)(
1 + a

2

)N−ν (1 − a

2

)ν

ψ

(
a′ − τ +

(
1 − 2

(
ν + ει′,N (N − ν)

N

))))

N≥1

converges uniformly on [0, T ]×K , where K is any compact
subset of R2, towards the function (τ, a, a′) 
−→ ψ(a +
a′ − τ), the convergence being uniform with respect to the
index ι′. Since we know now that ψ̃ is a continuousC-regular
supershift, it follows that for any R ∈ R>1, the sequence of
functions

(
a′ ∈ [0, 2π ] 
−→

N∑
ν=0

(
N

ν

)(
1 + R

2

)N−ν

(
1 − R

2

)ν

ψ̃

(
a′ +

(
1 − 2ν

N

)))

N≥1

converges uniformly towards a′ 
−→ ψ̃(a′ + R) on [0, 2π ].
One has for any R > 1, any a′ ∈ [0, 2π ] and any N ∈ N

∗
that

N∑
ν=0

(
N

ν

)(
1 + R

2

)N−ν (1 − R

2

)ν

ψ̃

(
a′ +

(
1 − 2ν

N

))

=
∑
κ∈Z

γ 2
κ

( N∑
ν=0

(
N

ν

)(
1 + R

2

)N−ν (1 − R

2

)ν

exp

(
iκ

(
1 − 2ν

N

)
2π

T

))
exp

(
2iπκ

T
a′
)

=
∑
κ∈Z

γ 2
κ

(
cos

(
1

N

2πκ

T

)
+ i R sin

(
1

N

2πκ

T

))N

exp

(
2iπκ

T
a′
)

. (3.16)

Since the sequence of periodic functions of a′ defined by
(3.16) converges uniformly on [0, 2π ] towards a′ 
−→
ψ̃(a′ + R), it follows from Plancherel’s formula that there
exists a positive constant Cψ̃ (R) such that for any M, N ∈
N

∗,

N∑
κ=−N

|γκ |4
∣∣∣∣ cos

(
1

MN

2πκ

T

)
+ i R sin

(
1

MN

2πκ

T

) ∣∣∣∣
2MN

≤ Cψ̃ (R). (3.17)

Let w = wκ,M,N = 1/(MN ) × 2πκ/T for −N ≤ κ ≤ N .
Observe that

|w| ≤ 1

M

2π

T
, |(i Rw − w2/2)| ≤ |w|

(
R + |w|

2

)

≤ 1

M

2π

T

(
R + π

T

)
(3.18)

for all such w = wκ,M,N . One has, as in (2.5), that when
N ∈ N

∗ tends to infinity

cosw + i R sinw = 1 − w2

2
+ O(1/M4) + i R w + R O(1/M3)

where the error terms O(1/M4) and O(1/M3) are uniform
with respect to the choice of κ in {−N , . . . , N } according to
(3.18). Then, according once more to (3.18), one has, as in
(2.5),

log
(
cosw + i R sinw

)

= log

(
1 + i R w − w2

2

)
+ R O(1/M3)
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= i R w − w2

2
− 1

2

(
i R w − w2

2

)2

+ O((R/M)3)

= i R w + R2 − 1

2
w2 + O((R/M)3)

= i R w + R2 − 1

2
w2(1 − O(R/M)

)
. (3.19)

Let us choose M = [χR], χ > 0 being a uniform constant
large enough, such that the real part of the factor 1−O(R/M)

in (3.19) is bounded from below by 1/2. One has then

∣∣ cosw + i R sinw
∣∣NM ≥ exp

(
NM

R2 − 1

4
w2
)

.

In particular, if w = w±N ,M,N = ±(2π/T ) × (1/M), one
has

∣∣ cosw±N ,M,N + i R sinw±N ,M,N
∣∣NM

≥ exp

(
4π2

T 2

R2 − 1

4M
N

)
= exp

(
4π2

T 2

R2 − 1

4[χR] N

)

It then follows from (3.17) that

|γ±N | exp
(
2π2

T 2

R2 − 1

4[χR] N

)
≤ (Cψ̃ (R))1/4.

Since R can be taken arbitrarily large and

lim
R→+∞

R2 − 1

[χ R] = +∞,

one concludes that for any R′ > 0,

∑
κ∈Z

|γκ | eR′|κ| < +∞,

from which it follows immediately that ψ extends toC as an
entire T -periodic function. ��
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