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Abstract
We consider compact Leviflat homogeneous Cauchy–Riemann (CR) manifolds. In this setting, the Levi-foliation exists and 
we show that all its leaves are homogeneous and biholomorphic. We analyze separately the structure of orbits in complex 
projective spaces and parallelizable homogeneous CR-manifolds in our context and then combine the projective and paral-
lelizable cases. In codimensions one and two, we also give a classification.
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1 Introduction

Foliations arise in various ways. Locally, their geometry is 
clear and it is their global behavior that is of interest, par-
ticularly, since it is possible to have leaves in a foliation that 
are not even close to being homeomorphic. One spectacular 
manifestation of this phenomenon occurs in the now classic 
Reeb foliation of S3 that has one compact leaf while all other 
leaves are non-compact and accumulate to the compact one.

In this paper, we study the geometry of compact homo-
geneous Leviflat CR-manifolds. These have the form 
� = G∕H , where G is a Lie group acting on � by CR-auto-
morphisms. Because the CR-structure in the homogeneous 
setting is analytic, it turns out that there is a foliation of 
the CR-manifold whose leaves have tangent bundles corre-
sponding to the distribution given by the zero spaces of the 
Levi form and we call this the Levi-foliation. We prove in 
Sect. 3.1 that the leaves of this Levi-foliation on the homo-
geneous CR-manifold are homogeneous themselves under 
the action of a complex Lie subgroup of G. This setting is 
very special, since this implies that all the leaves are biho-
lomorphic to one another.

We first consider the parallelizable setting in the fourth 
section. In codimension less than or equal to two, the radical 
orbits are closed. The quotient by the radical orbits is a com-
pact homogeneous space of a maximal complex semisimple 
factor of the Lie group G, again with discrete isotropy. It 
is known that every semisimple complex Lie group con-
tains uniform, discrete subgroups and the structure of the 
corresponding homogeneous spaces is generally difficult to 
analyze. However, because the base of the radical fibration 
is compact and the interesting part of the geometry takes 
place in the radical orbits, we avoid having to deal with such 
complexities. Settings where the leaves are dense are the 
most interesting in our opinion and we give a classifica-
tion of these, as well as the easier case where the leaves are 
not dense. The radical orbits are towers of Abelian complex 
Lie groups and the geometry of such towers is understood. 
There are also examples given to illustrate the theory in a 
concrete fashion.

Projective orbits are studied in section five. By a result 
of Chevalley, the orbits of the commutator subgroup of the 
complex hull Ĝ of G are closed, since that group is acting as 
an algebraic group in this setting. Using methods from the 
theory of algebraic groups which are now at hand we show 
that the radical of Ĝ is central and, as a consequence, that 
the leaves are always flag manifolds. In low codimension, 
there is not much room left for transversal directions and the 
classification of the surfaces that occur as the corresponding 
leaf-spaces is well known, see [39] and [22]. This yields the 
classification in the projective setting.
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It is well known that every homogeneous CR-manifold 
admits a homogeneous fibration, called the CR-normalizer 
fibration, whose fiber is parallelizable and whose base is an 
orbit in some projective space [23, 35], etc. In the sixth sec-
tion, we use this fibration in order to combine the previous 
results to get the classification in the general setting. In the 
final section, we show that the spaces under consideration 
always admit globalizations.

Remark 1.1 The main results in this paper were in the first 
author’s Ph.D. thesis [2].

2  Preliminaries

2.1  CR‑manifolds

We shall begin by collecting some basic facts about CR-
manifolds. For the general theory and more details, we refer 
the reader to [3, 6, 8, 15, 17, 19, 26, 32, 33, 36].

A CR-manifold of type (m, l) is a pair (�,H) consisting 
of a smooth manifold � of dimension m and a complex sub-
bundle H , called a CR-structure, of the complexified tan-
gent bundle Tℂ� of complex rank l such that the following 
conditions hold: 

(1) H ∩ H̄ = (0) , i.e., the zero section.
(2) H is involutive, i.e., the Lie-product [� , �] is a smooth 

section whenever � and � are smooth sections of H.

One observes that the CR-structure H satisfies the inequality 
0 ≤ l ≤ m∕2 . In case l = 0 , we call H a totally real structure. 
We also remark form this definition the following. 

 (1′) If �p, �p ∈ Hp and ℜ�p = ℜ�p , then �p = �p . Thus, 
we can define an almost complex structure on the 
2l-dimensional (real) subbundle ℜH = H + H̄ by 
the following: If � = X1 + iX2 ∈ H then 

 (2′) The CR-structure H being involutive does not imply 
necessarily that ℜH is involutive. Nevertheless, for all 
X, Y ∈ ℜH , one has [X, Y] + [JX,JY] ∈ ℜH and the 
Nijenhuis tensor

One thus can redefine a CR-manifold to be a triple (�,R,J) , 
where R is a real subbundle of T� of rank 2l with an almost 
complex structure tensor J  so that the pair (R,J) has an 
everywhere vanishing Nijenhuis tensor.

J ∶ ℜH → ℜH,

X1 ↦ X2.

N(X, Y) ∶= J([X, Y] + [JX,JY]) − [X,JY]. − [JX, Y] = 0.

A smooth embedding � of a CR-manifold (�,H) of 
type (m,  l) into a complex manifold X is called a CR-
embedding if �(�) is a CR-manifold with a CR-structure 
H�(�) ∶= Tℂ�(�) ∩ T1,0X . In this case, we say that � is 
a CR-submanifold of X. If l = m − dimℂ X  , then we say 
that � is a generic CR-submanifold of X and the latter 
is a complexification of the CR-manifold � . We remark 
that, if � has codimension d in its complexification X, i.e., 
m = 2 dimℂ X − d , then,

Note that the integer d can be found without using dimℂ X 
explicitly in the calculation. Hence, we define the codimen-
sion of � to be

A smooth map f between two CR-manifolds (�1,R1,J1) and 
(�2,R2,J2) is called a CR-map if f∗(R1|x) = R2|f (x) and 
J2◦f∗ = f∗◦J1 . Analogously, a smooth fiber bundle �1 → �2 
is called a CR-bundle if the bundle map is a CR-map. We 
now prove the following simple but crucial lemma.

Lemma 2.1 (The Codimension Lemma) Let (E,RE) and 
(B,RB) be two CR-manifolds. Suppose that there exists 
a CR-fibration � ∶ E ⟶ B . Then, the fiber F is a CR-
manifold with a CR-structure RF ≅ ker�∗|RE . Moreover,

(a) dimℝ E = dimℝ F + dimℝ B.
(b) codim E = codim F + codim B.

Proof Let p ∈ E and q ∶= �(p) and consider the differential 
map

Since �−1(q) ≅ F  and � is submersion onto, then 
TpF = ker�∗|TpE . Moreover, since �∗(RpE) = RqB as � is a 
CR-map, one has the following surjective linear map

with

Since dimRpE (resp. dimRqB ) is independent of the choice 
of p ∈ E (resp. q ∈ B ), and dimRpE = dimRpF + dimRqB , 
we deduce that dimRpF is constant for all p ∈ � . Thus, one 
can define the vector subbundle RF ∶=

⋃
p∈� RpF of RE 

and provide it with an almost complex structure by restrict-
ing the almost complex structure of RE . Clearly, this almost 
complex structure on RF satisfies condition (2�) above. 

d = dimℂ X − l = m − 2l.

codim � ∶= m − 2l.

�∗|TpE ∶ TpE ⟶ TqB.

�∗|RpE
∶ RpE ⟶ RqB

RpF ∶= ker�∗|RpE
.
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Thus, (F,RF) is a CR-manifold, and the first part of the 
lemma is proved.

Now, we prove the second part of the lemma. For part 
(a), let U ⊂ B be a local trivialization of the bundle, i.e., 
�−1(U) ≅ F × U . Hence,

For part (b), one has the following two equations:

Therefore,

  ◻

A vector field � ∈ � (�, T�) is called a CR-vector 
field if the local one-parameter group of transformations 
induced by � consists of CR-transformations.

A CR-manifold (�,H) is called analytic if � is a real-
analytic manifold and H is locally generated by real-ana-
lytic local sections in Tℂ� . In other words, H is locally 
generated by complex-valued vector fields whose coeffi-
cient functions are real-analytic. Such manifolds satisfy 
strong properties (see [3]); Every analytic CR-manifold 
has a complexification. Moreover, if f ∶ �1 → �2 is an 
analytic CR-map between two analytic CR-manifolds, 
then there exist complex tubes U and V containing �1 
and �2 , respectively, and a holomorphic map f̂ ∶ U → V  
with f̂ |� = f  . Similarly, if � ∈ T� is an analytic vector 
field then the local CR-transformations in � induced by � 
extend to holomorphic transformations on a tube U around 
� . Those holomorphic transformations induce a holomor-
phic vector field � on U with �(p) = ℜ�(p) for all p ∈ �.

On the other hand, if (�,H) is a CR-manifold then, as 
noted above, the distribution ℜH is not necessary integra-
ble (i.e., not involutive). To measure the degree to which 
this distribution fails to be involutive, we introduce the 
so-called Levi form to be the vector valued 2-form, for 
all x ∈ �

where � is the canonical projection of Tℂ�  onto 
Tℂ𝛴∕H + H̄ . Clearly, if L degenerates everywhere, then 
ℜH = H + H̄ is involutive. In this case, (�,H) is said to be 
Leviflat. It follows by Frobenius Theorem that � is foliated 
by complex leaves. If in addition this manifold is analytic, 
then the following theorem, due to M. Freeman (see Theo-
rem 5.1 and its corollary in [17]) and C. Rea (see [33]), gives 

dimℝ E = dimℝ �−1(U) = dimℝ U + dimℝ F = dimℝ B + dimℝ F.

dimℝ TpE = dimℝ TpF + dimℝ TqB,

dimℝ RpE = dimℝ RpF + dimℝ RqB.

codim E = codim F + codim B.

L ∶ H ×H → Tℂ𝛴∕H + H̄

L(𝜁x, 𝜉x) = 𝜋x
(
[𝜁 , 𝜉]x

)
,

a more explicit local picture of this foliation. We state it in 
the following way.

Theorem 2.1 (Freeman 1974) Let � be a real-analytic CR-
manifold of codimension k, and let X be a complexification of 
� . Then � is Leviflat if and only if for each x ∈ � there exists 
a local model (U,�) consisting of an open neighborhood 
U ⊂ X of x and a biholomorphic map � ∶ U → �k × �n−k 
where �d denotes a polydisk of dimension d in ℂd containing 
the origin. Furthermore,

As a consequence, if � a Leviflat analytic CR-manifold 
of codimension k and if X is a complexification of com-
plex dimension n, then � is foliated by complex manifolds 
F ∶= {L�} where each complex leaf L� ∈ F  is locally 
biholomorphic to �n−k . The foliation F  is called the Levi-
foliation on �.

2.2  Homogeneous CR‑manifolds

The main references for this section are [6, 19, 35], where 
the reader can also find more details.

A CR-manifold (�,H) is called a homogeneous CR-man-
ifold if there exists a Lie group G acting transitively on � as 
a group of CR-automorphisms. It is proved in [35, Zusatz 
zu Satz 2] that H is locally generated by analytic sections 
in Tℂ� . Therefore, since smooth homogeneous manifolds 
are analytic, then every homogeneous CR-manifold has a 
complexification.

If we assume that the action of G on � is almost effective, 
then we can identify the Lie algebra � of the Lie group G 
with CR-fundamental vector fields in the Lie algebra of CR-
vector fields on � . As a result, for every � ∈ � there exists a 
tube U� containing � in X such that � extends to a holomor-
phic vector field � on U� so that ℜ� = � . Moreover, since � 
is finite dimensional, we can redefine the complexification X 
of � to be the intersection of all tubes of the corresponding 
CR-vector fields that form a finite basis of � . Consequently, 
every CR-vector field on � extends holomorphically and 
uniquely on X, and hence we can define �̂ to be the complex 
Lie algebra that consists of all those extended holomorphic 
vector fields. This being so, any complex Lie group Ĝ with 
Lie algebra �̂ acts locally and holomorphically on X. In an 
ideal situation, this local action is globalizable.

To summarize, suppose that � = G∕H is a homogeneous 
CR-manifold where H is a closed subgroup of G, and let Ĝ be a 
complex Lie group with Lie algebra �̂ . If the complexification 
X of � can be taken to be the homogeneous complex manifold 
Ĝ∕Ĥ , where Ĥ ∩ G = H , i.e., � is the orbit of the subgroup G 
in X, then we say that � is globalizable and X is its globalization.

�(� ∩ U) = (�k ∩ℝ
k) × �n−k.



 Complex Analysis and its Synergies (2021) 7:25

1 3

25 Page 4 of 20

A generalization of the normalizer fibration of complex 
homogeneous manifolds (see e.g., [39]) is the CR-normal-
izer fibration (an analog of the �-anticanonical fibration first 
introduced by Huckleberry and Oeljeklaus [23]. See also 
[6] for more details. This fibration plays a central role in our 
classification in the final section.

Theorem 2.2 (CR-normalizer fibration) Let � = G∕H be 
a homogeneous CR-manifold, where G is a connected Lie 
group and H is a closed subgroup of G. Then there exists a 
closed subgroup J of G containing H,  such that base of the 
following fibration is CR-equivariantly embedded in some 
projective space ℙk.

Moreover, J is contained in the normalizer of the con-
nected component H0 of H in G. Thus, the fiber F = J∕H 
is a parallelizable homogeneous CR-submanifold of �, i.e., 
F = L∕�  for a discrete subgroup � ∶= H∕H0 of the Lie 
group L ∶= J∕H0.

Note that since the base G/J of the normalizer fibration is 
a projective space, then it always possesses a globalization 
Ĝ∕Ĵ  , where Ĝ is a complex Lie subgroup of the PSLn+1(ℂ) . 
On the other hand, we will see that the parallelizable fiber 
F = L∕�  also possesses a globalization L̂∕�  when its codi-
mension is less than or equal two (see Sect. 4).

3  Leviflat homogeneous CR‑manifolds

3.1  Homogeneity of the leaves

Lemma 3.1 Let L be any leaf in the Levi-foliation F  of a 
Leviflat homogeneous CR-manifold � = G∕H . Then, for any 
g ∈ G, either (g ⋅ L) ∩ L = ∅ or g ⋅ L = L.

Proof Suppose there exists g ∈ G with gL ∩ L ≠ ∅ . In order 
to show the set

is the whole leaf L , we show that it is both closed and open: 

(1) (Closed) Given a sequence {yn} ⊂ Y  such that it con-
verges to y ∈ L . We need to show that gy ∈ L because 
then we observe that y ∈ Y  . Indeed, let W be a ‘leaf-
chart’ containing y, i.e., �(L ∩W) = �(W) ∩ℝd . Thus, 
L ∩W = F−1(0) where F ∶= �◦� and � ∶ ℝn

→ ℝn−d 
is the projection. Hence, W ∩ L is a closed subset of L , 
which hence implies that gW ∩ L is also a closed sub-

(1)� = G∕H
F
������→ G∕J ↪ ℙk.

Y ∶= {y ∈ L; g ⋅ y ∈ L}

set of L . Therefore, gW ∩ L contains gyn → gy for all 
n ≥ N for sufficiently large N, i.e., gy ∈ L , as wanted.

(2) (Open) Let U be an open neighborhood of a point x ∈ Y  
in the leaf L . Since g is a CR-automorphism, g(U) is a 
(local) open complex manifold in � . But L locally is 
the unique such manifold (see Theorem 2.1) and since 
g(U) ∩ L ≠ ∅ , it follows that g(U) ⊂ L . So U ⊂ Y  and 
Y is open.

  ◻

Corollary 3.1 (Leaf-stabilizer) Let L be the leaf of the Levi-
foliation F  through the base point x0 ∈ � . Then there 
exists a connected (not necessarily closed) Lie subgroup 
GL of G,  called the leaf-stabilizer, such that L = GL ⋅ x0 . 
In particular, for all g ∈ G, the group gGLg

−1 stabilizes 
the leaf gL through the point x1 ∶= g ⋅ x0, and hence 
F = {gL}g∈G = {gGLg

−1
⋅ x0}g∈G.

As a consequence of Corollary 3.1, we have the following: 
since the restriction of the group G-action on � to any leaf 
L ∈ F  is holomorphic, all leaves of the Levi-foliation are 
biholomorphic. In particular, if one leaf is compact (resp. 
dense) in � then all leaves of the Levi-foliation are compact 
(resp. dense) in �.

Corollary 3.2 Let L ∈ F  be the leaf through the base point 
x0 ∈ � = G∕H and let GL be the leaf-stabilizer. Then the 
isotropy subgroup H stabilizes L . Consequently, the con-
nected component H◦ of H is contained in GL, and moreover 
H normalizes GL . In particular, GLH is a Lie subgroup of G.

Proof Clearly, x0 ∈ L ∩ h(L) for all h ∈ H . Then, by Lemma 
3.1, h(L) = L for all h ∈ H . Hence, since the leaf-stabilizer 
GL is connected, we have H◦ is a Lie subgroup of GL . 
Furthermore, the connected group hGLh

−1 (see Corollary 
3.1) stabilizes the leaf hL = L . Thus hGLh

−1 = GL for all 
h ∈ H .   ◻

In particular, if the leaf L is compact (hence all leaves are 
compact) then the Lie subgroup GL ⋅ H is a closed subgroup 
of G and hence we have the following fiber bundle

We will discuss this fibration in more detail in the next 
section.

Corollary 3.3 Let M be the connected complex Lie subgroup 
of G corresponding to the maximal complex Lie subalgebra 
� ∶= � ∩ i� of � . Then M ⊂ GL.

Proof The holomorphic orbit M ⋅ x0 is a complex submani-
fold of � . However, by Freeman’s Theorem 2.1, the leaf L , 

� = G∕H ⟶ G∕GLH.
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locally, is the unique maximum complex submanifold of � 
passing through the base point x0 . Thus, locally we have 
M ⋅ x0 ⊂ L . The desired result follows by repeating the local 
process along the M-orbit.  ◻

Proposition 3.1 (Dense Leaves) Let � = G∕H be a Leviflat 
homogeneous CR-manifold and let F  be its Levi-foliation. 
Suppose that one of the leaves of F  is dense in � . Then all 
leaves of F  are dense in �, and the leaf-stabilizer GL is a 
normal Lie subgroup of G.

Proof Let L and L1 be two dense leaves, then we show that 
�L = �L1

 where �L and �L1
 are the Lie algebras of GL and GL1

 . 
It suffices to show that in some local model

every holomorphic vector field �̂  defined by � ∈ �L is tan-
gent to every �-fiber.

Let L locally accumulate to the natural �-fiber. In con-
crete terms, let (z1,… , zn) be polydisk coordinates of U and 
for � ∈ �L write

for some holomorphic functions hj ∶ U → ℂ . Since �̂  is tan-
gent to L , there exists a sequence (z1

m
,… , zk

m
) that converges 

to 0 in �k so that

for all m. Thus, the complex variety

contains the sequence

of local subvarieties which accumulates to the natural �-fiber 
and consequently h1,… , hk vanish identically on U. This is 
equivalent to �̂  being tangent to every local leaf in U and the 
desired result follows by the identity principle.   ◻

In case � = G∕H possesses a globalization X ∶= Ĝ∕Ĥ , 
we have the following generalization of the above discussion.

Lemma 3.2 Suppose that X = Ĝ∕Ĥ is a globalization of the 
Leviflat homogeneous CR-manifold � = G∕H . Define the 
complex stabilizer of the leaf L through the base point x0 to 
be the connected complex Lie subgroup ĜL of Ĝ correspond-
ing to the complex Lie subalgebra �̂L ∶= �L + i�L of �̂ . Then 
ĜL has the following properties:

� ∶ U ∶= �k × �n−k ⟶ �k

�̂ =

n∑

j=1

hj
�

�zj

hj(z
1
m
,… , zk

m
, ⋅) = 0

V ∶=
{
h1 = h2 = ⋯ = hk = 0

}

Vm =
{
h1(z

1
m
,… , zk

m
, ⋅) = ⋯ = hk(z

1
m
,… , zk

m
, ⋅) = 0

}

(a) The leaf L is the holomorphic orbit of ĜL through the 
base point.

(b) The connected component Ĥ◦ of the isotropy Ĥ is con-
tained in ĜL.

Proof 

(a) Follows from the definition of ĜL.
(b) At the Lie algebra level and by Corollary 3.3, we have 

� = � ∩ i� ⊂ �L . Now write �̂ and �̂L as follows: 

 Consequently, the complex codimension of the Lie 
algebra �̂L in �̂ is equal to the real codimension of �L 
in � and we have the following equalities: 

 Therefore, dimℂ Ĥ = dimℂ

(
ĜL ∩ Ĥ

)
 . Which implies 

�H◦ ⊂ �GL as desired.
  ◻

Remark 3.1 One can define the complex stabilizer of the 
leaf L in the above lemma to be the (possibly not connected) 
complex Lie group

Clearly, we have �H◦,H ⊂ �J . We shall henceforth abuse nota-
tion and write ĜL for Ĵ .

3.2  Minimality condition

The globalization Ĝ∕Ĥ is not unique. For example, if 
G∕H = S1 , then Ĝ∕Ĥ can be ℂ∗ , a 1-dimensional complex 
torus, or ℙ1 (e.g., see Theorem 5.3). Furthermore, in a way that 
can be easily determined, such phenomena can arise in more 
complicated examples. To remedy this we impose the mini-
mality condition that Ĥ = HĤ◦ . This can always be arranged 
by noticing that the quotient Ĥ∕(HĤ◦) is discrete and

is a covering which is biholomorphic over � . One then 
replaces Ĥ by HĤ◦.

Recall that it has been shown that �H◦ ⊂ �GL (see Lemma 
3.2). Therefore, under the minimality assumption it follows 

�� = �∕� ⊕ i(�∕�) ⊕ �,

��L = �L∕� ⊕ i(�L∕�) ⊕ �.

dimℂ Ĝ − dimℂ ĜL = dimℝ G − dimℝ GL

Cor.3.2
= dimℝ � − dimℝ L

= dimℂ X − dimℂ L

= dimℂ Ĝ∕Ĥ − dimℂ ĜL∕ĜL ∩ Ĥ.

�J ∶=
{
g ∈ �G; g(L) ⊂ L

}
.

Ĝ∕(HĤ◦) ⟶ Ĝ∕Ĥ
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that �H ⊂ �GL where ĜL is defined to be the (possibly not con-
nected) stabilizer of L in Ĝ (see Remark 3.1). The connected 
component of the identity of this complex Lie group is well 
defined. But since L is at first not known to be closed, in 
arguments where this stabilizer is needed we go to a cover-
ing and we simply defined the leaf-stabilizer to be ĤĜL

◦

 or 
equivalently HĜL

◦

.

3.3  The role of compactness of leaves

Let L  be a foliation on a smooth manifold M. Define the 
leaf-space M∕L  of L  to be the set of equivalence classes, 
where two points are equivalent if and only if they lie in the 
same leaf of the foliation. This space may have a compli-
cated topological structure, as it is not necessarily Hausdorff 
even if all leaves are compact (see e.g., [38]). However, Reeb 
showed in his thesis [34] that if all leaves are compact and 
of codimension one, then the leaf-space is Hausdorff. Nev-
ertheless, we will see that when � is a Leviflat homogene-
ous CR-manifold and all leaves of the Levi-foliation F  are 
compact, then the leaf-space �∕F  is always a reasonable 
homogeneous CR-manifold.

Now, let � = G∕H be a Leviflat homogeneous CR-mani-
fold of codimension k, and let F  be the Levi-foliation on � . 
Suppose the leaf L = GL ⋅ x0 through the base point in � is 
compact. Then, GLH is a closed subgroup of G. Therefore, 
we have the (homogeneous) leaf-reduction

The base is a k-dimensional homogeneous manifold. 
Locally, the leaf-reduction is equivalent to a projection (see 
Freeman’s Theorem 2.1)

Since any two local models are holomorphically equivalent, 
it follows that �∕F  has the structure of a k-dimensional 
CR-manifold so that � → �∕F  is a CR-bundle. Since the 
CR-automorphisms of � act holomorphically on the local 
models, G acts as a group of CR-automorphisms on the base. 
Summarizing, we have the following situation in the case of 
compact leaves.

Proposition 3.2 (Compact leaves) Let � = G∕H be a Levi-
flat homogeneous CR-manifold of codimension k. If some 
leaf L is compact, then every leaf is compact, and the leaf-
space �∕F  is Hausdorff in the quotient topology. This 
leaf-space has a canonically defined k-dimensional  (totally 
real) homogeneous CR-manifold structure. The reduction 
map � → �∕F  is a CR-bundle and G-homogeneous, being 
realized as the homogeneous fibration

� = G∕H ⟶ G∕GLH = �∕F.

(�k ∩ℝ
k) × �n−k ⟶ (�k ∩ℝ

k).

with G acting as a group of CR-automorphisms on the base.

In particular, if � is compact and has codimension k then 
�red is also compact and has dimension k. For example, 
if k = 1 then �red = S1 . Or if k = 2 , then �red is S2 , ℝℙ2 , 
S1 × S1 , or the Klein bottle (see [28]).

In passing, we note that if � is not compact, then �red 
need not be compact, as well. In codimension one we could 
have �red = ℝ , and in codimension two �red = ℝ2 , S1 ×ℝ , 
or the Möbius strip. This completes the list of 2-dimensional 
homogeneous manifolds under the action of a Lie group in 
[28].

4  Parallelizable CR‑manifolds

We discuss in this section compact parallelizable homoge-
neous CR-manifolds. They have the form G∕�  , where G 
is a simply-connected real Lie group and �  is a discrete 
subgroup of G. Under some mild restrictions we show that 
the radical orbits are closed. In codimensions one and two 
this is sufficient in order to show that a certain tower of 
Cousin groups exists and contains the structure. We also 
prove, among other results, the existence of the globaliza-
tion Ĝ∕�  under the assumption that the CR-manifold has 
codimension less than or equal two. This section ends with 
a notable example.

4.1  Cousin groups

Let �̂ ∶= � + i� be the complexification Lie algebra � of G, 
and consider the maximal complex ideal � ∶= � ∩ i� of 
� . Since dimℝ �̂ = 2 dimℝ � − dimℝ � , one observes that 
dimℝ �̂ − dimℝ � = dimℝ � − dimℝ � , i.e., the real codi-
mension of � in � is equal to the real codimension of � 
in �̂ . Therefore, if M is the connected normal subgroup of 
G corresponding to � , then � = G∕�  is a Leviflat generic 
homogeneous CR-manifold, and the leaves of the Levi-foli-
ation are the M-orbits. Note that M-orbits may or may not be 
closed and the discussion so far is very general.

By definition, a connected complex Lie group that has 
no non-constant holomorphic functions is called a Cousin 
group. Since the adjoint representation of the group maps 
into some GL(n,ℂ) and the latter is holomorphically sepa-
rable, it follows that this representation is trivial. But the 
kernel of the adjoint representation is central and thus every 
Cousin group is Abelian. Now a connected Abelian complex 
Lie group G is the quotient of some vector space ℂn by a 
discrete subgroup �  which has rank n + k with 1 ≤ k ≤ n 
in our setting. Hence its topological structure is known, 

� = G∕H ⟶ G∕GLH = �∕F =∶ �red
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namely it is isomorphic (as real Lie groups) to a product 
V�∕� ×ℝn−k , where V�  denotes the real space of �  in ℂn . 
Thus K ∶= V�∕�  is the maximal compact subgroup of G 
and is isomorphic to (S1)n+k.

It is interesting to note that G can be written as a quotient 
of (ℂ∗)n by a discrete subgroup � of rank n − k and that the 
Cousin group G = ℂn∕�  fibers (in many ways) as a (ℂ∗)n−k

-bundle over a complex torus T, e.g., see Abe–Kopfermann 
[1]. Let Y be the corresponding (S1)n−k-subbundle over T for 
any such choice. From the point of view of complex geom-
etry it is essential to note that the M-orbits in Y are dense and 
form an infinite-to-one covering of the base torus T.

In the next section, we continue our investigation of Levi-
foliations of compact CR-manifolds of the form � ∶= G∕�  
where �  is a discrete subgroup of the real Lie group G. 
Perhaps, surprisingly, the basic building blocks that can 
occur in this setting are compact homogeneous complex 
manifolds and fiber bundles involving powers of S1 lying 
inside corresponding powers of ℂ∗-bundles in X, as we noted 
above. We will outline how this happens, even in the setting 
where the leaves are dense—so no reasonable (i.e., Haus-
dorff) leaf-space exists. This gives a rather explicit descrip-
tion of the structure even in this setting. When the leaves 
of the Levi-foliation are compact then the leaf-space of the 
Levi-foliation is just the base of the leaf-reduction fibration 
G∕�

M∕M∩�
�����������������������������→ G∕M�  while the leaves are nothing but the fib-

ers M∕M ∩ �  , where M is the connected complex Lie sub-
group correspondent to maximal complex ideal � = � ∩ i�.

4.2  Building blocks in the setting of dense leaves

We first recall the fact that any connected and simply-con-
nected complex solvable Lie group admits a faithful repre-
sentation. Moreover, it is biholomorphic (as manifolds) to 
some ℂn and its connected Lie subgroups are closed and 
simply-connected, see [13]. The following theorem (a spe-
cial case of [35, Satz 1.4.2.1]) ensures the existence of the 
globalization Ĝ∕�  of G∕�  (see also [19, Theorem 2.7]).

Theorem 4.1 Let G be a connected and simply-connected 
Lie group with Lie algebra � . Suppose that � ∶= G∕�  is a 
compact parallelizable homogeneous manifold of codimen-
sion (i.e., the real codimension of the maximal complex ideal 
� ∶= � ∩ i� in � ) less than or equal to 2. Then G is a closed 
subgroup of the connected and simply-connected complex 
Lie group Ĝ corresponding to the complexified Lie algebra 
�̂ ∶= � + i� (and so G∕�  is an orbit in Ĝ∕�  ). Moreover, the 
Levi-factor of Ĝ is equal to the Levi-factor of G, i.e., Ŝ = S.

Proof Let Ĝ = R̂⋊ Ŝ and G = R⋊ S be Levi-decomposi-
tions of Ĝ and G, respectively. Since R is connected and 
simply-connected then, as remarked above, it is closed in 
its complexification R̂ . On the other hand, since � ⊲ � then 

by the linearity of Lie brackets we deduce that � ⊲ �̂ . Thus, 
� ∩ �̂ is a complex semisimple ideal of �̂ . However, the 
complex semisimple Lie algebra �̂∕� ∩ �̂ is a subalgebra of 
the complex Lie algebra �̂∕� . The latter has dimension less 
than or equal two. Hence, dimℂ �̂∕� ∩ �̂ ≤ 2 , i.e., ̂� = � ∩ �̂ 
since the smallest complex (non-Abelian) simple Lie algebra 
is ��2(ℂ) and it has dimension 3. We have � = � ∩ �̂ = �̂ , 
and consequently, G is a closed subgroup of Ĝ and we can 
consider the orbits, � = G∕� ↪ Ĝ∕� =∶ X .   ◻

Clearly, if � = G∕�  has codimension 1 or 2, then G can-
not be semisimple. In higher codimensions, it is no longer 
true since, for instance, we have the compact real forms of 
complex semisimple Lie groups.

4.2.1  Reduction to the solvable case

As we will see in Sect. 5 that if Ĝ acts on a projective mani-
fold then the radical orbits are closed, see Lemma 5.2. Thus, 
in the following theorem, we restrict ourselves to complex 
groups with no non-trivial projective representation, and we 
prove that the radical orbits are closed (see [20, Theorem 2] 
and [21, Proposition 2.10] for a general result). Therefore, 
the first building block will be the compact base of the radi-
cal fibration.

Proposition 4.1 (Radical-Fibration) Let X = Ĝ∕�  be a 
homogeneous parallelizable complex manifold, where Ĝ is 
a connected and simply-connected complex Lie group, and 
�  is a discrete subgroup. Let Ĝ = Ŝ⋉ R̂ be a Levi-decompo-
sition. Assume there is no non-trivial projective representa-
tions of Ĝ . Then the R̂-orbits are closed, and we have the 
following fibration.

where � ∶= Ŝ ∩ R̂�  . Hence, in codimension one or two, the 
base Ŝ∕� = �(�) of the radical fibration (2) is a compact 
complex manifold.

Proof If Ĝ is solvable then the proposition follows. Suppose 
now that Ĝ is not solvable. If R̂�  is a closed subgroup of Ĝ , 
we are done. Assume otherwise, that is the Lie subgroup R̂�  
of Ĝ is not closed.

Claim: There exists a closed connected solvable complex 
Lie subgroup Ĥ of Ĝ containing the connected component 
I0
1
 of the closure I1 ∶= cl

Ĝ
(R̂� ).

Proof of Claim: It follows from Zassenhaus Lemma [5, 
Proposition 2] that I0

1
 is solvable, but of course not necessar-

ily complex. Nevertheless, let I2 be the connected complex 
subgroup of Ĝ corresponding to the complexified Lie algebra 
of I1 and consider the connected component I0

2
 and note that 

it is solvable. Repeat the process and note that since Ĝ is not 

(2)� ∶ Ĝ∕�
R̂∕R̂∩�
�������������������������→ Ĝ∕R̂� = Ŝ∕�,
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solvable and it has a finite dimension, there exists a proper 
connected closed solvable complex Lie subgroup In =∶ Ĥ 
that contains I0

1
⊃ �R , as desired.

Now, by our assumption, the homogeneous space 
Ĝ∕N

Ĝ
(Ĥ) is trivial as it is a projective manifold. That means, 

N
Ĝ
(Ĥ) = Ĝ , i.e., Ĥ is a connected normal complex solvable 

subgroup of Ĝ , hence Ĥ = R̂ ≠ Ĝ . This implies I0
1
= R̂ and 

hence I1 = R̂�  , which contradicts our assumption, i.e., after 
all, R̂�  is a closed subgroup of Ĝ .   ◻

By Theorem 4.1, S = Ŝ and, as a consequence, the S-orbit 
through the base point is complex and it lies in � = G∕�  . 
Thus, the S-orbit lies in the leaf through the base point. 
Hence, in the induced radical fibration of � we have,

and � maps onto the base Ŝ∕� implying this base 
is compact.  By the Codimension Lemma 2.1, 
codim R∕R ∩ � = codim � . Hence we only have to study 
Levi-foliation when G is solvable with more emphasis on 
dense Levi-foliation.

4.2.2  Reduction to the nilpotent case

The following theorem can be found in [29, Theorem in §5] 
and [30, Theorem 4.1].

Lemma 4.1 (Mostow fibration) With the above notation, let 
G and Ĝ be solvable Lie groups, and let N and N̂ be their nil-
radicals. Then, the N-orbits (resp. the N̂-orbits) in � (resp. 
in X) are closed and therefore we can consider the following 
commutative diagram of nilmanifold-bundles

with the right vertical arrow being holomorphic.

Note that, the base G∕N�  of the Mostow fibration is an 
Abelian Lie group as N contains the commutator subgroup 
of G. But since we have already discussed in Sect. 4.1 the 
Levi-foliation on Abelian Lie groups, we shall then focus our 
attention on Levi-foliation on the fiber of the Mostow fibra-
tion, i.e., we shall next study the Levi-foliation on compact 
parallelizable nilmanifolds.

Suppose Ĝ is a connected, simply-connected nilpotent 
complex Lie group. Since the exponential map exp ∶ �̂ → Ĝ 
is one-to-one and onto, for any Lie subgroup Ĥ of Ĝ we can 
define its complex hull ⟨Ĥ⟩

Ĝ
 to be the smallest connected 

complex subgroup of Ĝ containing Ĥ . Now assume �  is a 

G∕�
R∕R∩�

�����������������������������������������������→ G∕R� = Ŝ∕�

discrete subgroup of Ĝ with ⟨� ⟩
Ĝ
= Ĝ . Then it was shown 

in [18, Theorem 4], using ideas of Barth–Otte [7] that the 
center Ẑ of Ĝ has closed orbits in Ĝ∕� .

Definition 4.1 (Abelian Group Tower) An Abelian Lie 
group (resp. Cousin group) tower of length one is an Abe-
lian complex Lie group (resp. Cousin group). An Abelian 
group (resp. Cousin group) tower of length n > 1 is an Abe-
lian complex Lie group (resp. Cousin group) bundle over 
an Abelian complex Lie group (resp. Cousin group) tower 
of length n − 1.

Let us further suppose that � = G∕�  is a generic homo-
geneous CR-manifold of codimension k with globalization 
X = Ĝ∕�  , where Ĝ is connected, simply-connected, nilpo-
tent complex Lie group. Assume as well that the leaves of 
the Levi-foliation are dense. Then O(X) = ℂ , the reason is 
that the restriction of any holomorphic function f ∈ O(X) 
to the compact manifold � attains its maximum, say at the 
point y ∈ � . Now, let L be the leaf through y and note that, 
by the maximum principle, f |L is constant which in turn 
implies that f |� is also constant since L is dense in � . Recall 
that, locally � = �n−k × Re �k and X = �n−k × �k where �j 
is a polydisk in ℂj . Thus, f itself must be constant, for a 
holomorphic function cannot be non-constant in only one 
real part. As a consequence, it follows that, ⟨� ⟩

Ĝ
= Ĝ . In 

the latter setting it is known, see [31] or [4], that Ĝ∕�  is a 
Cousin tower. There is an induced fibration of � , see Fig. 1. 
Two cases can occur at each step of the tower: if F̂j is a 

Fig. 1  Cousin Tower (CT)
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non-compact Cousin group of codimension nj , then there 
exists a holomorphic fibration, see e.g., [1] or [40],

and an induced fibration of the real fiber

If F̂j is compact, then Fj = F̂j is a complex torus (here set 
nj = 0 ). For dimension reasons, we then have

Furthermore, the leaves of the Levi-foliation on � induce a 
Levi-foliation on each fiber Fj in the Cousin tower where 
each leaf LFj

 of this induced foliation can be expressed as 
the covering

The following figure summarizes the obtained reductions in 
this chapter [ �l denotes the base of the radical fibration (2)].

4.3  Main theorem for parallelizable manifolds

We first remark that the leaves of the Levi-foliation do not 
have to be dense or compact in � . Nonetheless, the discus-
sion in the previous subsections shows that, in all cases, one 
can reduce to the case where Ĝ is nilpotent. Furthermore, 
since � is generic in X, then ⟨� ⟩

Ĝ
= Ĝ and by a result in [7], 

the center orbits are closed. Hence, one can always reduce 
to the Abelian tower as in Fig. 1, where the complex fibers 
F̂j may have a product of ℂ∗ . The following table sets out 
the situations that would arise in codimension one and two.

We summarize the preceding discussion in the following 
theorem.

Theorem 4.2 (Main Theorem in Sect. 4) Let G be a con-
nected and simply-connected Lie group and �  be a discrete 
subgroup of G. Let further G = S⋉ R be a Levi-decomposi-
tion of G and � be the Lie algebra of the radical R. Suppose 
that � ∶= G∕�  is a compact, Leviflat, parallelizable, homo-
geneous CR-manifold of codimension one or two. Then, any 
semisimple-factor S is a complex semisimple Lie group and 
G is a closed subgroup of the connected and simply-con-
nected complex Lie group Ĝ ∶= S⋉ R̂, where R̂ is the con-
nected and simply-connected complex solvable Lie group 
corresponding of the complexified Lie algebra �̂ ∶= � + i� . 
Hence, � is a compact generic G-orbit in the parallelizable 
complex orbit X ∶= Ĝ∕�  . Furthermore, R̂-orbits are closed 

F̂j

(ℂ∗)
nj

��������������������→ Tj

Fj

(S1)
nj

�������������������→ Tj.

l∑

j=1

nj = k.

LFj

(ℤ)
nj

�����������������→ Tj.

in X and hence R-orbits are compact, and in the CT tower 
(1), one has:

(a) If the Levi-foliation is dense [i.e., iff O(X) = ℂ], then in 
codimension

(1) one: 𝛴 = ct1 ⊂ X = CT1,

(2) t w o :  e i t h e r  𝛴 = ct2 ⊂ X = CT2,  o r 
𝛴 = ct1,1 ⊂ X = CT1,1.

(b) If the Levi-foliation is compact, then in codimension

(1) one: 𝛴 = ct∗
0
⊂ X = CT∗

0
,

(2) two: 𝛴 = ct∗∗
0

⊂ X = CT∗∗
0
.

(c) If the foliation is neither compact nor dense, then 
𝛴 = ct∗

1
⊂ X = CT∗

1
.

4.4  A non‑trivial Cousin group bundle over a Cousin 
group

Let M ∶=

(
1 − 2

1 1

)
∈ GLn(ℂ) and let B ∶= ℂ2 . Then, M 

acts on B as a linear transformation. On the other hand, M is 
similar to a diagonal matrix � with diagonal entries its eigen-
values—in no particular order �1 ∶= 1 + i

√
2 and 

�2 ∶= 1 − i
√
2 . Say, M is similar to � ∶=

(
�1 0

0 �2

)
 . Rewrite 

�1 and �2 as 
√
3ei� and 

√
3e−i� , respectively, where 

cos � =
1√
3
 and sin � =

√
2√
3
 . Let A ∶= ℂ∗ × ℂ∗ and write it as 

the diagonal group A =

{(
� 0

0 �

)
; �, � ∈ ℂ∗

}
 . Define the 

lattice �A ∶= ⟨�n⟩n∈ℤ =

�√
3n

�
ein� 0

0 e−in�

�
; n ∈ ℤ

�
 

of A. Note that its pullback to the universal covering of A has 
rank 3.

Claim: The complex Abelian group A∕�A is a Cousin 
group.

Proof of Claim: Note that the kernel of the holomor-
phic homomorphism ℂ2

→ ℂ∗ × ℂ∗;(z,w) ↦ (e2�iz, e2�iw) is 
{(1, 0), (0, 1)}ℤ . Hence,

where (choose the branch cut to be along the positive real 
axis ℝ≥0)

A∕�A ≅ ℂ
2
/{

(1, 0), (0, 1), (�1, �2)
}
ℤ
,

�1 ∶= log(�1) = ln
√
3 + i�,

�2 ∶= log(�2) = ln
√
3 + i(2� − �).
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Thus, it is enough to show the lattice 
{
(1, 0), (0, 1), (�1, �2)

}
ℤ
 

satisfies the irrationality Condition (see, e.g., [1]), i.e., the 
slope �

2�−�
∉ ℚ . Let us therefore suppose, to the contrary, 

�

2�−�
= q for some q ∈ ℚ ⧵ {0} . Then � =

m

n
� for some rela-

tively prime integers m, n ∈ ℤ ⧵ {0} . Hence,

and since n� = m� , then one has

Thus,

We note that n cannot be odd since the summation would be 
an odd integer. On the other hand, if n is even, say n = 2pq 

for an odd integer q, then 2p would divide 
(

2pq

2k + 1

)
 . Indeed, 

since

then, if n = 2pq and m = 2k + 1 , one has

Therefore,

Hence, the equation (∗) can be written as q + 2t = 0 for some 
integer t. But q is an odd integer. This is a contradiction, and 
the Claim is proved.

Now consider the Cousin group B∕�B , where 
�B ∶=

�
(1, 0), (0, 1), (i, i

√
2)
�

 . Let also P ∈ GL2(ℂ) be a 
matrix such that M = P−1�P and define the solvable (non-
Abelian) complex Lie group G ∶= A⋉M B by

Define the discrete subgroup

1√
3
+ i

√
2

√
3
= cos � + i sin � = ei�

�
1√
3
+ i

√
2

√
3

�n

= ein� ∈ ℝ, i.e.,
�
1 + i

√
2
�n

∈ ℝ.

√
2i

��
n

1

�
− 2

�
n

3

�
+ 4

�
n

5

�
−⋯ + (−1)k2k

�
n

2k + 1

�
+⋯

�
= 0 … (∗)

(
n

m

)
=

n(n − 1)!

m(m − 1)!(n − m)!
=

n

m

(
n − 1

m − 1

)

(2k + 1)

(
n

2k + 1

)
= 2pq

(
n − 1

2k

)
.

2p ∣

(
n

2k + 1

)
.

(A1, b1) ⋅ (A2, b2) ∶=
(
A1A2, (P

−1A1P)b2 + b1

)
.

� ∶= �A ⋉M �B =
{(

� , Mn�1 + �2

) ||| � ∈ �A, �1,�2 ∈ �B, n ∈ ℤ

}
.

Consider the closed subgroup

and note that G∕H = A∕�A and that H∕� = B∕�B . Now, 
we consider the following principal fiber bundle of Cousin 
groups

In particular, the bundle above is not topologically trivial, 
since otherwise the fundamental group of G∕�  would be 
Abelian, while it is not.

H ∶= �A ⋉M B =
{(

� , M
n
b1 + b2

) ||| � ∈ �A, b1, b2 ∈ B, n ∈ ℤ

}

(3)G∕�
B∕�B

������������������→ A∕�A.

5  Projective orbits

In this section, we consider compact homogeneous Leviflat 
CR-manifolds � = G∕H that are orbits in some complex pro-
jective space ℙn . For convenience throughout this section, we 
assume that the group G admits an almost faithful represen-
tation into the group of holomorphic automorphisms of the 
projective space ℙn at hand. We warn the reader, however, that 
in the general setting (treated in the next section) this is not 
always the case and appropriate modifications must be made.

We first introduce some notation. Let Ĝ denote the smallest 
connected complex Lie group that contains G, i.e., the group 
corresponding to the complexified Lie algebra �̂ ∶= � + i� , 
where � is the Lie algebra of G. Using Chevalley’s result [14] 
that the commutator subgroup of Ĝ is acting as an algebraic 
group, we show first that the radical R̂ of Ĝ is central. Then we 
show that the leaves of the Levi-foliation of � are compact, 
and thus are biholomorphic to flag manifolds. Finally, when 
the codimension of � is one or two, we give the classification.

5.1  Preliminaries

Let Ĝ be any complex Lie group and Ĝ = Ŝ⋉ R̂ be a Levi-
decomposition. Let ̂� , �̂ , and ̂� be the corresponding complex 
Lie algebras of the groups Ĝ , Ŝ , and R̂ , respectively. Recall 
the following classical fact in the theory of Lie algebras (see 
e.g., [16]).
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Lemma 5.1 Let � = �⋉ � be a Levi-decomposition of a Lie 
algebra � . Then, the ideal [�, �] is nilpotent.

Lemma 5.2 Consider the nilpotent subalgebras �̂ ∶= [�̂, �̂] 
and � ∶= [�, �] of �̂ and �, respectively. Then,

Similarly, for any term �̂ in the descending central series 
of �̂, one has

where � is the corresponding term in the descending central 
series of �.

Proof The inclusion RHS contained in LHS follows since 
� is clearly a nilpotent ideal in �̂ , so � is contained in the 
nilradical �̂ . Conversely, consider the Lie algebra homomor-
phism � ∶ �̂� → �̂�∕(� + i�) . Our proof will be complete if 
we show that the quotient is semisimple, because this means 
that �̂ is contained in the kernel of � . In fact, one has,

and the result in (4) follows from this. Similarly, the claim in 
(5) follows from (4) and the linearity of the Lie brackets.  
 ◻

The following well-known proposition will often be used 
in this section. For general notions of linear algebraic groups 
and their orbits, we refer the reader to [10, 25], or [37].

Proposition 5.1 Let X ∶= G∕H be an algebraic homogene-
ous space of a linear algebraic group G and let N be a nor-
mal algebraic subgroup of G. Assume that the action of N 
on X is algebraic, then N-orbits are closed.

Proof Since N acts algebraically, then its orbits are Zariski 
open in their closures. The boundary of each N-orbit consists 
of N-orbits of strictly lower dimension. Since N is a normal 
subgroup of G, all orbits have the same dimension and so the 
complement N ⋅ x ⧵ N ⋅ x is empty, i.e., N-orbits are closed.  
 ◻

We recall, furthermore, that an algebraic linear group is 
called unipotent if it is isomorphic to a closed subgroup of 
the group of upper triangular matrices with 1’s in the diago-
nal. We also recall the fact that orbits of an algebraic action 
of a connected unipotent group are algebraic geometrically 
isomorphic to some affine space ℂp (e.g., [9, Theorem 1.4]).

(4)�̂ = � + i�.

(5)�̂ = � + i�,

(6)

�̂� ∶=[� + i�, � + i�]

=[�, �] + i[�, �]

=[�, �] + � + i([�, �] + �)

=(� + i�) + (� + i�)

5.2  Main theorem

In the setting of this section, the following is the first main 
theorem in this chapter.

Theorem 5.1 The radical R̂ is central and Ĝ = Ŝ × R̂ (pos-
sibly with finite intersection). The real group G splits 
accordingly.

Proof Enough to show that the unipotent subgroup 
N̂ ∶= [Ĝ, R̂] is trivial, because then by (6) the commutator 
subgroup Ĝ� = Ŝ and therefore the result follows.

Recall first that every non-trivial unipotent group has a 
positive-dimensional center. Thus N̂ is trivial if and only if 
the last term, say M̂ , of the descending central series of N̂ 
is trivial.

Let us now assume the contrary, that the unipotent Abe-
lian normal subgroup M̂ is not trivial. By the discussion 
above, the M̂-orbits are closed and biholomorphic to some 
ℂq . Thus M̂Ĥ is a closed subgroup of Ĝ and therefore we can 
consider the following fibrations:

where J ∶= M̂Ĥ ∩ G and the fiber F ∶= J∕H is a compact 
submanifold of the complex fiber F̂ ∶= M̂∕M̂ ∩ Ĥ . In fact, 
M̂ acts on F̂ with a finite isotropy as it is an Abelian char-
acteristic subgroup of Ĝ and the action is almost effective. 
Say, M̂ ∩ Ĥ =∶ �.

Consider now the stabilizer group I ∶= Stab
M̂
(J ⋅ x0) 

and note that it is a closed subgroup of M̂ since J ⋅ x0 is a 
compact submanifold of M̂ ⋅ x0 . Since � fixes all points of 
the latter orbit, then 𝛬 ⊂ I . This leads to a fibration of the 
Euclidean space ℂk by compact fibers,

However, by Borel–Serre Theorem [12], such fibration does 
not exist unless F is just a point, i.e., I = � . But since M ⊂ I 
then M = {e} and hence by Lemma 5.2, we have M̂ = {e} . 
From this contradiction, we conclude that N̂ has to be triv-
ial.   ◻

5.3  Three basic fibrations

The goal is to prove that in the projective case L is homoge-
neous rational, i.e., a flag manifold. In fact, we need only to 
show that L is compact because a compact complex homo-
geneous Kähler manifold is a product of a compact complex 

G/H

F
 

F

G/MH

ℂ
k = M̂∕�

F=I∕�
������������������������→ M̂∕I.
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torus and a flag manifold (see [11]). However, by the Borel 
Fixed Point Theorem, no positive-dimensional compact 
complex torus can be embedded equivariantly in ℙn (see 
e.g., [10]). We follow the notation of the paper where we 
know that Ĝ = Ŝ × R̂ with possible finite intersection and 
where R̂ is central in Ĝ . The real group G splits accordingly.

Theorem 5.2 The leaf L is a flag manifold.

Proof If L is trivial, then there is nothing to prove, so assume 
L is not trivial. There are three cases in the proof which goes 
(except for the last subcase) by induction on the codimension 
k of L in � . The case of k = 0 is clear.

The case where Ŝ does not act transitively on X.
Since Ŝ is semisimple and is therefore acting algebrai-

cally, we have the quotient � ∶ X → X∕Ŝ the base of which 
is a Stein Abelian group (this is the commutator fibration 
Ĝ∕Ĥ → Ĝ∕Ĝ�Ĥ and the base is a Stein Abelian group, see 
[23]). The image of � is an R-orbit which is a totally real 
product of circles. In particular, L is contained and of lower 
codimension in the neutral fiber �−1(�(x0)) . Applying the 
induction assumption to this fiber yields the desired result.

The case where Ŝ acts transitively on X and R̂ ≠ {e}.
Since Ŝ is acting algebraically, X is Zariski open in its 

closure Y. Since R̂ is acting linearly and stabilizes X, it fol-
lows that it stabilizes Y. Thus if E ∶= Y ⧵ X is the boundary, 
it follows that R̂ is in the stabilizer L̂ of E in the stabilizer of 
Y in the linear group. The main point is that L̂ is an algebraic 
group acting on X. It then follows that R̂ is contained in 
the centralizer Ẑ of Ŝ in L̂ which is also an algebraic group 
acting on X. Thus, we consider the quotient � ∶ X → X∕Ẑ . 
Since the �-fibers are isomorphic to manifolds of the form 
ℂs × (ℂ∗)t , the intersections of these fibers with L , which 
are complex analytic sets contained in compact subsets, are 
discrete. Thus �(L) =∶ Q is of lower codimension in �(�) 
and induction implies that Q is homogeneous rational. Since 
L → Q is ĜL-equivariant, it is a covering map which is injec-
tive, because Q is simply-connected. Then the result follows 
by induction hypothesis. We also conclude from the preced-
ing discussion that the algebraic hull of R̂ is an Abelian 
algebraic group which stabilizes X.

The case where Ĝ = Ŝ.
Since Ŝ acts algebraically, the fundamental group of X 

is finite. Thus, replacing Ĥ by HĤ◦ (i.e., the minimality 
condition introduced in Sect. 3.2) only entails going to a 
finite cover where Ŝ still acts algebraically. Define N̂ to be 
the open subgroup of the normalizer of ĜL

◦

 so that N̂∕Ĥ is 
connected.

∙ If ĜL

◦

 is not normal in Ŝ . Then, L is contained and 
of lower codimension in the neutral fiber of the fibration 
X → X∕N̂ . Applying the induction assumption to this fiber 
yields the desired result.

∙ If ĜL

◦

 is normal in Ŝ . Then, ĜL

◦

 is semisimple which 
is acting algebraically. Since its orbits are therefore Zariski 
open in their closures, it follows that L is closed in this case, 
and the result straightforwardly follows.   ◻

5.3.1  Leaf‑reduction

Taking Ĥ = HĤ◦ as above and observing that the stabilizer 
in Ĝ of the compact variety L is the closed complex sub-
group ĜL = ĤŜ1 , we have the leaf-reduction

If our focus is on � , the restriction of this map to � is its 
G-equivariant CR-holomorphic leaf on to a totally real 
(generic) hypersurface G/J in Ĝ∕ĜL , where J ∶= ĜL ∩ G . 
Note that, dimℝ G∕J = codim � (see Lemma 2.1).

5.4  Classification for codimension one and two

5.4.1  The radical orbits

The aim of this subsection is to prove the following 
proposition.

Proposition 5.2 Suppose Ŝ is not transitive on X; 

(1) If codim � = 1, then 𝛴 = Q × S1 ⊂ X = Q × ℂ∗.
(2) If  codim � = 2, then 𝛴 = Q × (S1)2 ⊂ X  where 

X = Q × (ℂ∗)2 or X = Q × ℙ1 × ℂ∗.

The proof is based on the following lemma which is true 
for any codimension.

Lemma 5.3 Let N̂ be the normalizer of the connected com-
ponent Ĥ◦ in Ĝ . Suppose that Ŝ-orbits are compact. Then, 
N̂ = R̂Ĥ and the radical fibration is holomorphically trivial.

Proof Consider the normalizer fibration Ĝ∕Ĥ
N̂∕Ĥ
���������������������→ Ĝ∕N̂ . 

Restrict this bundle to the Ŝ-orbit to obtain the fibration 
Ŝ∕(Ŝ ∩ Ĥ) ⟶ Ŝ∕(Ŝ ∩ N̂) . Since Ŝ∕(Ŝ ∩ Ĥ) is a flag mani-
fold then Ŝ ∩ Ĥ is connected, and thus it is contained in Ĥ0 . 
Therefore Ŝ ∩ N̂ normalizes the parabolic group Ŝ ∩ Ĥ and 
hence ̂S ∩ Ĥ = Ŝ ∩ N̂ . Now since R̂ is central then �R ⊂ �N and 
the above shows that R̂∕(R̂ ∩ Ĥ) = N̂∕Ĥ . Furthermore, the 
Ŝ-orbits form holomorphic sections of the radical fibration 
X = Ĝ∕Ĥ → Ĝ∕R̂Ĥ . Thus, this fibration is holomorphically 
trivial, i.e., X ≅ R̂∕(R̂ ∩ Ĥ) × Ŝ∕(Ŝ ∩ Ĥ) .   ◻

(7)Ĝ∕Ĥ
L

�������→ Ĝ∕ĜL.
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Now we turn to the proof of Proposition 5.2.

Proof Since the base of the commutator fibration 
Ĝ∕Ĥ

Ŝ∕(Ŝ∩Ĥ)
����������������������������→ Ĝ∕ŜĤ is a Stein Abelian group, then we have 

(see Lemma 2.1) the following:
In codimension one, Ĝ∕ŜĤ = ℂ∗ and Ŝ∕(Ŝ ∩ Ĥ) = L . 

Thus, the Ŝ-orbits are compact and one applies Lemma 5.3.
In codimension two, either Ĝ∕ŜĤ = ℂ∗ × ℂ∗ and 

Ŝ∕(Ŝ ∩ Ĥ) = L , or Ĝ∕ŜĤ = ℂ∗ and ̂S∕(Ŝ ∩ Ĥ) = L × ℙ1 (see 
e.g., Lemma 5.6). Thus, the Ŝ-orbits are compact in either 
case and one can apply Lemma 5.3 again.   ◻

5.4.2  Classification of the leaf‑spaces

To give a classification in codimension one and two, we 
need to establish some essential facts. By Proposition 5.2, 
the only remaining case to consider is when Ĝ = Ŝ . Also, 
we impose the minimality condition, i.e., replace Ĥ  by 
HĤ◦ as discussed in Sect. 3.2. Recall that, this assumption 
only entails going to a finite cover where Ŝ still acts alge-
braically. Moreover, consider the leaf-reductions defined 
in Sect. 5.3.1.

and the induced reduction for �

We recall that the real leaf-space Y is a totally real homo-
geneous CR-submanifold of the complex leaf-space Z and 
therefore dimℝ Y = dimℂ Z = codim � . Recall also that the 
maximal connected complex subgroup M of S is contained 
in J (see Corollary 3.3). Thus, we have the following lemma.

Lemma 5.4 The real leaf-space Y is an orbit of a real form 
of Ŝ.

Lemma 5.5 If Z is compact, then the real form S of Ŝ cannot 
be compact.

Proof If Z is compact then it is simply-connected. By Mont-
gomery Theorem [27], the compact form of Ŝ acts transi-
tively on Z. But this is not possible since the codimension is 
assumed to be positive.   ◻

Since the only one-dimensional complex homogeneous 
manifold of a complex semisimple Lie group is ℙ1 , it fol-
lows that we have the following classification theorem when 
� = S∕H has codimension one in X = Ŝ∕Ĥ.

(8)Ŝ∕Ĥ
L

�������→ Ŝ∕ĜL =∶ Z

S∕H
L

�������→ S∕J =∶ Y .

Theorem  5.3 In codimension one, � = Q × S1 and 
X = Q × ℙ1, where Q = L is a flag manifold.

Proof The complex leaf-space Z is one-dimensional, hence 
Z = ℙ1 as a holomorphic orbit of SL2(ℂ) and Y = S1 as a cor-
responding orbit of SL2(ℝ) . The proof that the leaf-reduction 
is trivial follows by Lemma 5.6.   ◻

Note that the minimality condition here is not necessary 
since X is simply-connected.

Now we turn our attention to two-dimensional leaf-spaces. 
Assume first that the complex leaf-space Z is compact and 
recall that the only two-dimensional flag manifolds are 
ℙ1 × ℙ1 and ℙ2 with complex Lie groups SL2(ℂ) × SL2(ℂ) 
and SL3(ℂ) , respectively. (For the complete list of compact 
complex homogeneous surfaces see [39].) Recall also (see 
[28]) the only compact real homogeneous surfaces are 

(1) orientable surfaces: S1 × S1 , and S2,
(2) non-orientable surfaces: ℝℙ2 , and the Klein bottle.

Combining these facts, we have the following proposition.

Proposition 5.3 (Two-dimensional compact leaf-spaces) In 
codimension two. If the leaf-space Z is compact, then either

(1) Z = ℙ1 × ℙ1 . In this case, ̂S = SL2(ℂ) × SL2(ℂ) and the 
real leaf-space Y is orientable and isomorphic to

 (i) S1 × S1 as an orbit of the non-compact real form 
SL2(ℝ) × SL2(ℝ),

 (ii) the 2-dimensional closed orbit M1 of the real form 
SL2(ℂ) (embedded as an antiholomorphic diagonal 
in Ŝ ) acting by the antiholomorphically twisted diag-
onal embedding A ↦ (A, (Ā−1)t) in Ŝ . As manifolds, 
M1 ≅ S2.

(2) Z = ℙ2 . In this case, the real leaf-space Y is non-ori-
entable and isomorphic to ℝℙ2 as an orbit of the non-
compact real form SL3(ℝ) of the simple complex Lie 
group SL3(ℂ).

Proof By Lemma 5.5, we only have to check the non-com-
pact real forms of the semisimple complex Lie groups. 

(1) If Z = ℙ1 × ℙ1 , then the complex Lie group of this 
surface is SL2(ℂ) × SL2(ℂ) . The latter has two non-
compact real forms; 

(a) SL2(ℝ) × SL2(ℝ) and its corresponding orbit is 
Y = S1 × S1.
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(b) SL2(ℂ) embedded as an antiholomorphic diag-
onal and its orbit is given in Theorem  5.5 in 
[19]. One way to think of this real form is as 
the fixed point subgroup of the antiholomorphic 
involution defined by 𝜎(A,B) = (B̄, Ā) . Then 
M1 = {(z, z̄) ∶ z ∈ ℙ1}.

(2) If Z = ℙ2 , then the complex Lie group of this surface 
is SL3(ℂ) . The latter has two non-compact real forms, 
namely SL3(ℝ) and SU(1, 2) . The group SL3(ℝ) has 
only one orbit of dimension 2 in ℙ2 which is isomorphic 
to the non-orientable projective plane ℝℙ2 . Whereas 
the form SU(1, 2) has three orbits in ℙ2 , two are open 
and diffeomorphic to the unit ball in ℂ2 and the com-
pact one is the boundary between the other two and has 
real dimension 3 (see the example in [19, Sect. 5.4.2]) 
and hence the latter real form does not take place in 
our setting. More generally, in a flag manifold, the only 
2-dimensional homogeneous CR-submanifold of a sim-
ple Lie group is the real projective space ℝℙ2 . See [19, 
Theorem 5.3].

  ◻

We note that the minimality condition is also not neces-
sary here since X is simply-connected.

It remains to study the setting of a non-compact complex 
leaf-space Z. Huckleberry and Livorni in [22, Theorem, p. 
1103] gave a complete list of homogeneous non-compact 
complex surfaces, and we state the list as follows:

Theorem 5.4 (Huckleberry and Livorni) Let Z be a non-
compact complex homogeneous surface of a non-solvable 
complex Lie group. Assume that the radical of this group 
does not act transitively on Z. If Z is not a holomorphically 
trivial ℂ∗, or ℂ-bundle over ℙ1 , then it is either,

(1) a non-trivial ℂ∗-bundle over ℙ1,

(2) a non-trivial positive line bundle over ℙ1,

(3) the affine quadric Q[2] ∶= SL2(ℂ)∕ℂ
∗, or

(4) the complement of a quadric curve C in ℙ2 which is 
2-to-1 covered by the previous case.

Moreover, in all cases the complex Lie group is SL2(ℂ).
Proposition 5.4 (2-Dimensional non-compact leaf-spaces) 
In codimension two if the complex leaf-space Z is not com-
pact, then Z is either one of the following Stein surfaces:

 (I) the affine quadric Q[2] = SL2(ℂ)∕ℂ
∗ . In this case, the 

compact real leaf-space Y is orientable and isomor-
phic to S2.

 (II) ℙ2 ⧵ C, where C is a quadric curve in ℙ2 . In this case, 
the compact real leaf-space Y is non-orientable and 
isomorphic to ℝℙ2.

Proof Since the complex Lie group is semisimple, it follows 
that the leaf-space Z cannot be a holomorphically-trivial ℂ
-bundle (resp. ℂ∗-bundle) over ℙ1.

We now want to exclude the first two surfaces in Theo-
rem 5.4 from our list;

∙ A non-trivial ℂ∗-bundle over ℙ1 ; Clearly, this space is 
biholomorphic to SL2(ℂ)∕Ĥ , where the connected compo-

nent Ĥ◦ of the isotropy Ĥ is isomorphic to 
(
1 ∗

0 1

)
 . Since the 

action is algebraic then Ĥ has finite connected components, 
i.e., Ĥ = ℤnĤ

0 , where the finite cyclic group ℤn refers to a 
diagonal subgroup of SL2(ℂ) isomorphic to the group of the 
nth roots of unity. Note that the induced orbit of the real 
form SL2(ℝ)∕(SL2(ℝ) ∩ Ĥ) ↪ SL2(ℂ)∕Ĥ is not compact 
since the orbits of the real unipotent subgroup (
1 0

∗ 1

)
⊂ SL2(ℝ) are closed and diffeomorphic to ℝ . Thus, 

this situation does not occur. On the other hand, the induced 
orbit of the compact real form SU(2)

has dimension 3 because the isotropy SU(2) ∩ H is finite, 
and thus this situation does not occur either.

∙ A positive line bundle over ℙ1 requires a positive-dimen-
sional radical (see [22, Lemma 1, p. 1103]) and our group is 
semisimple. Thus, this situation does not occur.

In contrast, the following cases can occur:
(I) Z is the affine quadric SL2(ℂ)∕ℂ

∗ , where ℂ∗ refers to 
the diagonal subgroup. Here Y is the orbit of the compact 
real form SU(2) , i.e.,

(II) Z is the complement of a quadric curve C in ℙ2 , i.e.,

It can be shown that the group SL2(ℂ) acts holomorphically 
on this surface and that the isotropy has two connected com-
ponents and the connected component is isomorphic to the 
diagonal subgroup ℂ∗ . Thus, ℙ2 ⧵ C = SL2(ℂ)∕ℤ2ℂ

∗ . There-
fore, we have the covering space

Note that the orbit of SU(2) in the covering space is isomor-
phic to S2 and hence the projection Y of this orbit is isomor-
phic to the non-orientable projective plane ℝℙ2 .   ◻

SU(2)∕(SU(2) ∩ Ĥ) ↪ SL2(ℂ)∕Ĥ

Y = SU(2)∕(SU(2) ∩ ℂ
∗) = SU(2)∕SU(1) ≅ S2.

ℙ2 ⧵
{
[X, Y , Z]; X2 + Y2 + Z2 = 0

}
.

SL2(ℂ)∕ℂ
∗

ℤ2

����������→ SL2(ℂ)∕ℤ2ℂ
∗.
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The following table summarizes the above discussion, 
where M1 is as in Proposition 5.3, Q[2] is the 2-affine quad-
ric, C is a quadric curve in ℙ2 , Bj is a Borel subgroup, and 
P is a parabolic subgroup. 

codim � Z Z = Ŝ∕Ĥ Y Real form of Ŝ

1 ℙ
1

SL
2
(ℂ)∕B

1 S
1 SL

2
(ℝ)

2 ℙ
1
× ℙ

1 SL
2
(ℂ) × SL

2
(ℂ)

/
B
1
× B

2
S
1 × S

1 SL
2
(ℝ) × SL

2
(ℝ)

2 ℙ
1
× ℙ

1 SL
2
(ℂ) × SL

2
(ℂ)

/
B
1
× B

2

M
1

SL
2
(ℂ)

2 ℙ
2

SL
3
(ℂ)∕P ℝℙ

2
SL

3
(ℝ)

2 Q[2] SL
2
(ℂ)∕ℂ∗

S
2 SU(2)

2 ℙ
2
⧵ C SL

2
(ℂ)∕ℤ

2
ℂ∗ ℝℙ

2
SU(2)

Recall that SL2(ℂ) is the unique (up to isomorphism) 
complex semisimple Lie subgroup of GL2(ℂ) . Therefore, 
if Ŝ is a complex semisimple Lie group having irreducible 
2-dimensional representation, then there exist two semi-
simple complex normal Lie subgroups Ŝ1, Ŝ2 ⊲ Ŝ such that 
Ŝ decomposes as a locally direct product Ŝ1 ⋅ Ŝ2 where Ŝ1 
is acting trivially and Ŝ2 is isomorphic to the usual action 
of SL2(ℂ) on ℂ2 . The following fact is well known, but we 
include it for completeness.

Lemma 5.6 Let Ŝ be a connected, semisimple, complex Lie 
group and Ĥ be a parabolic subgroup of Ŝ . Suppose Ĵ  is any 
closed, complex subgroup of Ŝ that contains Ĥ . Consider the 
induced homogeneous fibration Ŝ∕Ĥ → Ŝ∕Ĵ  . Then its fiber 
and base are flag manifolds. Moreover, if its base is ℙ1 or a 
product of ℙ1’s, then the bundle is holomorphically trivial.

Proof Since Ĥ is parabolic in Ŝ , it contains a Borel subgroup 
of Ŝ . This Borel subgroup is then contained in Ĵ  . Thus Ĵ  is 
parabolic and Ŝ∕Ĵ  is a flag manifold. Moreover, the fiber 
is a compact homogeneous projective variety and hence is 
a flag manifold. Now, suppose that Ŝ∕Ĥ has the fibration 
Ŝ∕Ĥ → Ŝ∕Ĵ = ℙ1 . Then as discussed above there exists two 
normal complex Lie subgroups Ŝ1 and Ŝ2 ≅ SL2(ℂ) of Ŝ such 
that Ŝ∕Ĵ = Ŝ∕Ŝ1Ĥ . Moreover, since the normal subgroup Ŝ2 
acts algebraically, then its orbits are closed and we have the 
fibration Ŝ∕Ĥ

Ŝ2∕Ŝ2∩Ĥ
������������������������������→ Ŝ∕Ŝ2Ĥ . By the first paragraph of the 

lemma, the fiber Ŝ2∕Ŝ2 ∩ Ĥ is a flag manifold of dimension 
bigger than or equal to the dimension of Ŝ∕Ŝ1Ĥ = ℙ1 . But 
since ℙ1 is the only flag manifold realized by the action of 
SL2(ℂ) , we have Ŝ2∕Ŝ2 ∩ Ĥ = Ŝ∕Ŝ1Ĥ , which implies that Ŝ2
-orbits form sections of the bundle Ŝ∕Ĥ → Ŝ∕Ĵ  , and for this 
reason this bundle is trivial. The same proof works for mul-
tiple copies of ℙ1 , since Ŝ in this case splits off as the product 
Ŝ1 ⋅ Ŝ2 ⋯ Ŝn , where Ŝ1 is acting trivially and Ŝj is isomorphic 
to the usual action of SL2(ℂ) on ℂ2 , for j = 2,… , n .   ◻

As a consequence, the following theorem specifies all 
possible total spaces of the bundle (8).

Theorem 5.5 In codimension two.

• If X = Ŝ∕Ĥ is compact, then

(1) X = L × ℙ1 × ℙ1 and � = L × S1 × S1.
(2) X = L × ℙ1 × ℙ1 and � = L ×M1.
(3) X is a L-bundle over ℙ2 and � is a L-bundle over ℝℙ2.

• If X = Ŝ∕Ĥ is not compact, then

(1) X is a L-bundle over Q[2] and � is a L-bundle over S2.
(2) X is a L-bundle over ℙ2 ⧵ C and � is a L-bundle over 

ℝℙ2.

On the other hand, when the leaf-space is the affine 
quadric Q[2] , then the leaf-reduction is not necessarily triv-
ial. In fact, the representation ℂ∗

→ Aut(Q) implies that 
the isotropy ℂ∗ of the base does not need to act trivially 
on the fiber Q.

Remark 5.1 A totally real copy of ℝℙ2 in ℙ2 can be embed-
ded equivariantly in ℙ2 ⧵ C where C is a quadric curve in 
ℙ2 . To see this, let ℝℙ2 be an orbit of SL3(ℝ) as in Corollary 
5.3. Since �1(ℝℙ2) = ℤ2 , i.e., finite, then by Montgomery 
Theorem [27], the maximal compact subgroup SO(3,ℝ) of 
SL3(ℝ) acts transitively. Thus, we have the following embed-
ding in the orbit of the complex orthogonal subgroup

But since SL2(ℂ) (resp. SU(2) ) is the universal covering 
group of SO(3,ℂ) (resp. SO(3,ℝ) ), then one has the fol-
lowing orbits

where C is a quadric curve in ℙ2.

5.5  Summary

We summarize the classification results in this section in the 
following theorem.

Theorem 5.6 (Classification) Suppose � ∶= G∕H is a com-
pact, homogeneous, Leviflat CR-manifold of codimension 
one or two that is equivariantly embedded in a projective 
space ℙn, and let X ∶= Ĝ∕Ĥ be its globalization in ℙn . Then, 

ℝℙ2 = SO(3,ℝ) ⋅ x0 ↪ Z ∶ = SO(3,ℂ) ⋅ x0 ↪ SL3(ℂ) ⋅ x0 = ℙ2.

ℝℙ2 = SU(2)∕ℤ2 ⋅ S
1
↪ SL2(ℂ)∕ℤ2 ⋅ ℂ

∗ ≅ ℙ2 ⧵ C,
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the leaves of the Levi-foliation F  are compact and hence 
biholomorphic to a flag manifold Q. Moreover,

(1) if codim� = 1, then 𝛴 = Q × S1 ⊂ X = Q × ℙ1 
or X = Q × ℂ∗,

(2) if codim� = 2, then either

(a) 𝛴 = Q × S1 × S1 ⊂ X = Q × ℙ1 × ℙ1 (resp. 
X = Q × ℙ1 × ℂ∗ or X = Q × ℂ∗ × ℂ∗).

(b) X = Q × ℙ1 × ℙ1 and � = Q ×M1.
(c) � is a Q-bundle over S2 and X is a Q-bundle over the 

2-dimensional affine quadric Q[2].
(d) � is a Q-bundle over ℝℙ2 and X is a Q-bundle over 

ℙ2 ⧵ C where C is a quadric curve in ℙ2 . (This situation 
will occur only when � is non-orientable. It is 2 to 1 
covered by the previous case.)

6  General case

6.1  Statement of the main theorem

Theorem 6.1 (Main Theorem) Let G be a connected and 
simply-connected Lie group, and � ∶= G∕H be a compact, 
generic, homogeneous, Leviflat CR-manifold of codimen-
sion one or two. Consider the CR-normalizer fibration (see 
Theorem 2.2),

Then, � is a finite covering space of �̃� ∶= G∕H̃ with the 
following properties:

∙ The fiber F of the following fibration

is a connected, compact, parallelizable, Leviflat , homoge-
neous CR-submanifold of �̃�, and the base M is a compact, 
projective Leviflat CR-manifold. Moreover (see Lemma2.1),

∙ Let Ĝ be the connected and simply-connected complex 
Lie group corresponding to the complexified Lie algebra 
�̂ ∶= � + i� , where � is the Lie algebra of G. Then �̃� pos-
sesses a Ĝ-globalization, i.e., a complex homogeneous 
manifold X ∶= Ĝ∕Ĥ with G is a Lie subgroup of Ĝ and 
�H ∩ G = H̃ . In particular, the following diagram of fiber 
bundles exists,

� = G∕H ⟶ G∕J =∶ M ↪ ℙn.

�̃� = G∕H̃
F ∶= J∕H̃
���������������������������������→ G∕J = M

codim F + codim M = codim �̃�.

∙ The spaces F, F̂, M , and Y in the above diagram are 
described as follows, (in the following, Q,  Q[2] , and C stand 
for a flag manifold, the 2-dimensional affine quadric, and a 
quadric curve in ℙ2, respectively. Also see Table 1, for the 
CT-notation)

(I) In codimension one, and when

(a) the Levi-foliation is dense, then Y = M = Q, F̂ = CT1, 
F = ct1.

(b) the Levi-foliation is compact, then either

(1) Y = M = Q, F̂ = CT∗
0
, F = ct∗

0
.

(2) Y = Q × ℙ1 ( re s p .  Y = Q × ℂ∗  ) ,  M = Q × S1, 
F̂ = F = CT0.

(II) In codimension two, and when

(a) the Levi-foliation is dense, then either

(1) Y = M = Q, F̂ = CT2, F = ct2.
(2) Y = M = Q, F̂ = CT1,1, F = ct1,1.

(b) the Levi-foliation is compact, then either

(1) Y = M = Q, F̂ = CT∗∗
0
, F = ct∗∗

0
.

(2) Y = Q × ℙ1 (resp. Y = Q × ℂ∗ ), M = Q × S1, F̂ = CT∗
0
, 

F = ct∗
0
.

(3) Y = Q × ℙ1 × ℙ1  ( re s p .  Y = Q × ℙ1 × ℂ∗,  o r 
Y = Q × ℂ∗ × ℂ∗ ),    M = Q × S1 × S1,    F̂ = F = CT0.

(4) Y = Q × ℙ1 × ℙ1 and M = Q ×M1 (see Proposition 
5.3).

(5) Y is a Q-bundle over Q[2] , M is a Q-bundle over S2, 
F̂ = F = CT0.

(6) Y is a Q-bundle over ℙ2 ⧵ C, M is a Q-bundle over ℝℙ2, 
(Y in this case is 2-to-1 covered by the previous case) 
F̂ = F = CT0.

(c) the Levi-foliation is neither compact nor dense, then 
either

(1) Y = M = Q, F̂ = CT∗
1
, F = ct∗

1
.

(2) Y = Q × ℙ1 (resp. Y = Q × ℂ∗ ), M = Q × S1, F̂ = CT1, 
F = ct1.
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7  The globalization

Given a homogeneous CR-manifold � = G∕H , if there 
exists a (minimal) complex Lie group Ĝ containing G as 
a subgroup along with a closed complex subgroup Ĥ such 
that the G-orbit in Ĝ∕Ĥ is CR-isomorphic to � , then we call 
Ĝ∕Ĥ a globalization of � . Such a globalization need not 
exist, e.g., see [6, Sect. 2, Example]. However, we prove in 
this section that every compact, Leviflat � of codimension 
two or less is globalizable.

First we consider what happens when the base Z of the 
CR-normalizer fibration G∕H → G∕N = Z is a flag mani-
fold. The case of a general homogeneous CR-hypersurface 
with Z a flag manifold is discussed in [24] (Theorem 2) 
and was handled in detail in Richthofer’s thesis [35] (Satz 
1 in Sect. 1:4:3). The result is simply that such actions are 
uniquely globalizable. Using our special Leviflat setting, we 
give a simple proof of this fact here.

Proposition 7.1 [35, Sect. 1.4.3, Satz 1] Assume that the 
base of the CR- normalizer fibration of the compact Leviflat 
homogeneous � is a flag manifold and � has codimension 
less than or equal to two. Then � admits a globalization.

Proof Since Z is a compact complex manifold, it is immedi-
ate that GL acts transitively on it and thus it is a homogene-
ous space Z = Ŝ∕Q̂ of a product Ŝ of simple factors of GL . 
It is enough to globalize the G-action on G∕H◦ and for that 
we consider the fiber P ∶= N∕H◦ of G∕H◦

→ G∕N . This is 
a P-principal bundle P over Z = Ŝ∕Q̂ . Let Û be a local sec-
tion (contained in Ŝ ) of the fibration Ŝ → Ŝ∕Q̂ . Locally, the 
CR-manifold � is just the CR-product Û × P . More explic-
itly, if P̂ is a globalization of P (see remark below for its 
existence), then the embedding � ∶ Û × P ↪ Û × P̂ defines 
the sheaf of CR-functions on Û × P by the isomorphism 
� ∶ O

Û×P̂
↪

∗O
CR

Û×P
 . We have conveniently chosen Q̂ to be in 

GL whose action on P̂ is an extension of its action on P. 
Thus, we have the embedding

Locally, over Û these twisted products are quotients of 
ÛQ̂ × P and ÛQ̂ × P̂ by the diagonal Q̂-action (on the right 
on the first factor and on the left on the second). Since Û × P 
and Û × P̂ are sections of these fibrations, it follows that 
the CR-functions on the former are just the pullbacks of 
the holomorphic functions on the latter. Thus, the above 
embedding realizes � = Ŝ ×

Q̂
P as a CR-submanifold of the 

complex manifold Ŝ ×
Q̂
P̂.

Now, ineffectively, J of the G-action on the base G/N acts 
(on the left) on P and globalizes to a left-action of Ĵ  on P̂ . 
Since the left-action of Ŝ on Ŝ ×

Q̂
P̂ is already globalized, 

it follows that the G-action on � is globalized to a Ĝ-action 
on this complex principal bundle space over Z.   ◻

Next we are going to prove the existence of the globaliza-
tion when the fiber of the CR-normalizer fibration is com-
plex. In order to do this suppose � = G∕H is a compact 
homogeneous CR-manifold, where G is a connected and 
simply-connected Lie group. Let

be the CR-normalizer fibration. We can consider the mani-
fold �̃� such that

has a connected parallelizable fiber F ∶= J∕H̃ =∶ L∕𝛤  , 
where L is a connected Lie group and �  is a discrete sub-
group of L. Note that since F is assumed to be connected, the 
connected component J0 of J acts transitively on F. Also in 
codimensions one and two, F possesses a connected paral-
lelizable globalization F̂ ∶= L̂∕�  (see Sect. 4).

Ŝ ×
Q̂
P ↪ Ŝ ×

Q̂
P̂.

� = G∕H ⟶ G∕J =∶ M ↪ ℙn

𝛴 = G∕H
ℤp

����������→ �̃� = G∕H̃
F
������→ M = G∕J ↪ ℙn

Table 1  (CT notations)

Cousin Tower ( CT ) of parallelizable complex homogeneous manifolds X

Name Description Notation Corresp. 
circle tower 
for �

Torus tower the tower has no Cousin groups of positive codimension CT
0

CT
0
 or ct

0

Cousin tower of codim. 1 the tower has one Cousin group of codim. 1 CT
1

ct
1

Cousin tower of codim. 2 and 1 step the tower has one Cousin group of codim. 2 CT
2

ct
2

Cousin tower of codim. 2 and 2 steps the tower has two Cousin groups of codim. 1. See Example 4.4 CT
1,1

ct
1,1

Torus tower with one ℂ∗ the tower has one ℂ∗ but no Cousin groups of positive codimension CT
∗
0

ct
∗
0

Torus tower with two ℂ∗’s the tower has two ℂ∗ ’s but no Cousin groups of positive codimension CT
∗∗
0

ct
∗∗
0

Abelian tower of one Cousin group of 
codim. 1 and one ℂ∗

the tower has one Cousin group of codim.1 and one ℂ∗
CT

∗
1

ct
∗
1
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Remark 7.1 Consider the globalization Ĝ∕Ĵ  of the base 
G∕J ↪ ℙn in the fibration above. Note that Ĵ acts transitively 
and holomorphically on the connected complex manifold F̂ 
if and only if its connected component Ĵ0 does so. Thus, if 
F̂ possesses a Ĵ0-globalization, then we are naturally led to 
consider the Ĝ-globalization of �̃� given by the construction

The following lemma works for any codimension.

Lemma 7.1 If the fiber F is complex, i.e., F = F̂ then Ĵ  acts 
on F̂ holomorphically and transitively.

Proof If GL is the leaf-stabilizer of the leaf L through the 
base point in � then the complex Lie subgroup ĜL of Ĝ cor-
responding to the complexified Lie algebra �̂L ∶= �L + i�L 
also stabilizes L in X. Therefore, if F = F̂ is complex, then 
it is contained in the leaf L . Thus �J < �GL is the complex 
stabilizer of F̂ in X, i.e., Ĵ  acts transitively and holomorphi-
cally on F̂ .   ◻

Now the (local) holomorphic action of the Lie algebra �̂  
of Ĵ0 on F̂ induces a local holomorphic action of Ĵ0 . Thus, 
since in codimension one or two, the fiber F is globaliz-
able, then the universal covering Ĵ1 of Ĵ0 acts transitively and 
holomorphically on its globalization F̂ . The question now 
arises whether the Ĵ1-action on F̂ descends to a Ĵ0-action.

To answer this question, we follow the proof given in [19, 
Sect. 3.1] after restricting ourselves to the case where the 
fiber F is connected.

Proposition 7.2 Suppose that the inclusion map J0 ↪ Ĵ0 
induces a surjective homomorphism of the fundamental 
groups �1(J0) → �1(Ĵ

0) , then the Ĵ0
1
-action on F̂ descends 

to a Ĵ0-action.

Proof Let J1 be the lift of the J0 into the universal covering 
Ĵ1 of Ĵ0 . Let � be the kernel of the covering Ĵ1 → Ĵ0 . The 
surjectivity of the homomorphism �1(J0) → �1(Ĵ

0) implies 
that the kernel of the covering J1 → J0 is also � , which in 
turn means that � acts trivially on the fiber F̂ since it acts 
trivially on F. Thus, the action of Ĵ1 descends to an action 
of Ĵ1∕� = Ĵ0 .   ◻

In practice, we are only able to answer such a homotopy 
question modulo the ineffectivity of the action on the base 
of the bundle. We now fix the following notation; Let Î  
be ineffectively of the Ĝ-action on Ĝ∕Ĵ  , and Î0 be its con-
nected component. Also let I0 be the connected component 
of the G-ineffectively I ∶= Î ∩ G.

Condition (C) The inclusion of Lie subgroups,

X ∶= Ĝ ×
Ĵ0
F̂ = Ĝ ×

Ĵ
F̂.

induces a surjective homomorphism of the fundamental 
groups,

Proposition 7.3 Suppose that

If Condition (C) is fulfilled, then the Ĵ1 -action on F̂ descends 
to a Ĵ0 -action.

Proof Consider the homotopy sequences of the principal 
bundles:

Since Î0 (resp. I0 ) is a normal Lie subgroup of a simply-con-
nected Lie group Ĝ (resp. G), then �1(̂I0) = �1(I

0) = 0 . Thus,

By Condition (C), we have �1(J0) → �1(Ĵ
0) is surjective and 

the proof follows from Proposition 7.2.   ◻

The following Lemma (see Lemma 3.1 in [19]) gives a 
sufficient condition for (9) in Proposition 7.3 to take place.

Lemma 7.2 Let N̂ be a connected complex normal subgroup 
of Ĝ that contains the commutator R̂′ of the radical R̂ . Then 
G ∩ N̂ is connected.

In our setting, Theorem 5.1 implies that R̂ always acts 
as an Abelian group on the base Ĝ∕Ĵ  of the CR-normalizer 
fibration, i.e., �R′ ⊂ �I  . As a consequence, G ∩ Î0 is con-
nected, and therefore J0 ∩ Î0 = I0 . Thus, by Proposition 
7.3, one has the following corollary.

Corollary 7.1 If the inclusion J0∕I0 ↪ Ĵ0∕̂I0 induces a sur-
jective homomorphism of the fundamental groups, then the 
Ĵ1-action on F̂ descends to a Ĵ-action.

Finally, we consider the general case where the codi-
mension is less than or equal to two.

Theorem  7.1 (Existence of Globalization) Suppose 
� = G∕H is a compact, Leviflat, homogeneous CR-manifold 
having codimension less than or equal to two. Then � pos-
sesses a Ĝ-globalization.

J0∕(J0 ∩ Î0) ↪ Ĵ0∕̂I0

�1

(
J0∕J0 ∩ Î0

)
⟶ �1(Ĵ

0∕̂I0).

(9)J0 ∩ Î0 = I0.

Î0 ↪ Ĵ0 → Ĵ0∕̂I0 and I0 ↪ J0 → J0∕I0.

�1(J
0) = �1(J

0∕I0),

�1(Ĵ
0) = �1(Ĵ

0∕̂I0).
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Proof Note that Ĵ0∕̂I0 is the connected component of the 
isotropy of the transitive (Ŝ∕Ŝ ∩ Î0)-action on Ŝ∕Ŝ ∩ Ĵ  . From 
the list in Theorem 5.6, when F ≠ F̂ , one can see that Ĵ0∕̂I0 
and J0∕I0 are homotopic equivalent. By Corollary 7.1, the 
result follows.   ◻
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