Skip to main content
Log in

A model to mitigate salinity stress from seawater with cellular Mn supplement in Zea mays

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

This study aimed to develop a mathematical model for assessing optimal manganese (Mn) requirement to repair the photosynthetic apparatus of maize (Zea mays L.), damaged during seawater exposure. The developed mathematical model described the changes in physiological responses of maize leaves in response to cellular Mn concentration. The photosynthetic apparatus that contains a variety of pigments/protein complexes, including photosystem (PSII), cytochrome b6f (Cytb6f), and photosystem I (PSI) were also covered by the model. The proposed model explains the variations of fresh and dry mass, relative leaf water content (RWC %), chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll, carotenoids, fluorescence parameters (Fv/Fo and Fv/Fm), efficiency and quantum yield parameters (ψEo, φEo, δRo and φRo), and performance indices (PIabs and PItotal) with respect to cellular leaf Mn concentration in a perfect way with r = 1 and S = 0. The correlation coefficients for the parameters is unity and standard error is zero, meaning thereby the perfect validity of the hypothesis and the developed model. The model would be useful to develop strategies for mitigating salinity stress by increasing cellular Mn concentration for better growth and development of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article.

References

  • Alejandro S, Höller S, Meier B, Edgar Peiter E (2020) Manganese in plants: from acquisition to sub cellular allocation. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00300

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Cao P, Xie Y, Li M, Pan X, Zhang H, Zhao X (2015) Crystal structure analysis of extrinsic PsbP protein of photosystem II reveals a manganese induced conformational change. Mol Plant 8:664–666. https://doi.org/10.1016/j.molp.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  • Chernev P, Fischer S, Hoffmann J, Oliver N, Assunção R, Yu B, Burnap RL, Zaharieva I, Nürnberg DJ, Haumann M, Dau H (2020) Light-driven formation of manganese oxide by today’s photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis. Nat Commun. https://doi.org/10.1038/s41467-020-19852-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Nowak RS (1992) Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol Plant 84:600–605

    Article  CAS  Google Scholar 

  • Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B (2019) Improving potato stress tolerance and tuber yield under a climate change scenario—a current overview. Front Plant Sci 10:563

    Article  Google Scholar 

  • De-Luca R, Bernardi A, Meneghesso A, Morosinotto T, Bezzo F (2018) Modelling the photosynthetic electron transport chain in Nannochloropsis gaditana via exploitation of absorbance data. Algal Res 33:430–439

    Article  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481. https://doi.org/10.1007/s13593-015-0287-0

    Article  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DP (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  Google Scholar 

  • Force L, Critchley C, van Rensen JJS (2003) New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynth Res 78:17–33

    Article  CAS  Google Scholar 

  • Godfray HC, Pretty J, Thomas SM, Warham EJ, Beddington JR (2011) Global food supply: linking policy on climate and food. Science 331:1013–1014

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou C, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht (NL), p 1–42

    Google Scholar 

  • Guo Y, Tan J (2015) Recent advances in the application of chlorophyll a fluorescence from photosystem II. Photochem Photobiol 91:1–14. https://doi.org/10.1111/php.12362

    Article  CAS  PubMed  Google Scholar 

  • Gupta R (2019) Tissue specific disruption of photosynthetic electron transport rate in pigeonpea (Cajanus cajan L.) under elevated temperature. Plant Signal Behav 14(6):1601952

    Article  Google Scholar 

  • Gupta R (2020a) The oxygen-evolving complex: a super catalyst for life on earth, in response to abiotic stresses. Plant Signal Behav 15(12):1824721. https://doi.org/10.1080/15592324.2020.1824721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R (2020b) Manganese repairs the oxygen-evolving complex (OEC) in maize (Zea mays L.) damage during seawater vulnerability. J Soil Sci Plant Nutr 20:1387–1396. https://doi.org/10.1007/s42729-020-00220-2

    Article  CAS  Google Scholar 

  • Gupta R, Sharma RD, Singh M (2020a) Energy dissipation and photosynthetic electron flow during the transition from juvenile red to mature green leaves in mango (Mangifera indica L.). Plant Biosyst. https://doi.org/10.1080/11263504.2020.1810807

    Article  Google Scholar 

  • Gupta R, Sharma RD, Rao YR, Siddiqui ZH, Verma A, Ansari MW, Rakwal R, Tuteja N (2020b) Acclimation potential of Noni (Morinda citrifolia L.) plant to temperature stress is mediated through photosynthetic electron transport rate. Plant Signal Behav. https://doi.org/10.1080/15592324.2020.1865687

    Article  PubMed  PubMed Central  Google Scholar 

  • Harbinson J, Yin X (2017) A model for the irradiance responses of photosynthesis. Physiol Plant 161(1):109–123. https://doi.org/10.1111/ppl.12572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011a) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353–365

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011b) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  Google Scholar 

  • Järvi S, Gollan PJ, Aro EM (2013) Understanding the roles of the thylakoid lumen in photosynthesis regulation. Front Plant Sci 4:434. https://doi.org/10.3389/fpls.2013.00434

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalaji HM, Govindjee Bosa K, Kościelniak J, Żuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    Article  CAS  Google Scholar 

  • Kalaji HM, Rackova L, Paganova V, Swoczyna T, Rusinowski S, Sitko K (2018) Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ Exp Bot 152:149–157

    Article  CAS  Google Scholar 

  • Kirk JTO, Allen RL (1965) Dependence of chloroplast pigments synthesis on protein synthetic effects on actilione. Biochem Biophys Res Commun 27:523–530

    Article  Google Scholar 

  • Krieger-Liszkay A, Krupinska K, Shimakawa G (2019) The impact of photosynthesis on initiation of leaf senescence. Physiol Plant 166:148–164. https://doi.org/10.1111/ppl.12921

    Article  CAS  PubMed  Google Scholar 

  • Lidon FC, Barreiro M, Ramalho J (2004) Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol 161:1235–1244

    Article  CAS  Google Scholar 

  • Manaa A, Goussi R, Derbali W, Cantamessa S, Abdelly C, Barbato R (2019) Salinity tolerance of quinoa (Chenopodium quinoa Willd.) as assessed by chloroplast ultrastructure and photosynthetic performance. Environ Exp Bot 162:103–114

    Article  CAS  Google Scholar 

  • Mehta P, Jajoo A, Mathur S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  Google Scholar 

  • Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:476–494

    Article  Google Scholar 

  • Misra AN, Srivastava A, Strasser RJ (2001) Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. J Plant Physiol 158:1173–1181

    Article  CAS  Google Scholar 

  • Munns R (2011) Plant adaptations to salt and water stress: differences and commonalities. Adv Bot Res 57:1–32

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Najafpour MM, Govindjee G (2011) Oxygen evolving complex in photosystem II: better than excellent. Dalton Trans 40:9076–9084. https://doi.org/10.1039/c1dt10746a

    Article  CAS  PubMed  Google Scholar 

  • Oliveira KS, de Mello PR, de Farias Guedes VH (2020) Leaf spraying of manganese with silicon addition is agronomically viable for corn and sorghum plants. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-020-00173-6

    Article  Google Scholar 

  • Pandya DH, Mer RK, Prajith PK, Pandey AN (2004) Effect of salt stress and manganese supply on growth of barley seedlings. J Plant Nutr 27:1361–1379

    Article  CAS  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  Google Scholar 

  • Rahman A, Hossain MS, Mahmud JA, Nahare K, Hasanuzzaman M, Fujita M (2016) Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol Mol Biol Plants 22:291–306. https://doi.org/10.1007/s12298-016-0371-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao YR, Ansari MW, Singh AK, Bharti N, Rani V, Verma A, Gupta R, Sahoo RK, Siddiqui ZH, Abbas ZK, Bains G, Brajendra GSK, Rakwal R, Tuteja N, Kumar VR (2020) Ethylene mediated physiological response for in vitro development of salinity tolerant tomato. J Plant Interact 15(1):406–416. https://doi.org/10.1080/17429145.2020.1820591

    Article  CAS  Google Scholar 

  • Rouphael Y, Raimondi C, Lucini L, Carillo P, Kyriacou MC, Colla G, Cirillo V, Pannico A, El-Nakhel C, De-Pascale S (2018) Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00249

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600

    CAS  PubMed  Google Scholar 

  • Schmidt SB, Powikrowska M, Krogholm KS, Naumann-Busch B, Schjoerring JK, Husted S, Jensen PE, Pedas PR (2016) Photosystem II functionality in barley responds dynamically to changes in leaf manganese status. Front Plant Sci 7:1772

    PubMed  PubMed Central  Google Scholar 

  • Shannon MC (1998) Adaptation of plants to salinity. Adv Agron 60:75–119

    Article  Google Scholar 

  • Shevela D, Bjorn L, Govindjee G (2019) Photosynthesis: solar energy for life. World Scientific, Singapore

    Google Scholar 

  • Soda N, Gupta BK, Anwar K, Sharan A, Govindjee G, Singla-Pareek SL, Pareek A (2018) Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci Rep. https://doi.org/10.1038/s41598-018-22131-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanov D, Petkova V, Denev ID (2011) Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test. Sci Hortic 128(1):1–6

    Article  Google Scholar 

  • Stirbet A, Lazar D, Kromdijk J, Govindjee G (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56(1):86–104

    Article  CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 443–480

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. BBA-Bioenergetics 1797:1313–1326

    Article  CAS  Google Scholar 

  • Verma KK, Singh M, Verma CL (2012) Developing a mathematical model for variation of physiological responses of Jatropha curcas leaves depending on leaf positions under soil flooding. Acta Physiol Plant 34:1435–1443

    Article  Google Scholar 

  • Verma KK, Song X-P, Verma CL, Malviya MK, Guo D-J, Rajput VD, Sharma A, Wei KJ, Chen GL, Solomon S, Li Y-R (2021) Predication of photosynthetic leaf gas exchange of sugarcane (Saccharum spp) leaves in response to leaf positions to foliar spray of potassium salt of active phosphorus under limited water irrigation. ACS Omega 6(3):2396–2409. https://doi.org/10.1021/acsomega.0c05863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Guclu H (2013) Global maize trade and food security: implications from a social network model. Risk Anal. https://doi.org/10.1111/risa.120642013

    Article  PubMed  PubMed Central  Google Scholar 

  • Wungrampha S, Joshi R, Rathore RS, Singla-Pareek SL, Govindjee G, Pareek A (2019) CO2 and chlorophyll a fluorescence of Suaeda fruticosa grown under diurnal rhythm and after transfer to continuous dark. Photosynth Res 142:211–227. https://doi.org/10.1007/s11120-019-00659-0

    Article  CAS  PubMed  Google Scholar 

  • Zhang CF, Hu J, Lou J, Zhang Y, Hu WM (2007) Sand priming in relation to physiological changes in seed germination and seedling growth of waxy maize under high-salt stress. Seed Sci Technol 35:733–738. https://doi.org/10.15258/sst.2007.35.3.19

    Article  Google Scholar 

  • Zhang H, Liu N, Zhao J, Ge F, Xu Y, Chen Y (2019) Disturbance of photosystem II-oxygen evolution complex induced the oxidative damage in Chlorella vulgaris under the stress of cetyltrimethylammonium chloride. Chemosphere 223:659–667

    Article  CAS  Google Scholar 

  • Zhu XG, Govindjee, Baker N, deSturler E, Ort D, Long S (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta 223:114–133

    Article  CAS  Google Scholar 

  • Zushi K, Matsuzoe N (2017) Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci Hortic 219:216–221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Fiji National University, Fiji. Authors thank Ms. Sujeshni, Department of Biology, for assistance during the experimentation.

Funding

The work was supported by Fiji National University, Fiji.

Author information

Authors and Affiliations

Authors

Contributions

RG: Designed and conducted experiment, wrote the manuscript; CLV: Hypothesized proposed model, interoperated data and drafted manuscript; AA: Planed experiment and drafted manuscript.

Corresponding author

Correspondence to Ramwant Gupta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Verma, C.L. & Ansari, A. A model to mitigate salinity stress from seawater with cellular Mn supplement in Zea mays. Theor. Exp. Plant Physiol. 34, 1–11 (2022). https://doi.org/10.1007/s40626-021-00224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-021-00224-y

Keywords

Navigation