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Introduction

Human beings make decisions all the time, each 
decision being the final product of a particular 
psychological/cognitive decision-making process 
of an individual or a group. The decision-making 
process can be defined as ‘a set of action and dynamic 
factors that begin with the identification of a stimulus 
for actions and end with a specific commitment to 
action’ (Mintzberg et al. 1976). This decision-making 
process is often accompanied by uncertainty, which 
is known as the feeling of being unsure of what will 
happen in the future. Uncertainty can come from 
various sources, such as limited or incalculable 
information about decision criteria and anticipated 
decision outcomes (Huettel et al. 2005). For example, 
Pavlou et  al. (2007) highlighted uncertainties in 
the e-commerce context stemming from concerns 
about seller opportunism, information privacy 
issues, information security and which discourage 
consumers from committing to the decision of an 
online purchase. Thus, in order to diminish these 
uncertainties decision-makers turn to additional 
information obtained from the social environment, 
and this interaction that may affect decision-makers 
is referred to as social influence (Flache et al. 2017). 
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Research on socially influenced decision-making can 
be applied to a wide range of real-world problems 
(Frederiks et  al. 2015; Li et  al. 2023; Matthews 
et  al. 2007; Ni et  al. 2021; Prasath and Yoganathen 
2018; Sul et al. 2017). In marketing and advertising, 
such research can help marketers better understand 
consumer behaviour and design more effective 
marketing campaigns that resonate with consumers 
(Kim and Srivastava 2007). Similarly, it can help 
policymakers understand how social influence 
affects public opinion and their decision-making 
(Challa et  al. 2018), thus leading to more effective 
public policies. However, the research from Du et al. 
(2019) can also show that ineffective use of decision 
analysis (such as ignoring decision bias) can have 
negative implications, for example, altering a firms’ 
equilibrium strategies and profits.

Socially influenced decision-making has also 
been studied considering the embedding of the 
information in a social network (Berger et  al. 2014; 
Jackson et  al. 2017; Li et  al. 2019; Ni et  al. 2021). 
Here, social influence can be directly associated 
with the interactions (links or edges) among 
individuals (nodes) conforming a social influence 
network (Zhang et  al. 2018). In this context, studies 
in economics (Jackson et  al. 2017), finance (Allen 
et al. 2018; Li et al. 2019), healthcare (Ni et al. 2021; 
Xie et  al. 2020), and information systems (Berger 
et  al. 2014; Hong et  al. 2017; Mislove 2009) have 
found that properties of the social network structures 
(patterns or regularities in relationships between 
individuals obtained directly from the network 
structural summaries) can be associated with changes 
on the decision-making behaviour. For example, 
Engel et al. (2021) constructed a network containing 
different economic actors (nodes) and where a link 
establishes whether an actor holds shares of another 
economic actor. This study used this shareholding 
network to illustrate the importance of understanding 
the ownership structure for investment decisions 
in a diversified portfolio. Ben-Shimon et  al. (2007) 
formed a network of customers’ online friendships 
and concluded that a product recommendation system 
informed by the preferences of a customer’s personal 
social network can more effectively affect their online 
shopping decisions. However, existing research 
on socially influenced decision-making exhibits 
fragmentation across diverse domains as exemplified 
earlier. Therefore, there is a need for research that 

comprehensively examines the role of network 
structures in shaping decision-making processes 
across diverse contexts.

The primary objective of this paper is to illustrate 
the significant effect of well-known mathematical 
network model structures on the general context of 
decision-making through an evidence-based socially 
influenced decision-making model. Particularly, 
this work focuses in three types of social networks 
that are associated with (a) independence, (b) 
preferential attachment, and (c) community structure. 
The analytical framework considers  (I) the decision 
problem formulation, (II)  the individuals’ decision-
making and (III) the process by which individuals 
are socially influenced and make decisions in the 
context of social networks. In more detail, for a given 
observed social network, the social influence to which 
individuals are exposed can be manifested through 
information diffusion. Therefore, the potential paths 
of information diffusion can reflect the process of 
individuals’ opinion dynamics related to decision-
making. In this work, the understanding of a decision 
problem for each individual is represented by a 
belief structure that takes into account uncertainty, 
rendering our analytical framework to be more 
applicable to real-world situations than traditional 
probabilistic representations. After receiving 
information from connected neighbours, individuals 
can update their belief structures on the decision 
problem based on a weighted Dempster’s rule of 
combination. Lastly, our framework is applied 
considering a Monte Carlo simulation to further 
demonstrate the impact of network structures on 
socially influenced decision-making.

The paper is organised as follows. Section  2 
reviews background and related literature in 
decision-making, followed by a further description 
of information diffusion among individuals and 
the description of the different network models 
considered. The overall population based socially 
influenced decision-making framework is developed 
in Sect.  3, which is divided and explained in three 
main steps. Section  4 validates the theoretical 
framework through a simulation-based analysis of 
the information diffusion process, and the impact of 
network structures is highlighted by comparing the 
outcomes of decision-making at the population level. 
Finally, the conclusions are discussed in Sect. 5 along 
with future research directions.
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Literature review

Information diffusion is the process by which 
information is communicated through certain 
channels over time among the members of a 
social system. Here the social system refers to the 
patterned network of interrelationships existing in 
a coherent whole between individuals, groups, and 
institutions (Parsons and Shils 2017). Information 
diffusion therefore can reflect the opinion dynamics 
of individuals (Zhu et  al. 2021). In social networks, 
individuals are now no longer simple receivers, they 
are also influencers (Razaque et al. 2019). Therefore, 
individuals demonstrate their important role in the 
information diffusion process over social networks by 
exchanging information with their neighbours. The 
social interactions that individuals form gradually 
develop over time, eventually gathering and leading 
to a large and complex social network (Al-Taie et al. 
2017).

A network can be mathematically represented by 
a graph G(V, E) , where V is the vertex set whose ele-
ments can be called vertices or nodes, and E is the 
set of interactions, links or edges. Depending on the 
nature of the relationship, networks or graphs can be 
directed or undirected. A graph is undirected when 
it contains relations that do not distinguish between 
where the edges originate. In contrast, a directed 
graph consists of relations between pairs of nodes 
where the start and end nodes are relevant to the con-
sidered interaction (Yang et al. 2016). An example of 
a directed social influence network is shown in Fig. 1, 
where the connections are not necessarily recipro-
cated. For example, node 3 influences node 1, but 
node 1 does not influence node 3. Many real-world 
relationships indeed form directed networks, such as 
seeking advice from someone or passing a message to 
others. In this way, the node sending the information 
can be called the sender or source node, and the node 
receiving the information can be called the receiver or 
target node.

In addition to edge directions, weights are also 
a frequently discussed property in real-world 
networks. Edges are usually associated with weights 
that illustrate the power, strength or capacity of 
the interaction (Barrat et  al. 2004; Horvath 2011). 
Weighted networks have been widely studied 
because they can be used to demonstrate a diversity 
of phenomena (Amano et  al. 2018). For example, 

in infrastructure and information networks, weights 
represent the flow of materials and information such 
as energy, goods, and communications along that 
edge (Barrat et  al. 2004; De Montis et  al. 2007). In 
social networks, Granovetter (1973) argued that 
a weight can represent the strength of the social 
connections such as emotional intensity, closeness, 
or a quantification of the exchange of services. In 
addition, studies have also used weights to represent 
the degree of trust between nodes in the context 
of information diffusion through social networks 
(Arnaboldi et al. 2017; Li et al. 2017; Liu et al. 2019).

In large networks, summary statistics could be 
obtained to provide meaningful insight into the 
structure and dynamics of the network. The most 
common summary statistics are ‘degree’ (i.e., the 
number of links attached to a node), ‘betweenness’ 
(i.e., the number or proportion of times a node 
lies on the shortest path between all other nodes), 
and ‘density’ (i.e., the number of edges present 
divided by the total number of potential edges in 
the network). Summary statistics of the network 
structure provide indications of the degree to which 
individuals are interconnected. The pattern of these 
connections reflects the strength and boundaries 
of information flow (Himelboim et  al. 2017). For 
example, Zubcsek et al. (2014) noted that information 
is more likely to spread among closely connected 
individuals than loosely connected individuals. 
Himelboim et  al. (2017) further explained that the 
rate of interconnection among individuals and groups 
characterises networks and highlights the beneficial 
differences among them.

Fig. 1  An illustrative directed network
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Individuals’ decision dynamics in the context of 
information diffusion

Individuals spread and receive information in social 
networks. The effect of social influence occurs at 
the step where individuals gather information for 
decision-making (Lunenburg 2010). Each node (also 
called individual) is potentially influenced by its 
connected nodes.

In the decision-making process, uncertainty is an 
unavoidable characteristic (Fattahi and Govindan 
2022; Hofstra et al. 2022). For example, Simon (1955) 
proposed the ‘bounded rationality’, which refers to 
the fact that individuals’ rationality is constrained by 
some natural factors such as their intelligence and 
time. The unreliability of information and data is also 
a source that contributes to uncertainty in decision-
making. This indicates that some critical information 
may not be available within a given time frame, while 
the collection of irrelevant or misleading information 
can also increase uncertainty in the decision-making 
process (Koppenjan et  al. 2004). Therefore, when 
considering the formulation of the decision-making 
process, it is crucial to incorporate uncertainty 
in order to accurately reflect real-world decision 
situations.

Researchers have proposed a wide variety of 
frameworks for representing uncertainty in decision-
making (Shafer 1976; Sugeno 1993; Yager et  al. 
1994). The choice of uncertainty representation 
indeed impacts the expressiveness and tractability of 
the decision models (Huynh and Yan 2021). Among 
all theories that have been proposed the more relevant 
ones are Probability Theory (DeGroot and Schervish 
1975), Possibility Theory (Zadeh 1979), and 
Evidence Theory (Shafer 1976). Evidence theory is 
a more general framework that combines probability 
and possibility theory. It deals with situations where 
the available information is uncertain, and where 
there may be conflicts or contradictions in the 
evidence (Ferson et al. 2003). In contrast, probability 
theory and possibility theory are more restricted 
methods with roots in measure theory and fuzzy set 
theory (Sentz and Ferson 2002).

In the decision-making process, individuals’ 
perceptions of decision problems are often reflected 
through belief structures, which are defined as 
a distributed assessment with beliefs (Shafer 
1976). Then, in the information diffusion process, 

individuals’ belief structures are updated according 
to their received influences through the network. 
However, referring to the action of making a 
decision, the concept of belief boundary is presented 
as an evidence threshold value where once enough 
evidence is accumulated such that it surpasses the 
boundary, a corresponding decision will take place. 
This process is also the basic principle of the most 
widely used psychological description of decision-
making (Drugowitsch et  al. 2012; Li et  al. 2022), 
i.e. once the degree of belief exceeds the boundary, 
individuals make a decision (Huang and Rao 2013; 
Thura et al. 2014; Zhao et al. 2016).

Information diffusion among individuals

Information diffusion in the context of social 
networks occurs through the interaction between 
individuals. Here, the interaction extends beyond 
traditional social ties such as friendship and 
occupational relationships because with the 
development of digital networked communications 
methods, the interactions may also take the form of 
links or associations between users on the Internet 
service platforms like Facebook, Twitter and others. 
Furthermore, additional relationships have emerged 
that are not bounded by traditional social factors, such 
as relationships that can be expressed as a parasocial; 
i.e. a one-sided relationship that an ordinary 
individual engages in with for example famous actors 
and athletes (Giles 2002). However, regardless of the 
type of relationships, social networks will always 
embody individuals’ social relations in an integrated 
way (Baek et al. 2013). Hence, the ‘interaction’ stated 
in this study is regarded as the integrated connection 
between individuals in the context of information 
diffusion, which can capture different kinds of 
relationships.

Information diffusion models are developed to 
understand the mechanisms and factors that affect the 
spread of information, ideas, opinions, and behaviours 
in social networks. Two main categories of models 
have been proposed in the literature to explain the 
way information spreads in real-world scenarios. On 
one hand, predictive models have been applied to 
predict how a specific diffusion process would unfold 
in a given social network. The Independence Cascade 
model and the Linear Threshold model (Kempe 
et  al. 2003) are two typical models in this category. 
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These models have been applied in the context of 
information diffusion in Twitter on the basis of users’ 
past activity and evaluate the efficiency in information 
spreading  (Morales et  al. 2014). Similarly, epidemic 
models such as Susceptible-Infectious-Susceptible 
(SIS), Susceptible-Infectious-Recovered (SIS), 
and Susceptible-Infectious-Recovered-Susceptible 
(SIRS) are also models in this first category that were 
originally introduced to simulate the diffusion of 
disease, but different variations have been proposed 
to model information diffusion under different 
social environments (Leskovec et  al. 2007; Liu 
et  al. 2016; Nandi and Medal 2016). On the other 
hand, explanatory models have been developed to 
retrace the spreading path of information in social 
networks, and elucidate the factors that affect 
information diffusion. Importantly, influence models 
were typically developed in this category to analyse 
individual influences and community influences, 
in order to solve the practical problem of influence 
maximisation (Cosley et  al. 2010; Kuikka 2018; Li 
et al. 2018).

Social network structure in information diffusion

Social networks provide an infrastructure for 
information diffusion. Researchers pay particular 
attention to the network topology analysis which 
investigates the structural properties of the network. 
For example, Sueur et  al. (2011) showed that 
heterogeneous  groups, characterised by high inter-
individual variations in network measures, are less 
efficient to spread information than networks that 
leaned towards social connections of  homogeneous 
groups. He et  al. (2019) introduced a balanced 
structure on directed networks that could promote 
the magnitude and speed of information diffusion, 
eliminate path dependence, and lead to polarisation.

Research on the influence of social network 
structures in the information diffusion process 
also has many practical implications. For example, 
evaluating users’ position and relevance within the 
network structure could identify influential spreaders 
(Cataldi et  al. 2013; Kitsak et  al. 2010), and this 
process could also be used as part of the solution 
to the influence maximisation problem mentioned 
in Sect.  2.2 (Kempe et  al. 2003). Similarly, another 
practical application can be seen in source detection 
which could help prevent outbreaks of pandemics 

(Shelke and Attar 2019; Zhu and Ying 2014) and 
trace the rumour source in social networks (Gundecha 
et al. 2013; Varshney and Vishwakarma 2021).

Different social network structures can be 
represented by various stochastic network models 
(de Arruda et  al. 2018). In this work, we consider 
three well-known network models that reproduce 
the following social characteristics: independence, 
preferential attachment, and community structure. 
These models are:

(1) Erdős–Rényi model

This model considers a network where the 
probability of the connection between any two 
distinct nodes is always constant, i.e. the presence 
or absence of an interaction does not depend on any 
other interaction. Specifically, for any pair of nodes 
in the network, they are connected with probability 
p and are not connected with probability 1 − p . The 
expected number of connections for each node is 
p ∗ (N − 1) where N is the total number of nodes 
(Erdos and Rényi 1960).

(2) Barabási–Albert model

 Barabási and Albert (1999) introduced a growing 
network model to explain the presence of power-
law (or scale-free) degree distribution in multiple 
real-world networks by considering growth and 
preferential attachment  in the network formation 
process. Growth means new nodes incrementally 
join the already existing network over time, and 
the preferential attachment can be explained as the 
preference of new nodes to connect to nodes that 
already have a large number of links to others. In 
this model, P(k) is the probability of any node having 
degree k and it is directly proportional to k−� , where 
� is a quantity characterising the network topology. 
In the case of the Barabási–Albert model, the degree 
distribution follows a power law with degree exponent 
� = 3 . Generalisations of this model for other values 
of the power exponent � are also available depending 
on different cases (Barabási and Albert 1999). In 
general, multiple real-world networks, in addition to 
social networks, have been found to follow scale-free 
models, such as biological networks (Koutrouli et al. 
2020), financial networks (Souza and Aste 2019) and 
World Wide Web-based networks (Albert et al. 2000). 



90 Decision (March 2024) 51(1):85–103

1 3
Vol:. (1234567890)

In this work, the direction of each edge is selected at 
random.

(3) Stochastic block model

 The stochastic block model was first introduced 
in 1983 in the field of social networks by Holland 
et  al. (1983). It can be considered as a two-step 
Erdős–Rényi model. Firstly, nodes are assigned to 
communities, and then edges between two com-
munities and within communities are created in an 
Erdős–Rényi random manner with probabilities 
given by an edge probability matrix associated with 
the communities considered (Holland et  al. 1983). 
This model aims to partition the set of nodes in the 
network in such a way that the proportion of edges 
between nodes in the same block/community can be 
higher than the proportion of edges connecting nodes 
in different blocks (Ludkin et al. 2018).

Research methodology

This work aims to better understand the effect of the 
social network structure on decision-making by simu-
lating the information diffusion process at the popula-
tion level under social networks. The population-level 
analysis involves characterising interactions between 
individuals in the social network. There are three key 
steps for analysing socially influenced decision-mak-
ing: (1) problem formulation and decision modelling, 
(2) information diffusion in the network, and (3) con-
solidation of individuals’ belief structures via infor-
mation aggregation mechanisms. A summary of these 
steps and ideas is given in Fig. 2. The main steps of 
the analytical framework are explained in detail and 
in concrete terms in this section.

Decision problem formalisation and modelling

Evidence theory also referred to as Dempster–Shafer 
(D–S) theory (Shafer 1976), takes into account the 
uncertainty in the decision-making process. It is 
used to address the decision-making problem in this 
work. The belief function is used to represent an 
individual’s attitudes towards different outcomes of a 
decision. Regardless of the type of initial data and the 
complexity of the decision problem, this theory can 
easily assign probabilities by using a basic probability 

assignment (BPA), which is often interpreted in a 
broad sense as a piece of confidence associated with 
a certain hypothesis or class (Xu et  al. 2013). The 
mathematical theory of evidence can be founded 
axiomatically on the notion of belief functions or on 
the allocation of belief masses to subsets of a frame 
of discernment (Kohlas and Monney 1994). Wang 
and Song (2018) also claim that evidence theory 
has broader applicability as it does not require prior 
knowledge in uncertainty reasoning.

Take for example  the binary decision problem of 
whether to vaccinate or not, the frame of discernment 
is thus given as Ω = {accept, reject}, 2Ω is the power 
set of Ω which stands for the set of all subsets of 
Ω including the empty set ∅ , and which elements 
correspond to all possible states of an individual 
decision:

Here, the uncertainty is included in the mathematical 
expression as a decision outcome ‘yet to decide’(Ω ). 
A belief mass m ∈ [0, 1] is then assigned to each 
element of 2Ω , such that the following conditions are 
met,

Information propagation through network

In the context of the social network, the connections 
and interactions between individuals provide the 
path of information diffusion. The information 
diffusion process considered for a directed network 
can be illustrated in Fig.  3, if it is assumed that the 
information propagation starts when a new piece of 
information is introduced to the social network, for 
example, node 3 in Fig. 3.

The propagation process considers the following 
two steps: (A) A node that receives information from 
any neighbouring node(s) tagged as a source node 
and updates its own information accordingly (the 
updating process is described in the next section). (B) 
Any tagged node propagates the updated information 
to all of its neighbours. These two steps are repeated 
until a stop criterion is met. In this work, the process 
is stopped when all nodes that can be reached from 
the node that started the propagation process have 

(1)
2Ω = {{accept}, {reject}, {yet to decide(Ω)}, {�}}.

(2)m(�) = 0,
∑

x∈2Ω

m(x) = 1.
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received new information. In this process, starting 
from the initial source node, every iteration of the 
propagation is considered as a round which refers to 
one complete propagation step followed by one com-
plete aggregation step.

Figure 3 shows just one iteration or one round. In 
Fig.  3, node 3 (highlighted in green) in step A is 
taken as the source node to start the information dif-
fusion process. Node 3 thus influences nodes 1, 2, 4, 
and 5 (highlighted in blue). In this case, the beliefs 
of nodes 1, 2, 4, and 5 will be updated according 
to the received information (updating rule described 

in the next section). Those four updated nodes then 
diffuse their beliefs to their target nodes in step B 
simultaneously. Note that in this example node 5 is 
influenced twice by this stage by node 3 first and 
now by node 4. Even though the information passed 
from node 4 to node 5 was already influenced by 
node 3, node 4 with updated beliefs is still consid-
ered as new information from node 5’s perspective. 
The diffusion process continues, and the influenced 
nodes become the new source nodes to spread the 
information to their target nodes.

Fig. 2  Flowchart of the research methodology
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Information aggregation or belief fusion between 
individuals

Here, individuals’ beliefs are considered to update 
according to the newly obtained evidence following 

and mj , respectively, and satisfy the conditions in Eq. 
(2). Due to the existence of weighted edges ( wij ), any 
evidence transmitted through the edge from node i 
and j is weighted. Thus, the correspondent weighted 
evidence mass functions sent by node i to node j are:

where wij ∈ [0, 1] is the weight of the edge eij between 
node i and j. The extended Dempster’s rule used in 
this work could mitigate the deficiencies of the D-S 
theory in the combination of conflicting beliefs and 
which is criticised by Zadeh (1979).

The updated belief structure of node j after 
receiving information from node i following the 
extended Dempster’s rule is obtained by the two sets 
of masses mi

j
 and mj as

(3)
mi

j
( accept) = mi( accept) ⋅ wij,

mi
j
( reject) = mi( reject) ⋅ wij,

mi
j
( uncertain) = mi( uncertain) +

(

1 − wij

)(

mi( accept) + mi( reject)
)

,

Fig. 3  (Left) The initial 
propagation step from a 
unique starting source 
node (node 3). (Right) The 
subsequent propagation 
of information from new 
source nodes (i.e. neigh-
bours of node 3)

Dempster’s rule of combination (Sentz and Ferson 
2002). Given a weighted directed social network, 
with weights in [0,  1] assessing the strength of the 
social influence, the multivariate mass functions for 
the decision states on nodes i and j are given by mi 
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where x1, x2, x3 ⊆ {accept, reject, uncertain} , ⊕ 
denotes the combination operator. Furthermore, it 
should be noted that Dempster’s rule of combina-
tion is an associated operator, thus leading to the 
same updated values of information in the target 
node regardless of the order in which the information 
is combined from multiple information sources (i.e. 
neighbours).

In order to better demonstrate the process of belief 
fusion, a numerical example of belief combination for 
node 5 from the illustrative network (Fig. 3) is shown 
in Fig.  4, in which node 5 receives weighted influ-
ences from nodes 3, 4 and 7, and its belief structure is 
updated to {m�

5
( accept),m�

5
( reject),m�

5
( uncertain)}.

Simulation design

Our simulation setup considers two main elements: 
(1) considerations regarding the generation of random 
networks and (2) the overall simulation pipeline of 
the information diffusion process. The whole simula-
tion design is conducted through R 4.3.1 with some 
particular packages such as igraph 2.0.2 network 
1.18.2, DirichletReg 0.7–1, ggplot2 3.5.0, and 
dst 1.5.2. R itself and all dependent packages used 

(4)
m�

j

�

x1
�

= mj

�

x1
�

⊕ mi
j

�

x1
�

=
1

1 − K

�

x2
⋂

x3=x1≠�

mj

�

x2
�

∗ mi
j

�

x3
�

,

K =
�

x2∩x3=�

mj

�

x2
�

∗ mi
j

�

x3
�

,

are available from the Comprehensive Archive Net-
work (CRAN) at https:// CRAN.R- proje ct. org.

Networks generation

Three types of directed networks are used to evaluate 
the impact of the network structure on the overall 
decision outcome after the complete propagation of 
information through the generated social network. 
As mentioned in Sect.  2.3 the network models used 
are the Erdős–Rényi (ER) network, preferential 
attachment (PA) network, and stochastic block 
model (SBM) network. To ensure comparability of 
results, all generated networks have the same number 
of nodes, 1000, and have the same fixed average 
degree (the average number of edges per node in the 
network), 6.

The value of the average degree used in the net-
work generations was based on observed values 
in real-world datasets such as Taro gift exchange 
(Schwimmer 1973), YouTube friendships (Guimera 
et  al. 2003; Yang and Leskovec 2012), FilmTrust 
trust (Guo et  al. 2016), and Hamsterster households 
(Kunegis 2013). Most related network datasets have 
an average degree between 4 and 8 with node sizes 
between 30 and 2000. Therefore, this work uses an 
average degree of 6.

Fig. 4  A numerical exam-
ple of belief fusion

https://CRAN.R-project.org
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For the stochastic block model, due to its special 
community structure, two additional parameter needs 
to be fixed, the number of communities/groups and 
the probability of creating edges between distinct 
communities. 10 communities were initially selected 
to ensure a moderate number of groups, neither too 
small nor too large. The number of edges between 
communities is thus fixed to be 5% of the total number 
of edges in the network. A value of 5% is used as it 
aligns with values seen in real-world datasets, such 
as friendship data (Choukas-Bradley et al. 2015) and 
Zachary’s karate club (Girvan and Newman 2002).

It should be noted that the group sizes in the SBM 
are all the same in order to avoid the introduction of 
another feature apart from the group presence into the 
generated networks.

A visualisation of one generation of the three types 
of network structures is shown in Fig. 5.

In networks shown in Fig.  5, the yellow circles 
stand for nodes or individuals, and the links between 
nodes represent individuals’ interactions in terms of 
sending or receiving information and influence. The 
arrow implies the direction to which information and 
influence flow, and the size of nodes is determined 
by the number of outward links (i.e., out-degree). 
Here, different characteristics of networks can also 
be observed. Specifically, in the ER network where 
is no obvious pattern; the PA showing a preference 
of highly connected nodes at the centre and which 
act as the pivot of the whole network; and the SBM 
network which shows a clear view of 10 highly 
connected groups or communities. The simulation of 
the diffusion process for any of the networks is shown 
below.

Simulation of the information diffusion process

The main purpose of this paper is to find the general 
influence of social network structure on decision-
making. Thus, the social network applied in this work 
is not constrained to physical or online interactions, it 
is instead considered to be a representation of general 
relationships among individuals. Therefore, a wide 
range of situations can be fit into our work albeit 
with specific considerations. For example, the weight 
distribution of each edge can be changed to introduce 
different types of relationships. Alternatively, the 
initial belief structure can adapt to the specific case 
and align with the given community structure. 
Moreover, individuals’ belief boundaries can be 
personalised according to the different characteristics 
of nodes given by additional information.

The decision scenario applied in this simulation is 
a binary decision problem, for example, whether to 
vaccinate or not. This experimental study will start 
to simulate the information diffusion process under a 
social network generated from one of the three net-
work models. The basic assumption of information 
diffusion through these networks is that each node of 
the network is influenced by its neighbours, and the 
belief fusion is performed through a consistent aggre-
gation mechanism (the weighted Dempster’s combi-
nation rule). The flow chart of the entire simulation of 
the information diffusion process under a given net-
work is thus shown in Fig. 6.

Once a network is generated, the information 
propagation simulation starts by randomly assigning 
initial belief values that follow a Dirichlet distribu-
tion to all the nodes so that the sum of values of mass 

(a) ER network (b) PA network (c) SBM network

Fig. 5  Visualisation of three illustrative social network structures with 100 nodes
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functions satisfies the condition of summing to one. 
Each node is also randomly assigned a unique belief 
boundary which is uniformly distributed between 0.6 
and 1.

In the information diffusion process, the start-
ing node is selected at random (although two addi-
tional situations are also used, and described below) 
and assigned a piece of positive information with 
a belief structure (1,0,0). The starting node, as the 
current source node, spreads the positive informa-
tion to its target nodes, which then update their 
beliefs based on the newly received information 
and become the new source nodes. During the pro-
cess, nodes (individuals) make a decision when 
their belief boundaries are exceeded. Diffusion of 
information continues until all the reachable nodes 
from the starting node are influenced at least once. 
It should be noted that the belief updating process is 
not a fully instantaneous process, and it is an evolv-
ing process where the beliefs of each node are con-
stantly influenced throughout the network until the 
diffusion stops.

In the above diffusion process described, two other 
additional simulations are considered with respect to 
the selection of the starting node. The first additional 

case selects the starting node as the most central node 
according to betweenness centrality (betweenness-
based selection), and the second additional case 
selects the node with the highest number of outer 
links to other nodes in the network (out-degree-based 
selection).

During the information diffusion process, the deci-
sion outcomes of each node are recorded. A node that 
has already decided on ‘accept’ will not change the 
outcome of that decision regardless of how its belief 
structure is affected later. This diffusion process, as 
given in Fig. 6, is repeated 1000 times and each time 
with a new generated  network, initial belief struc-
tures and belief boundaries are generated in order to 
remove any potential bias introduced by the initial 
observed graph, belief structures or belief bounda-
ries assignment. The result is assessed by compar-
ing the average percentage of outcomes on decisions 
‘Accept’, ‘Reject’ and ‘Yet to decide’ after 1000 simu-
lations and their converging trends on different deci-
sion outcomes over time.

From these processes, we obtained results for a 
total of 9 scenarios composed of the combinations 
of three network structures and three starting node 
selection criteria.

Fig. 6  Flowchart of the simulation process under a network
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Analytical results

The simulation described above follows a binary 
decision problem in, for example,  the context of 
vaccination where  the general outcome is whether 
to vaccinate or not. Individuals who initially fail to 
make a firm decision can receive evidence from their 
social neighbours as well as diffuse their beliefs to 
others via social connections. The average of 1000 
simulations of the percentage acceptance outcome 
(vaccinate) on the different network structures and 
starting nodes are shown in Fig.  7. Here, the x-axis 
stands for the diffusion rounds, and the y-axis stands 
for the average acceptance  (vaccinate) rate. Figure 7 
also shows the average acceptance rates when there 
is no intervention on the starting node  (triangles), 
i.e. the expected  outcome that would be seen if  the 
starting node keeps its own belief structure instead 
of the assigning (1,0,0) as its initial belief. Lastly, it 
should also be noted that the plateau behaviour, high-
lighted by the enclosed regions in Fig.  7, does not 
represent decision convergence but rather represents 
a stable value of acceptance rates of the diffusion pro-
cess when it reaches the stopping criteria. Note that 
as the simulation considers multiple replicates, each 

replicate may reach the stopping criteria at a different 
round. This means that if the propagation of influence 
were to continue, even after all reachable nodes in the 
networks were influenced at least once, the accept-
ance rate could continue rising according to its previ-
ous trend for an additional number of rounds.

As the simulation stops when all reachable nodes 
have received new information, instead of when the 
system reaches a steady state, the final average per-
centages of decision outcomes on acceptance for 
three network structures are roughly between 22 and 
33%. These values show, in addition and as expected, 
a higher acceptance rate than when no positive 
information is introduced  on the starting node. For 
example, for ER-random starting point,  the ratio of 
acceptance (Fig.  8) changes by 1%. In contrast, for 
PA-highest out-degree base selection, the ratio of 
acceptance changes by 12 percentage points.

Overall for a fixed number of rounds, Fig. 7 shows 
that  the PA networks obtain a higher population 
acceptance outcome quicker than both ER and SBM 
networks. PA networks as well as ER networks, 
show a similar and much faster (8–16 rounds) initial 
spread of the information across the networks than 
SBM networks (14–24 rounds) regardless of the 

(a) Random-based selection (b) Betweenness-based selection (c) Out-degree-based selection

Fig. 7  The average percentage (%) of decision outcomes on 
acceptance in each round for different networks with three 
scenarios of the selected starting node. The shape represents 
decision outcomes on whether to include the initial positive 
information intervention. The plateau behaviour shown in 

the shaded area does not represent decision convergence, but 
rather represents the current value of acceptance rates. Hori-
zontal lines stand for the acceptance rate of 0.2, 0.25 and 0.3
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starting node considered. These outcomes show 
that social networks with a predominant preferential 
attachment structure lead to a larger and faster impact 
from new information coming into the system than 
social networks with a strong community structure 
component or with a completely at random structure.

Among the 9 simulation scenarios, networks with 
community structures (SBM) showed the slowest dif-
fusion of new positive information and highlighted 
the difficulty in reaching a larger overall outcome 
than the other structures on a fixed number of rounds 
(Figs. 7 and 9).

From both Figs.  7 and 8, it can be seen that the 
network structure plays an important role in the 
outcome and overall process of socially influenced 
decision-making. Furthermore, both figures, and 
particular Fig. 8 also highlight the impact of the way 
new information is introduced. Selecting a random 
node to introduce the information, leads to the 
smaller impact in the overall decision outcome across 
networks compared with selecting the most central 
individual (Fig. 8b) or the individual with the largest 
outward social connections in the networks (Fig. 8c).

Figure  8 also provides an important distinc-
tion on the diffusion process occurring on the social 
networks with strong community structure (i.e. 
SBM networks). As it can be seen, the round times 
for  SBM networks achieve a peak acceptance ratio 
similar to PA networks. However, in contrast to the 
two other social network structures, this peak rapidly 

Fig. 8  The ratio in the 
average acceptance rate of 
simulations with positive 
intervention over no inter-
vention. Selection scenarios 
on the starting node are 
a Random-based selec-
tion, b Betweenness-based 
selection, and c Out-degree-
based selection

Fig. 9  Average number of newly influenced nodes in each 
round for different network structures with the starting node 
chosen at the highest betweenness. The grey vertical dashed 
lines represent the result on round 5. Similar figures are found 
for the other scenarios
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decreases  in SBM networks, and thus hints towards 
a moment in the diffusion process where either the 
new information has been diluted and therefore is 
not able to drive a significant change on the belief 
structures of the different communities; or alternative 
belief structures  in communities not yet influenced 
could have gain enough strength (aided by potential 
echo chambers that are product of the community 
structure) to oppose the new information.

Discussion

The results from this simulation analysis although con-
strained in their generalisation can nonetheless provide 
potential practical real-world applications. For exam-
ple, in the process of promoting vaccination in social 
environments, the proposed framework could evaluate 
population-level outcomes with respect to vaccination 
campaings (new information), and to evaluate the most 
favourable method and platform of dissemination  of 
the vaccination campaign. Furthermore, the approach 
becomes even more relevant when considering pro-
moting vaccination information on social media. In 
this case, both the urgency and the budget of the cam-
paign can be jointly considered. In terms of urgency, 
public health officials can identify the top influencers 
(accounts) with many followers (nodes with the high-
est out-degree) to achieve the maximum effect of pro-
motion in the shortest time. However, as top influenc-
ers could be inevitably costly, accounts (nodes) with 
high betweenness centrality, such as accounts that have 
joined many Facebook groups can be selected to pro-
mote vaccination information at a slightly slower pace 
but still achieve maximum influence (Fig. 10) and pos-
sibly using a smaller budget.

Conclusion

This work analysed the independent impact of the 
network structure on socially influenced decision-
making. An analytical framework from problem for-
mulation to empirical simulation was proposed to 
model the information diffusion process under three 
potential social network structures. In the framework, 
individuals update their beliefs towards decisions 
based on the evidence they receive from their social 
neighbours. The uncertainty present in socially influ-
enced decision-making and the subjective judgements 
of individuals are all included and represented by 
belief functions. In order to establish how the infor-
mation from a source individual changes the informa-
tion or beliefs of another, the weighted Dempster’s 
rule of combination is used to implement evidence 
aggregation under uncertainty. Thus, this framework 
considers an individual’s decision-making process in 
the population as a dynamic process, starting from 
belief formation and going through a series of belief 
adjustments and evidential reasoning, and finally 
leading to a decision if there is sufficient evidence.

The simulation-based experiment conducted in 
this work reveals the effect of three network struc-
tures on socially influenced decision outcomes at 
the population level and includes insights regarding 
the speed of the information diffusion or the effec-
tiveness of the information in a given structure. In 
addition, this work highlights relevant differences 
with respect to the selection of the starting node and 
the consequences for the ‘speed’ of the information 
diffusion process.

The structural characteristics of social networks 
can be further modelled and parameterised to solve 

Fig. 10  Average number 
of newly influenced nodes 
in each round for SBM 
networks with the selected 
starting node based on a the 
highest betweenness and b 
the highest out-degree. The 
dashed lines connect the 
average number of newly 
influenced nodes in both 
selections from round 1 to 
round 8

(b) Betweenness-based selection (c) Out-degree-based selection
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Fig. 11  Average number 
of times that nodes are 
influenced in each round for 
different network structures 
with the remaining two sce-
narios of the selected start-
ing node. The grey vertical 
dashed lines represent the 
result on rounds 10 and 15

(a) Random-based selection (b) Out-degree-based selection

practical problems, such as influence maximisation 
and recommendation systems. In more detail, active 
action could be taken to enhance the structure of 
real networks in key strategic places (e.g. bridging 
of communities) in order to obtain either a higher 
impact or faster propagation of the information. 
In addition, real-world networks can be applied to 
illustrate the efficacy of the proposed theoretical 
framework in the future work.
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See Figs. 11, 12 and 13

Fig. 12  Average number 
of newly influenced nodes 
in each round for different 
network structures with the 
remaining two scenarios of 
the selected starting node. 
The grey vertical dashed 
lines represent the result on 
round 5

(a) Random-based selection (b) Out-degree-based selection
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