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Abstract In the age of rapid technological advance-

ment and digitization, coordination strategy remains

an important issue for the supply chain. Additionally,

the uncertainty caused by the disruption often induces

the risk aversion in the supply chain members.

Motivated by this issue, here we propose a coordina-

tion mechanism for a risk-averse supply chain using

mean–variance approach. Here, we consider both

centralized and decentralized cases and show that our

analysis holds good for a central planner as well as for

a decentralized supply chain under channel coordi-

nating contracts such as buyback and revenue-sharing

schemes. With the help of theoretical and numerical

analysis, we exhibit how an individual supply chain

agent’s risk aversion behavior can impact the contracts

selection mechanism - from the profitability perspec-

tive. We extend our analysis to a dyadic setting to a

single-supplier multiple-retailer network and confirm

that pure strategy Nash equilibrium exists when all the

retailers are risk-averse with varying risk attitude.

Keywords Supply chain � Risk aversion � Mean

variance approach � Buyback contract � Revenue

sharing contract

Introduction and literature review

Global supply chains are complex multi-echelon

systems consisting of numerous agents. Due to rapid

technological advancements, digitization, and a strive

to improve operational efficiency, supply chains are

increasingly becoming decentralized in nature. Firms

are often relying on decentralization-enabling tech-

nologies such as blockchains to manage their decen-

tralized supply chains (Catalini and Gans 2016;

Alzahrani and Bulusu 2018). However, these global

supply chains often become vulnerable as they face

different kinds of uncertainties and risks. For example,

if a supplier firm employs a direct sales channel with

traditional retailers, it exposes her to risk due to

conflict from vertical as well as horizontal competition

(Tsay and Agrawal 2004; Yao and Liu 2005). The

political instability of a region (Peck 2005), natural

disasters (Tomlin 2006) are other primary sources of
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supply chain risk because of their disruptive effects.

As the uncertainties and the risks associated with

supply chain decisions are increasing day by day, the

risk-neutrality assumption seems to be inadequate

(Wu et al. 2009; Katariya et al. 2013; Zhuo et al. 2018)

from the perspective of supply chain coordination. In

this context application of predictive analytics and

associated models become crucial for devising opti-

mal results for a firm. Predictive analytics enables

supply chain managers to arrive at optimal decisions

based on external market conditions. During the recent

outbreak of the COVID-19 pandemic, supply chains

are facing liquidity crunch1 coupled with reduced

demand in the markets 2. As a result, businesses are

increasingly turning risk-averse3. Modelling the chan-

nel coordination mechanism for a risk-averse firm

using predictive analytics is typically based on game-

theoretical techniques (Souza 2014). In this paper, we

focus on such a modeling technique for a risk-averse

dyadic supply chain.

In supply chain management, the classical

newsvendor problem-solving approach is employed

to design channel coordinating supply contracts.

Buyback contracts (Pasternack 2008; Cachon 2003);

revenue-sharing contract (Pasternack 2005; Cachon

and Lariviere 2005; Giri and Bardhan 2012), and

quantity discount contract (Huang et al. 2011) are

some instances of channel coordination mechanisms.

However, these mechanisms do not consider the risk

attitude of the agent and focus on the objective of

either maximizing the expected profit or minimizing

the expected cost.

Scholars have adopted a multitude of approaches to

incorporate the risk-averse nature of the members of a

supply chain. Examples include mean–variance (MV)

analysis (Lau 1980; Choi et al. 2008a, b; Wu et al.

2009; Wei and Choi 2010; Katariya et al. 2013),

conditional value-at-risk (CVaR) minimization (Go-

toh and Takano 2007; Chen et al. 2009; Li et al. 2014;

Soleimani et al. 2014), and expected-utility (EU)

maximization (Horowitz 1970; Eeckhoudt et al. 1995;

Keren and Pliskin 2006). The MV framework enables

investors to analyze risk diversification of assets and

helps them to design an optimal portfolio (Markowitz

1959). This framework has been explored extensively

by scholars within the realm of supply chain manage-

ment to address supply chain risks, particularly those

arising from uncertain market demand (Chiu and Choi

2016; Choi and Chiu 2012; Liu et al. 2016). We further

observe that in supply chain management both MV

approach and von Neumann–Morgenstern utility

(VNMU) approach are employed by scholars for

studying optimal supply chain decisions under risk. In

spite of being a precise approach, usage of VNMU

approach is limited due to the difficulty in estimating

an individual’s utility function in practice (Choi et al.

2008a, b). On the other hand, the MV approach aims at

providing an implementable, useful, and approximate

solution (Van Mieghem 2003; Buzacott et al. 2003).

In the context of MV analysis, there are three

distinct ways to compute the objective(s) of a supply

chain agent: (i) she tries to maximize the difference

between the expected profit and a product multiplier of

the variance of the profit (Wu et al. 2009; Katariya

et al. 2013), (ii) she tries to maximize the expected

profit while restricting its variance within a pre-

defined level (Wei and Choi 2010), (iii) she attempts to

minimize the variance of the profit, thereby ensuring

her expected profit to exceed a pre-defined minimum

threshold (Choi et al. 2008a, b; Choi and Chiu 2012).

Choi et al. (2008a, b) show that the channel coordi-

nation in a two-tier supply-chain structure is a function

of the net difference between the risk preferences of

the supplier and the retailer. They conclude that

coordination in the supply chain is not achievable in

the presence of a highly risk-averse retailer. Wei and

Choi (2010) propose a wholesale price and a profit-

sharing mechanism that coordinates the supply chain,

depending on the risk-aversion threshold of the

retailer.

While MV analysis follows the maximization of the

difference between expected profit and risk-attitude

multiplier of the variance of profit, Lau (1980) have

established that the optimal order quantity for a risk-

averse agent would be less than that for a risk-neutral

one without considering the shortage cost. Wu et al.

(2009) have demonstrated that a risk-averse newsven-

dor can order more than a risk-neutral one by

1 Economic Times Retail Report (June 10, 2020), ‘‘Driving

demand to drive economy’’, Retrieved from: https://retail.

economictimes.indiatimes.com/news/industry/driving-demand-

to-drive-economy/76298362, Accessed on: June, 10, 2020.
2 Ibid.
3 Mason, B. (May 14, 2020), ‘‘Risk Aversion Sweeps across the

Markets as COVID-19 Realities Sink In’’, Retrieved from:

https://www.fxempire.com/news/article/risk-aversion-sweeps-

across-the-markets-as-covid-19-realities-sink-in-649266,

Accessed on: June 01, 2020.
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incorporating stock-out costs in their analysis. Katar-

iya et al. (2013) show that under the MV criterion, a

comparison between the optimal order quantities of

the risk-neutral and risk-averse newsvendors depends

solely on the model parameters and the nature of

demand distribution chosen. As a result, channel

coordination exercises under the MV criterion

becomes parameter-dependent exclusively.

In this paper, we attempt to answer the following

questions:

1. Is channel coordination in a risk-averse supply

chain dependent on parameters (or preferences) of

individual supply chain agents?

2. Is it possible for a supplier to coordinate a supply

chain network consisting of a single supplier and

multiple retailers where the retailers are all risk-

averse?

In this paper, we derive the general condition for

MV objective-maximization of a risk-averse supply

chain. We consider both centralized and decentralized

cases and show that our analysis holds good for a

central planner as well as for a decentralized supply

chain under channel coordinating contracts such as

buyback and revenue-sharing schemes. Existing stud-

ies by Choi et al. (2008a, b) and Wei and Choi (2010)

demonstrate that specially-designed contracts can

achieve coordination in a risk-averse supply chain.

We show that conventional contract forms, such as

buyback and revenue-sharing schemes, can also lead

to channel coordination. In the context of a two-tier

supply chain structure, we first analyze the optimality

conditions of a centralized risk-averse supply chain,

which subsequently serves as a benchmark in our

study. We further establish that an agent’s MV

optimization is dependent solely on the prior demand

distribution. We prove that the maximizing condition

is independent of the model parameters—a finding

hitherto unreported in the extant literature. As a

consequence of this novel finding, we successfully

propose a relatively simplified technique to calculate

the optimal order quantity compared to the existing

mechanisms. Supported by extensive numerical anal-

ysis, we report interesting insights on how the risk

aversion behavior of an individual supply chain agent

can impact the contract selection mechanism, espe-

cially from the profitability perspective. We extend

our analysis to a dyadic setting with a single-supplier

multiple-retailer network and confirm that a pure-

strategy Nash equilibrium exists when all the retailers

are risk-averse with varying risk attitudes. We also

establish the range of values for the risk-aversion

parameter within which this pure Nash solution holds.

Such analysis can assist supply-chain managers in

designing their optimal supply contract forms in the

context of a supply chain network.

The rest of the paper is organized as follows. In

Sect. 2, we analyze the centralized supply chain under

mean–variance approach with three contract forms,

compare between risk shares, and develop the criterion

to achieve channel coordination. In Sect. 3, we extend

our analysis to a single-supplier multiple-retailers

supply chain network when all the retailers are risk-

averse and possess different risk attitude. We analyt-

ically investigate the condition(s) under which a pure-

strategy Nash equilibrium may exist for such a game.

In Sect. 4, we conclude our study by discussing our

key findings and future research avenues.

Mean–variancemodel of a risk-averse supply chain

We consider a dyadic supply chain comprising one

supplier and one retailer. The retailer experiences

stochastic demand x during the selling season. Let F

represent the cumulative distribution of that demand

and f is its density function. We assume that F is

differentiable and strictly increasing. Let the retail

price be p, and at this price, the retailer’s order

quantity be q. The supplier’s unit production cost is s

and the retailer’s marginal cost per unit is c. The

retailer sells her season-end left-over inventory at per

unit salvage price v \cð Þ . For expositional simplic-

ity, both retail price (p) and salvage price (v) are

exogenous to our model. To avoid triviality, we

assume: 0\v\c\p. Therefore, the expected sales

S qð Þ and the expected left-over inventory I qð Þ can be

expressed as,

S qð Þ ¼ E min q; xð Þ½ � ¼ q�
Zq

0

F xð Þdx and

I qð Þ ¼ q� S qð Þ ¼
Zq

0

F xð Þdx

where T �ð Þ is the expected transfer payment that the

retailer pays to the supplier. A transfer payment is a
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function of the order quantity, left-over inventory, and

the contract offered by the supplier. Let E pR qð Þ½ � and

E pS qð Þ½ � denote the expected profits of the retailer and

the supplier, given by Eqs. (1) and (2) respectively.

E pR qð Þ½ � ¼ pS qð Þ þ vI qð Þ � cq� T �ð Þ ð1Þ

E pS qð Þ½ � ¼ T �ð Þ � sq ð2Þ

First, we analyze the optimality condition(s) for the

centralized supply chain. Subsequently, we study the

decentralized supply chain and compute the expected

profit and variance of the individual supply chain

agents.

Centralized supply chain

In the case of a centralized supply chain, the supplier

and the retailer are vertically integrated. The expected

profit E pC qð Þ½ � of such a centralized system can be

easily computed by adding Eqs. (1) and (2) to get (3),

so that

E pC qð Þ½ � ¼ pS qð Þ þ vI qð Þ � cþ sð Þ q

¼ p� cþ sð Þf g q� p� vð Þ
Zq

0

F xð Þdx

ð3Þ

where pC qð Þ designates the randomized profit of the

centralized supply chain, represented by (3) and is

given by

pC qð Þ ¼ p� cþ sð Þf gq 8x� q
p� cþ sð Þf gq� p� vð Þ q� xð Þ 8x\q

�

ð4Þ

Mean–Variance (MV) analysis employs a risk-

aversion parameter a � 0ð Þ to characterize the risk

aversion attitude of a supply chain agent (Wu et al.

2009). It signifies a quantitative balance between the

expected profit and the risk associated with its

variance. For a risk-neutral agent, a is zero, while it

is positive-valued for a risk-averse agent (Wu et al.

2009). An increase in a indicates a rise in the agent’s

willingness to forego her expected profit and avoid the

associated risks. Under the MV framework, Eq. (5)

represents the objective of the central planner.

max
q � 0

E pC qð Þ½ � � aCVar pC qð Þ½ �f g ð5Þ

where aC denotes the risk aversion attitude of the

overall centralized supply chain. Now, the variance of

the centralized supply chain profit can be defined as:

Var pC qð Þ½ � ¼ E pC qð Þ½ �2� E pC qð Þ½ �f g2

Using Eqs. (3) and (4), Var pC qð Þ½ � can be repre-

sented as

Var pC qð Þ½ � ¼ � p� vð Þ2

Zq

0

FðxÞdx

2
4

3
5

2

�2

Zq

0

q� xð ÞF xð Þdx

8<
:

9=
;

ð6Þ

From (3), it is evident that the expected profit

E pC qð Þ½ � is concave in q, although the variance may be

unbounded. For such reasons, the presence of a unique

optimum is not always guaranteed (Wu et al. 2009).

We apply the change in the order of integration and the

properties of truncated distribution, to arrive at the

following maximizing criterion from the first- and

second-order conditions of Eq. (5).

Theorem 1 The order quantity decision ( q�) of the
central planner can be calculated as:

p� cþ sð Þf g � p� vð ÞF qð Þ

� 2aC p� vð Þ2
1 � F qð Þf g

Zq

0

F xð Þdx

¼ 0 ð7Þ

which maximizes her objective function if and only if it

additionally satisfies q: r qð Þ� 1
1�E nð Þ, where r �ð Þ ¼

f �ð Þ
1�F �ð Þ is the failure rate of the demand distribution x,

n ¼ Y=q, and Y is a random variable that corresponds

to the truncated distribution of demand x over 0; q½ �.

Proof The proof is provided in Appendix.

From Theorem 1, we observe that the optimality of

ordering decisions relies only on the prior demand

distribution. This result marks a significant improve-

ment over existing works of Choi et al. (2008a, b), and

Katariya et al. (2013), because it concludes that the

optimality of the ordering decision depends both on

the model parameter and the demand distribution. The

closed-form solution of the optimal order quantity is

straightforward and can be obtained from Eq. (7), and
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holds for different distributions. Otherwise, the opti-

mal order quantity can be easily determined by

employing a suitable one-dimensional search algo-

rithm with a risk-neutral central planner’s order

quantity decision as an initial solution. Also, we need

to calculate only one expression,
R q

0
F xð Þdx-which we

can compute with the help of the numerical integration

method, and which has a closed-form solution for

many distributions. Our technique poses significant

computational simplicity over the method proposed by

Lau (1980). Additionally, we report a significant

improvement over Wu et al. (2009), that required the

computation of both
R q

0
F xð Þdx and

R q
0
xF xð Þdx. From

Eq. (7) we also observe that the optimal order quantity

(q�) is decreasing in the central planner’s risk attitude

(aC).

Through a numerical example, we demonstrate the

implications of Theorem 1. For this purpose, we

consider the following parametric values for our

dyadic supply chain: (i) demand is discrete * U[0,

20]; (ii) per unit retail price, p = 10, (iii) per unit

production cost, c = 5, (iv) per unit salvage price, s = 2.

The risk aversion attitude, aC of the central planner,

varies between 0.01 and 0.02. Figure 1 presents the

effect of order quantity and risk-aversion attitude on

the mean–variance payoff for a central planner.

From Fig. 1, we observe the following:

i. For a given value of risk aversion attitude aC,
the mean–variance payoff for the central

planner first increases and subsequently

decreases.

ii. For a given value of order quantity q�, the
mean–variance payoff decreases with an

increase in the value of risk aversion attitude

aC.
iii. This aforementioned decrease is higher when

the order quantity is large, and it is lower

when the order quantity is small.

Therefore, from Fig. 1, we can easily infer that the

optimal order quantity of a risk-averse central planner

decreases in its risk aversion attitude. For example, at

aC ¼ 0:011, the optimal order quantity is: q� ¼ 9, and

at aC ¼ 0:019, optimal order quantity is: q� ¼ 7,

whereas the optimal order quantity for a risk-neutral

central planner is q� ¼ 13 with the same parametric

value of the supply chain.

Decentralized supply chain and discussion

on channel coordinating contracts

Next, we consider a decentralized supply chain. Here,

the supplier offers contractual terms to the retailer, and

accordingly, they decide the transfer payment options.

We study the MV criterion in a decentralized supply

chain under three types of contract: (i) wholesale

price, (ii) buyback, and (iii) revenue-sharing. These

contracts have been extensively discussed in the extant

literature in the context of supply chain coordination

0.01
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0.014
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0.018
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0
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Fig. 1 Mean–Variance

payoff v/s Order quantity

and Risk Aversion Attitude

of a central planner
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involving risk-neutral agents. Cachon (2003) provides

a comprehensive survey of this relevant literature.

We compare expected profit levels and associated

risks for both supplier and retailer for all three

contracts. The expected transfer payment functions

and description of contract parameters are presented in

Table 1.

Using the transfer payment functions in Eqs. (1)

and (2), we calculate the expected profit-levels and

associated risks for the supplier and retailer. The

optimization problem of a decentralization supply

chain is given by the following equations:

ðw�; b�;/�Þ ¼ max
w;b;/

E pS qð Þ½ � ¼ max
w;b;/

T �ð Þ � sqf g ð8Þ

s:t: q� ¼ arg max
q� 0

E pR qð Þ½ � � aRVar pR qð Þ½ �f g

ð9Þ

In the aforementioned equation, ðw; b ¼ 0;/ ¼ 0Þ
represents wholesale price contract, ðw; b;/ ¼ 0Þ
represents buyback contract, and ðw; b ¼ 0;/Þ repre-

sents revenue-sharing contract. Then, we compare the

variance of profits from the centralized and the

centralized cases and present the results in Table 2.

The associated calculations are presented in

Appendix.

From Table 2, we observe the following about the

three types of supply contracts considered in our study.

Observation 1

i. In the case of a wholesale price contract, the

retailer bears the entire risk of the supply

chain.

ii. For the buyback contract, the supplier’s risk

Var pS;BB qð Þ
� �� �

is more than that of the

retailer Var pR;BB qð Þ
� �� �

iff b[ p=2, i.e., the

buyback price is more than half of the retail

price. At b ¼ p=2, the risk shares of the

supplier and the retailer are equal. The retailer

bears more risk than the supplier when

b\p=2.

iii. In the context of a revenue-sharing contract,

the supplier’s risk Var pS;RS qð Þ
� �� �

is more

than that of the retailer Var pR;RS qð Þ
� �� �

iff

/\1=2, i.e., the supplier allows the retailer to

retain less than 50% of the total revenue.

Otherwise, the retailer bears more risk than the

Table 1 Description of the contracts

Contract Expected transfer payment Description of parameters

Wholesale price TWP w; qð Þ ¼ wq w = per unit wholesale price

Buyback TBB w; b; qð Þ ¼ wbq� bI qð Þ wb = price charged per unit

b = buyback price

Revenue-sharing TRSðw;/; qÞ ¼ wrqþ ð1 � /ÞfpSðqÞ þ vIðqÞg wr = price charged per unit

/ = fraction of the total revenue that the retailer keeps

Table 2 Comparison of expectation and variance of profit-levels across contracts

Contract Agent Expected profit level Variance of profit level

Wholesale

price

Supplier E pS;WP qð Þ
� �

¼ w� sð Þq Var pS;WP qð Þ
� �

¼ 0

Retailer E pR;WP qð Þ
� �

¼ p� wþ cð Þf gq� p� vð Þ
R q

0
F xð Þdx Var pR;WP qð Þ

� �
¼ Var pC qð Þ½ �

Buy back Supplier E pS;BB qð Þ
� �

¼ wb � sð Þq� b
R q

0
F xð Þdx

Var pS;BB qð Þ
� �

¼ b
p�v

� �2

Var pC qð Þ½ �

Retailer E pR;BB qð Þ
� �

¼ p� wb þ cð Þf gq� p� bð Þ
R q

0
F xð Þdx

Var pR;BB qð Þ
� �

¼ p�b
p�v

� �2

Var pC qð Þ½ �

Revenue-

sharing

Supplier E pS;RS qð Þ
� �

¼ wr � sð Þ þ 1 � /ð Þpf gq� 1 � /ð Þ p� vð Þ
R q

0
F xð Þdx Var pS;RS qð Þ

� �
¼ 1 � /ð Þ2

Var pC qð Þ½ �
Retailer E pR;RS qð Þ

� �
¼ /p� wr þ cð Þf gq� / p� vð Þ

R q

0
F xð Þdx Var pR;RS qð Þ

� �
¼ /2Var pC qð Þ½ �
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supplier. At / ¼ 1=2 the supplier and the

retailer share equal risk.

From Observation 1, it is evident that in the case of

buyback and revenue-sharing contracts, risk-sharing

by supply chain agents is dependent on the model

parameters. However, in the case of a wholesale price

contract, the risk-sharing is independent of the model

parameters.

Since full information is available with all the

agents, the supplier knows whether the retailer is risk-

averse as well as the value of the retailer’s risk attitude

(aR); she can further anticipate that a risk-averse

retailer’s order quantity would be less than that of a

risk-neutral one. Under such circumstances, as a

second-best strategy, the supplier can employ a

buyback contract to coordinate the supply chain with

a risk-averse retailer if the risk-averse centralized

supply chain is considered as a benchmark. Wei and

Choi (2010) adopted a similar approach for deciding a

coordination strategy for a risk-averse supply chain.

Proposition 1 The following two parameters define

the channel coordinating buyback contract:

(i) the price charged per unit:

wb ¼ 1 � kð Þ p� cð Þ þ ks
(ii) the buyback price: b ¼ 1 � kð Þpþ kv

where k is the proportion of centralized supply chain
profit that the supplier allows the retailer to retain.

The retailer’s order quantity is equal to that of a

central planner with a risk attitude aC ¼ kaR and as

aC\aR, optimal ordering decision

q�BB kaRð Þ[ q�BB aRð Þ.

Proof: The proof is provided in Appendix.

Under a coordinating buyback contract, the retai-

ler’s order quantity q�BB
	 


is equal to that of the

centralized supply chain with risk attitude aC ¼ kaR.

As 0\k\1, we have: aC\aR. Following the argu-

ment presented in Theorem 1, we observe that the

retailer’s order quantity is decreasing in aR. Therefore,

intuitively we can comprehend that under the coordi-

nating buyback contract, the retailer orders more than

what she would have ordered otherwise. The retailer’s

order quantity also maximizes her mean–variance

objective if it satisfies the following: q: r qð Þ� 1
1�E nð Þ.

Defining the salvage price as v ¼ bp 0\b\1ð Þ we

further observe that the risk-share of the supplier

would be less than that of the retailer for

k\1= 2 þ bð Þ.
Similarly, the supplier can also coordinate the

supply chain with a risk-averse retailer by employing a

revenue-sharing contract, if the risk-averse centralized

supply chain is considered as a benchmark. The

channel coordinating revenue-sharing contract then

takes the following form:

Proposition 2 In the case of a revenue-sharing

contract, if the sharing parameter / also designates

the proportion of a centralized supply chain profit that

the supplier allows the retailer to retain, then the

supplier can coordinate the supply chain by setting the

per-unit price as wr ¼ / s� 1 � /ð Þ c. The retailer’s
order quantity is equal to that of a central planner with

a risk attitude aC ¼ /aR and as aC\aR, the optimal

ordering decision follows: q�RS /aRð Þ[ q�RS aRð Þ.

Proof The proof is provided in Appendix.

In the case of a revenue-sharing contract, we

observe that if the retailer’s order quantity satisfies:

q: r qð Þ� 1
1�E nð Þ , it would maximize her mean–

variance objective. Therefore, the optimality criterion

for the order quantity decision, as presented in

Theorem 1, holds not only for the centralized but also

for decentralized decision-making under coordination

mechanism. Theorem 1 provides us with a generalized

framework to evaluate the mean–variance objective of

a risk-averse supply chain agent for both centralized

and decentralized supply chain. The optimality crite-

rion of ordering decision is independent of the model

parameter. Instead, it depends only on the demand

distribution.

Extension of mean–variance (MV) analysis

for a risk-averse supply chain network

We consider a supply chain network with one supplier

and N risk-averse retailers. The retailers sell substi-

tutable products in the same market. The ith retailer

faces a market demand Li p~ð Þ þ ei during a single

selling season, where p~¼ p1; p2; ::; pNð Þ. Li p~ð Þ con-

siders the deterministic component of the demand and

follows the economics of price-based competition: (i)

oLi p~ð Þ=opi\0 and (ii) oLi p~ð Þ
�
opj [ 0. The condi-

tions (i) and (ii) demonstrate own-price and cross-

price elasticity of the demand, respectively, whereas ei
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represents the stochastic component of the demand.

e1; e2; ::; eNð Þ follow independent and previously

known continuous distributions on the positive real

axis.

At the beginning of the selling season, each retailer

makes two decisions: (i) retail price,pi, and (ii) safety

stock, yi. The safety stock helps the retailer to cater to

the uncertain demand. The total order quantity of the

ith retailer is: Yi ¼ Li p~ð Þ þ yi. We also assume that a

fixed proportion of the jth retailer’s lost sale switches

to the ith retailer. Such demand switching activity is

independent of the retail price. Therefore, the effective

total demand faced by the ith retailer is given as:

qi p~ð Þ ¼ Li p~ð Þ þ ei þ
P

j 6¼i cji ej � yj
	 
þ

, where cji des-

ignates the spill-rate received by the jth retailer lost

from the ith retailer. The effective stochastic part of

the demand of retailer i is given by:

xi ¼ ei þ
P

j6¼i cji ej � yj
	 
þ

; where xi is a non-nega-

tive random variable. Let Fi �ð Þ be the cumulative

distribution of xi and fi �ð Þ be its density function. We

assume that, F is differentiable and strictly increasing.

We further assume that the failure rate of xi, defined

as: h �ð Þ ¼ f �ð Þ
1�F �ð Þ, is a weakly increasing function over

the entire range of xi, indicating that xi has an

increasing failure rate (IFR). The supplier’s per-unit

production cost to cater to the order quantity of the ith

retailer is si and the retailer i’s marginal cost per unit is

ci. Each retailer’s marginal cost is inclusive of her

production, transportation, and other per-unit costs

incurred. The supplier charges each retailer through a

wholesale price contract, implemented through a per-

unit price wi for the ith retailer. For expositional

simplicity, we consider the salvage price of excess

quantity for each retailer to be zero. To avoid triviality,

we assume: 0\ci\wi\pi.

Retailer i chooses pi and yi in order to maximize her

mean–variance objective, such that:

max
pi;yi

MVi pi; yið Þ ¼ E pi pi; yið Þ½ � � aiVar pi pi; yið Þ½ �f g

ð10Þ

The following set of equations gives the expected

profit function of the ith retailer:

E pi pi; yið Þ½ � ¼ pi � wi þ cið Þf gLi p~ð Þ � wi þ cið Þyi
þ piE min xi; yið Þ½ �

¼pdi p~ð Þ � wi þ cið Þyi þ piE min xi; yið Þ½ �
ð11Þ

where, pdi p~ð Þ ¼ pi � wi þ cið Þf gLi p~ð Þ is the profit

generated due to the deterministic part of the demand.

The firmness of the strategy is ensured by assuming

the following:

pi; yið Þ 2 wi þ cið Þ� pi � pmax
i and 0� yi � ymax

i

� �

The following equation gives the variance of profit:

Var pi pi;yið Þ½ �¼p2
i E min x2

i ;y
2
i

	 
� �
� E min xi;yið Þ½ �f g2

h i

ð12Þ

Each retailer’s optimal decision for her retail price

and order quantity is given by p�i ; Y
�
i

	 

and is

otherwise represented as p�i ; y
�
i

	 

, because

Y�
i ¼ Li p~

�ð Þ þ y�i . The optimization problem of the

decentralized supply chain network is described

below.

w�
1;w

�
2; :::;w

�
n

	 

¼ max

w1;w2;:::;wnð Þ

Xn
i¼1

ðwi � sÞY�
i

¼ max
w1;w2;:::;wnð Þ

Xn
i¼1

ðwi � sÞ Li p~
�ð Þ þ y�i

� �

ð13Þ

s:t:

ðp�i ; y�i Þ ¼ max
pi;yi

MVi pi; yið Þ
¼ max

pi;yi
E pi pi; yið Þ½ � � aiVar pi pi; yið Þ½ �f g

ð14Þ

Equation (13) represents the supplier’s optimiza-

tion problem and equation (14) represents the opti-

mization problem of retailer i.

Analysis of the Nash Equilibrium

Since every concave game has a Nash equilibrium

(Geanakoplos 2003), we need to prove that the

function MVi pi; yið Þ is concave in pi; yið Þ to show that

Nash equilibrium exists for our N risk-averse retailers’

game. We need the following two additional condi-

tions to hold for establishing the existence of a pure-

strategy Nash equilibrium:
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(A) o2 pdi p~ð Þ
� ��

op2
i\0 and o3 pdi p~ð Þ

� ��
op3

i � 0.

(B) The distribution xi ¼ ei þ
P

j 6¼i cji ej � yj
	 
þ

has an increased failure rate (IFR).

Theorem 2 We assume that the conditions (A) and

(B) hold. Then we have the following results for N risk-

averse retailers’ game:

(i) The MV objective of the ith retailer

MVi pi; yið Þ is jointly quasi-concave in

pi; yið Þ iff the following condition is satisfied:
1 � yiri yið Þ 1

Fi yið Þ � E 1 � nið Þ
h i

\0, where

ni ¼ Wi=yi and Wi is a random variable that

corresponds to the truncated distribution of

demand xi over 0; yi½ �.
(ii) A pure-strategy Nash equilibrium exists for

the game.

(iii) The solution of Eqs. (11) – (12) gives the best

response of the ith retailer.

opdi p~ð Þ
opi

þE min xi;yið Þ½ �

�2aipi E min x2
i ;y

2
i

	 
� �
� E min xi;yið Þ½ �f g2

h i
¼0

ð15Þ

� wi þ cið Þ þ pi Pr xi [ yið Þ
� 2aip

2
i yi � E min xi; yið Þ½ �f g Pr xi [ yið Þ

¼ 0

ð16Þ

Proof The proof is provided in Appendix.

From Theorem 2, we observe that the maximizing

condition is dependent only on the safety stock of the

retailer and not on the retail price. Theorem 2 also

signifies that a pure-strategy Nash equilibrium can

exist in the single-supplier multiple-retailer game

when all the retailers are risk-averse with varying

degrees of risk-aversion attitude. From Eqs. (15) to

(16) we further observe that the interiority of the Nash

solution would be dependent on the risk attitude (ai)
for the ith retailer. If the risk attitude(s) satisfy the

condition enumerated by Proposition 3, then we can

conclude that the Nash solution would always be an

interior solution.

Proposition 3 The maximizer of the MV objective

function of the ith retailer is in the interior of the

strategy set:

pi; yið Þ 2 wi þ cið Þ� pi � pmax
i and 0� yi � ymax

i

� �
,

when all the retailers are risk-averse with risk-

aversion parameter satisfying the condition:

ai\min Ai; Bið Þ, where Ai ¼ pi� wiþcið Þ
2p2

i yi�E min xi;yið Þ½ �f g and

Bi ¼
Li p~ð Þjpi¼ wiþcið ÞþE min xi;yið Þ½ �

2 wiþcið Þ E min x2
i ;y

2
ið Þ½ �� E min xi;yið Þ½ �f g2½ �.

Proof The proof is provided in Appendix.

Proposition 3 provides us with the boundary

condition of the risk attitude of the retailers, which,

in turn, ensures the existence of a pure-strategy Nash

equilibrium for the single-supplier multiple-retailer

game. However, the supplier cannot guarantee that the

risk attitudes of the retailers would always exist within

this specified range. Therefore, it is not possible to

analytically prove that the maximizer would always be

unique. The MV objective maximizer can be found

with the help of a search algorithm. The solutions of

Eqs. (15)–(16), along with the maximizing condition,

form the bounds of the strategy space within which the

maximizer exists.

Conclusion

In this paper, we study a risk-averse supply chain with

a mean–variance objective. The theoretical contribu-

tions of the study are twofold. First, in the context of a

dyadic supply chain comprising of a single supplier

and single retailer, we show that a single condition can

define the optimality criterion of the ordering decision

in both centralized and decentralized supply chains.

Such optimality is independent of the model param-

eters and solely relies on the nature of the demand

distribution. Second, we demonstrate that the pro-

posed ordering decision is computationally more

straightforward than the methods available in extant

literature. The optimal ordering decision is therefore

represented as a mathematical function of the final

demand distribution that the retailer experiences. This

result marks an improvement over existing techniques

of computing optimal ordering quantity decisions, as

presented by Choi et al. (2008a, b) and Katariya et al.

(2013) in the context of a dyadic supply chain. Our

proposed method has a significant computational
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simplicity over Lau (1980) and Wu et al. (2009). The

managerial implications and research findings are

summarized in Table 3 below. We also establish that

the risk of an individual agent is a mathematical

function of the model parameter(s).

In the context of a supply chain network comprising

of a single supplier and multiple retailers, we demon-

strate that a pure-strategy Nash equilibrium exists

when all the retailers are risk-averse with varying risk

attitudes. We also establish the boundary condition of

the risk-aversion parameter within which this pure

Nash solution would hold. This analysis can be

extended in the context of a supply chain network

and that we leave for future research.

Appendix: Channel coordination of a risk averse

supply chain

Proofs and Calculations

Proof of Theorem 1 The central planner’s optimiza-

tion problem is presented by (5). The first- and second-

order derivatives of the objective function are given

below

d

dq
E pC qð Þ½ � � aCVar pC qð Þ½ �f g

¼ p� cþ sð Þf g � p� vð ÞF qð Þ

� 2aC p� vð Þ2
1 � F qð Þf g

Zq

0

F xð Þdx ð17Þ

d2

dq2
E pC qð Þ½ ��aCVar pC qð Þ½ �f g

¼� p�vð Þf qð Þ

�2aC p�vð Þ2 �f qð Þ
Zq

0

F xð ÞdxþF qð Þ 1�F qð Þf g

2
4

3
5

ð18Þ

Equating (17) to zero, we calculate an order

quantity decision q�. This order quantity satisfies

FOC, but that does not signify maximization of the

objective function. From (18), we can say that q�

would maximize the objective function if and only if

the following condition is satisfied

Table 3 Research questions, findings, and managerial implication

Research question Research findings Managerial implication

Is channel coordination in a risk-averse

supply chain dependent on parameters

(or preferences) of individual supply

chain agents?

(a) We derive the general condition for

MV objective-maximization of a risk-

averse dyadic supply chain= price

charged per unit

(b) We show that an agent’s MV

optimization is dependent solely on the

prior demand distribution

(c) We prove that the maximizing

condition is independent of the model

parameters

(i) We propose a simplified technique to

calculate the optimal order quantity

compared to the existing mechanisms

(ii) Such a mechanism will enable supply

chain manager(s) to take optimal

decision quickly

Is it possible for a supplier to coordinate a

supply chain network consisting of a

single supplier and multiple retailers

where the retailers are all risk-averse?

(a) We extend our analysis to a single-

supplier multiple-retailer network and

confirm that a pure-strategy Nash

equilibrium exists when all the retailers

are risk-averse with varying risk

attitudes

(b)We establish the range of values for the

risk-aversion parameter within which

this pure Nash solution holds

(i)This analysis can assist supply-chain

managers in designing optimal supply

contracts for their supply chain network

(ii) The range of values for risk-aversion

parameters allows the manager to choose

channel coordination strategy from a

range of optimal contract parameters

424 Decision (December 2020) 47(4):415–429

123



�f q�ð Þ
Zq�

0

F xð Þdxþ F q�ð Þ 1 � F q�ð Þf g� 0

) f q�ð Þ
1 � F q�ð Þ �

F q�ð ÞR q�

0
F xð Þdx

ð19Þ

To simplify (19), we change the order of integration

for the right-hand-side expression and define Y as a

random variable that corresponds to the truncated

distribution of demand x over 0; q�½ �. Thus, we obtain:

Zq�

0

FðxÞdx
,

Fðq�Þ ¼
Zq�

0

ðq � �xÞf ðxÞdx
,Zq�

0

f ðxÞdx

¼ Eðq � �YÞ
ð20Þ

By writing n ¼ Y=q�, we can observe that, n 2
½0; 1� and (20) takes the following form:

Eðq � �YÞ ¼ q � Eð1 � nÞ ¼ q � f1 � EðnÞg. Using

this simplified form in (19) we get:

q � rðq�Þ 6 1

1 � EðnÞ ð21Þ

r �ð Þ ¼ f �ð Þ= 1 � F �ð Þf g is the failure rate of the

demand distribution. Theorem 1 follows from (17) and

(21). h

Calculations related to Table 2

(A) Wholesale price contract: In this case, the

random profit of the supplier and the retailer are

presented by the following two equation

pS;WPðqÞ ¼ ðw� sÞq 8x ð22Þ

pR;WP qð Þ

¼
p� wþ cð Þqf g 8x > q

p� wþ cð Þqf g � p� vð Þ q� xð Þ 8x\q

�

ð23Þ

The expected profit and variance are calculated

from (22) and (23).

(B) Buyback contract: The expected transfer pay-

ment is given by:

TBB w; b; qð Þ ¼ wbq� bI qð Þ

¼ wbq� b

Zq

0

F xð Þdx

The random profit of the supplier and the

retailer are presented by the following two

equations

pS;BB qð Þ ¼ wb � sð Þq 8x� q
wb � sð Þq� b q� xð Þ 8x\q

�

ð24Þ

pR;BB qð Þ

¼
p� wb þ cð Þqf g 8x� q

p� wb þ cð Þqf g � p� bð Þ q� xð Þ 8x\q

�

ð25Þ

From (24) and (25), the expected profit and

variance of profit are calculated as follows:

EfpS;BBðqÞg ¼ ðwb � sÞq� b

Zq

0

FðxÞdx

Var pS;BB qð Þ
� �

¼ �b2

Zq

0

FðxÞdx

2
4

3
5

2

� 2

Zq

0

q� xð ÞF xð Þdx

8<
:

9=
;

E pR;BB qð Þ
� �

¼ p� wb þ cð Þf gq

� p� bð Þ
Zq

0

F xð Þdx

Var pR;BB qð Þ
�

� ¼ � p� bð Þ2

Zq

0

FðxÞdx

2
4

3
5

2

� 2

Zq

0

q� xð ÞF xð Þdx

8<
:

9=
;

(C) Revenue-sharing contract: In this case the

expected transfer payment is:

TRS w;/; qð Þ ¼ wrqþ 1 � /ð Þ pS qð Þ þ vI qð Þf g
¼ wr þ 1 � /ð Þpf gq

� 1 � /ð Þ p� vð Þ
Zq

0

F xð Þdx

The random profit of the supplier and the
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retailer are given by the following two

equations

pS;RS qð Þ ¼ wr � sð Þqþ ð1 � /Þpq 8x > q
wr � sð Þqþ 1 � /ð Þpq� ð1 � /Þðp� vÞðq� xÞ 8x\q

�

ð26Þ

pR;RS qð Þ ¼ /p� wr þ cð Þf gq 8x > q
/p� wr þ cð Þf gq� / p� vð Þ q� xð Þ 8x\q

�

ð27Þ

From (24) and (25), the expected profit and

variance of profit are calculated as follows:

E pS;RS qð Þ
� �

¼ wr � sð Þ þ 1 � /ð Þpf gq

� 1 � /ð Þ p� vð Þ
Zq

0

F xð Þdx

Var pS;RS qð Þ
� �

¼ � 1 � /ð Þ2 p� vð Þ2

Zq

0

FðxÞdx

2
4

3
5

2

� 2

Zq

0

q� xð ÞF xð Þdx

8<
:

9=
;

E pR;RS qð Þ
� �

¼ /p� wr þ cð Þf gq

� / p� vð Þ
Zq

0

F xð Þdx

Var pR;RS qð Þ
� �

¼ �/2 p� vð Þ2

Zq

0

FðxÞdx

2
4

3
5

2

� 2

Zq

0

q� xð ÞF xð Þdx

8<
:

9=
;

Proof of Proposition1 In the case of buyback

contract if the per unit price and buyback price are

given by:wb ¼ 1 � kð Þ p� cð Þ þ ks and

b ¼ 1 � kð Þpþ kv, then the retailer’s expected profit

and variance of profit takes the form:

E pR;BB qð Þ
� �

¼k p� cþsð Þf gq� p�vð Þ
Zq

0

F xð Þdx

2
4

3
5

¼kE pC qð Þ½ �
ð28Þ

Var pR;BB qð Þ
� �

¼ �k2 p� vð Þ2

Zq

0

FðxÞdx

2
4

3
5

2

� 2

Zq

0

q� xð ÞF xð Þdx

8<
:

9=
; ¼ k2Var pC qð Þ½ �

ð29Þ

Using (28) and (29), the retailer’s mean–variance

objective can be written as:

max
q> 0

E pR;BB qð Þ
� �

� aRVar pR;BB qð Þ
� �� �

¼ max
q> 0

k E pC qð Þ½ � � kaRVar pC qð Þ½ �f g ð30Þ

The retailer’s objective function is equivalent to

that of a central planner’s problem where the central

planner’s risk attitude is given by: aC ¼ kaR. Since,

0\ k \1, we have: ac \ aR and it implies:

q�BB aC ¼ kaRð Þ[ q�BB aRð Þ, as from Theorem 1 we

know, the order quantity decision is decreasing in a.h

Proof of Proposition 2 In the case of revenue-

sharing contract if the per unit price is given by:

wr ¼ / s� 1 � /ð Þ c, then the retailer’s expected

profit and variance of profit takes the following form:

E pR;RS qð Þ
� �

¼/ p� cþsð Þf gq� p�vð Þ
Zq

0

F xð Þdx

2
4

3
5

¼/E pC qð Þ½ �
ð31Þ

Var pR;BB qð Þ
� �

¼ �/2 p� vð Þ2

Zq

0

FðxÞdx

2
4

3
5

2

� 2

Zq

0

q� xð ÞF xð Þdx

8<
:

9=
; ¼ /2Var pC qð Þ½ �

ð32Þ

Using (31) and (32), the retailer’s mean–variance

objective can be written as:

max
q> 0

E pR;RS qð Þ
� �

� aRVar pR;RS qð Þ
� �� �

¼ max
q> 0

/ E pC qð Þ½ � � /aRVar pC qð Þ½ �f g ð33Þ

The retailer’s objective function is equivalent to

that of a central planner’s problem where the central

planner’s risk attitude is given by: aC ¼ /aR. Since,

0\k\ 1, we have: ac\ aR and it implies:
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q�RS aC ¼ /aRð Þ[ q�RS aRð Þ, as from Theorem 1 we

know, the order quantity decision is decreasing in

aÖ. h

Proof of Theorem 2 The MV objective of retailer i

is:

max
pi;yi

MVi pi; yið Þ ¼ E pi pi; yið Þ½ � � aiVar pi pi; yið Þ½ �f g.

E pi pi; yið Þ½ � is jointly quasi-concave in (pi, Yi) when

conditions (A) and (B) hold (for detailed proof refer to

Zhao and Atkins 2008; Zhao 2008). Therefore if

�Var pi pi; yið Þ½ �f g is concave in (pi, Yi), then from the

properties of concavity we can conclude that MVi(pi,

Yi) is concave in (pi, Yi). From (3) we can write the

Hessian Matrix of �Var pi pi; yið Þ½ �f g, which is a

bivariate function of (pi, Yi), as follows:

�Var pi pi; yið Þ½ �f g is concave if and only if the

matrix H(pi, Yi) is negative semi-definite, in other

words all the principal minors of H(pi, Yi) are positive.

Negative semi-definite property of the matrix ensures

under the condition:

Pr xi [ yið Þ � Pr xi [ yið Þ½ �2 � fi yið ÞE min xi; yið Þ½ �\0

ð34Þ

We define wi as a random variable that corresponds to

the truncated distribution of demand xi over [0, yi].

Using the properties of the order of integration and

truncated distribution (A18) can be written as follows:

1 � yiri yið Þ 1

Fi yið Þ � E 1 � nið Þ
� 

\0 ð35Þ

where ni ¼ Wi=yi and ni 2 0; 1½ �. If retailer i’s safety

stock decision follows (35), the N retailers’ game

becomes a concave one and therefore pure-strategy

Nash equilibrium exists for such a game, and the best

response of an individual player is given by her first-

order condition.

Proof of Proposition 3 From the expression of

pdi p~ð Þ, we obtain:
opdi p~ð Þ
opi

¼ Li p~ð Þ þ pi � wi þ cið Þf g oLi p~ð Þ
opi

. By assumption

(A),
o2pdi p~ð Þ
op2

i

\0, i.e., the deterministic profit part is

concave and decreasing in pi. p
max
i is sufficiently large

and arbitrarily chosen such that:
opdi p~ð Þ
opi

���
pi¼pmax

i

\0. We

also have:
opdi p~ð Þ
opi

���
pi¼ wiþcið Þ

¼ Li p~ð Þjpi¼ wiþcið Þ [ 0. The

range of pi and yi are given by: pi 2 wi þ cið Þ; pmax
i

� �
and yi 2 0; ymax

i

� �
. At the boundary points we have the

following:

lim
pi!pmax

i

o

opi
MVi pi;yið Þf g ¼ opdi p~ð Þ

opi

����
pi¼pmax

i

þE min xi;yið Þ½ �

� 2aip
max
i E min x2

i ; y
2
i

	 
� �
� E min xi;yið Þ½ �f g2

h i
\0

ð35Þ

pmax
i is chosen in such a way that:

opdi p~ð Þ
opi

���
pi¼pmax

i

����
����[ E min xi; yið Þ½ �j j and (19) holds.

limpi! wiþcið Þ
o

opi
MVi pi;yið Þf g

¼ Li p~ð Þjpi¼ wiþcið Þ þE min xi; yið Þ½ �
� 2ai wi þ cið Þ E min x2

i ;y
2
i

	 
� �
� E min xi; yið Þ½ �f g2

h i

In the safety stock strategy set, we have the

following:limyi!0 Pr xi [ yið Þ ! 1 and

limyi!ymax
i

Pr xi [ ymax
i

	 

! 0. Therefore at the bound-

ary points, we can observe

Hðpi; yiÞ ¼
�2½E½minðx2

i ; y
2
i Þ� � fE½minðxi; yiÞ�g2� �4pi Prðxi [ yiÞfyi � E½minðxi; yiÞ�g

�4pi Prðxi [ yiÞfyi � E½minðxi; yiÞ�g �2p2
i fPrðxi [ yiÞ � ½Prðxi [ yiÞ�2 � fiðyiÞE½minðxi; yiÞ�g

� 
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lim
yi!0

o

oyi
MVi pi; yið Þf g ¼ � wi þ cið Þ\0 ð36Þ

lim
yi!ymax

i

o

oyi
MVi pi; yið Þf g ¼ pi � wi þ cið Þf g

� 2aip
2
i yi � E min xi; yið Þ½ �f g

ð37Þ

If both (36) and (37) are positive then we can

conclude that the maximizer of the MV objective

function is an interior point in the defined strategy set.

We can observe that for small ai values,

lim
ai!0

lim
pi! wiþcið Þ

o

opi
MVi pi; yið Þf g

� 

! Li p~ð Þjpi¼ wiþcið Þ þ E min xi; yið Þ½ �[ 0

lim
ai!0

lim
yi!ymax

i

o

oyi
MVi pi; yið Þf g

� 

! pi � wi þ cið Þf g[ 0

In other words, we can say that when the retailers

are slightly risk-averse then the maximizer of the MV

objective function is an interior solution to the defined

strategy set.
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