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Abstract
Background Glomerulonephritis inherently leads to the development of chronic kidney disease. It is the second most com-
mon diagnosis in patients requiring renal replacement therapy in the United Kingdom. Metabolomics and proteomics can 
characterise, identify and quantify an individual’s protein and metabolite make-up. These techniques have been optimised 
and can be performed on samples including kidney tissue, blood and urine. Utilising omic techniques in nephrology can 
uncover disease pathophysiology and transform the diagnostics and treatment options for glomerulonephritis.
Objectives To evaluate the utility of metabolomics and proteomics using mass spectrometry and nuclear magnetic resonance 
in glomerulonephritis.
Methods The systematic review was registered on PROSPERO (CRD42023442092). Standard and extensive Cochrane 
search methods were used. The latest search date was March 2023. Participants were of any age with a histological diagnosis 
of glomerulonephritis. Descriptive analysis was performed, and data presented in tabular form. An area under the curve or 
p-value was presented for potential biomarkers discovered.
Results Twenty-seven studies were included (metabolomics (n = 9)), and (proteomics (n = 18)) with 1818 participants. The 
samples analysed were urine (n = 19) blood (n = 4) and biopsy (n = 6). The typical outcome themes were potential biomark-
ers, disease phenotype, risk of progression and treatment response.
Conclusion This review shows the potential of metabolomic and proteomic analysis to discover new disease biomarkers that 
may influence diagnostics and disease management. Further larger-scale research is required to establish the validity of the 
study outcomes, including the several proposed biomarkers.
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Background:
Glomerulonephri�s (GN) is the second most common
diagnosis in pa�ents requiring renal replacement therapy in
the United Kingdom. Metabolomics and proteomics can
characterise, iden�fy and quan�fy an individual's protein
and metabolite make-up. U�lising omic techniques in
nephrology can uncover disease pathophysiology and
transform the diagnos�cs and treatment op�ons for
glomerulonephri�s.

Methods:
This systema�c review was registered on PROSPERO
(CRD42023442092). Standard and extensive Cochrane
search methods were used. Par�cipants were of any age
with a histological diagnosis of glomerulonephri�s.
Descrip�ve analysis was performed, and data presented in
tabular form. An area under the curve or p-value was
presented for poten�al biomarkers discovered.

Conclusions: This review shows the poten�al of metabolomic and 
proteomic analysis to discover new biomarkers in GN that may influence 
diagnos�cs and disease management. Further research is required to 
establish the validity of the  several proposed biomarkers. 
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Results:
27 studies were included (metabolomics (n=9)), and (proteomics (n=18)) with 1818 
par�cipants. IgA nephropathy (IgAN) or IgA Vasculi�s (IgAV) were the most frequently 
inves�gated GN through metabolomics (n=4) and proteomics (n=7)

Samples analysed Metabolomics Proteomics

Blood 1 1

Urine 7 10

Blood and Urine 1 1

Biopsy 0 6

Keywords Glomerulonephritis · Metabolomics · Proteomics · Biomarker

Introduction

Kidney disease is increasingly becoming a significant 
worldwide health burden [1]. The global all-age chronic 
kidney disease (CKD) mortality increased by 41.5% 
between 1990 and 2019 [2, 3]. There is a growing, uni-
fied acknowledgement of an unmet need in identifying 
patients with CKD and managing risk factors for disease 
progression [4–6].

Glomerulonephritis (GN) is a leading cause of CKD, 
with CKD prevalence continuing to increase [7]. In the 
United Kingdom, in paediatric and adult populations, 
GN is the second most common primary renal diagnosis 
in those commencing kidney replacement therapy [8]. 
Glomerulonephritis presents treatment challenges due 
to the many intricate immunopathogenic processes that 
remain to be fully characterised. At present, a kidney 
biopsy is required to identify histopathological lesions 
and patterns that correlate with a specific GN diagnosis. 
With advances in our appreciation of the heterogeneity 
of GN, it is believed that confirmatory histology does not 
uncover the immunopathogenesis of the active inflam-
matory process at play. Further, there remains a press-
ing need to expand our use of immunomodulatory drugs 

and discover new drugs as, to date, there is an ongoing 
dependence on glucocorticoids as the mainstay of treat-
ment, exposing patients to their long-term side effects 
[9–11].

To strengthen our clinical diagnosis, it is imperative that 
we are confident of the molecular architecture of a diseased 
state. The “omics” refers to a group of scientific disciplines 
aiming to generate large quantities of data by characteris-
ing different layers of the biochemical composition of a 
biological system. The most utilised of these sciences are 
genomics, transcriptomics, proteomics and metabolomics. 
These approaches consolidate our understanding of disease 
pathogenesis and phenotypes and are becoming integral to 
translational precision medicine, with biomarker discovery 
now frequently based on omic data [12–14]. Through omics 
analysis, samples can be comprehensively characterised, and 
these results can be interpreted alongside the clinical data 
[15, 16].

In the case of kidney disease, both metabolomics and 
proteomics techniques have become well established, 
allowing blood, urine and tissue samples to be analysed 
[17]. Untargeted proteomics (also known as bottom-up or 
shotgun proteomics) analyses the protein composition of a 
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biological system [18]. In many instances, these proteins 
can be modified with other chemical classes which impact 
the structure, function and stability of proteins and include; 
phosphate groups or carbohydrates known as glycans, the 
latter of which are well established and contribute to kidney 
disease [19].

Metabolomics refers to the characterisation of “small 
molecules” typically < 1000 Da in size that encompass key 
metabolic components such as amino acids, steroids, bile 
acids and organic acids, which comprise enzymatic sub-
strates, cofactors and products [20]. Metabolomics has been 
widely applied to GN [21], acute kidney injury (AKI) [22] 
and the development of kidney cancer [23]. Lipidomics is 
a sub-category of the metabolome, characterising all lipids 
within a biofluid or tissue, such as phospholipids, triacylg-
lycerides, eicosanoids and fatty acids. Lipidome dysregula-
tion, in particular, has been linked to CKD and cardiovascu-
lar risk [24, 25]. It is becoming increasingly acknowledged 
that the wealth of information to be discovered through 
multi-omic analysis, including proteomics and metabo-
lomics, can lead to the development of precision medicine 
in CKD [26, 27].

The aim of this study was to perform a systematic lit-
erature review to summarise the current application of 
proteomic and metabolomic techniques for GN to identify 
strengths and areas of unmet need.

Methods

This systematic review was registered in PROSPERO 
(CRD42023442092). The inclusion criteria were patients 
of any age, sex or ethnicity who had a histological or 
genetic diagnosis of GN as per the Kidney Disease: Improv-
ing global outcomes (KDIGO) criteria [28]. The methods 
included were; the use of one of the three most frequently 
applied analytical techniques: liquid chromatography–mass 
spectrometry; gas chromatography–mass spectrometry or 
proton nuclear magnetic resonance untargeted metabo-
lomic or proteomic analysis; and any human biofluid or 
tissue. Studies based on therapeutic drug monitoring were 
excluded.

The PICO framework for the systematic review was:
Population: Patients of any age, sex or ethnicity who had 

a histological or genetic diagnosis of GN as per the KDIGO 
criteria [28]

Intervention: Untargeted metabolomics (including lipid-
omics) or proteomic analysis.

Comparator: Currently adopted lab techniques in clinical 
practice.

Outcome: Discovery of clinically relevant results that can 
change current practice.

Three online databases were searched on the 14th March, 
2023: Cochrane, Ovid and Scopus.

The study designs included were meta-analyses, ran-
domised control trials, cohort studies, case–control studies, 
cross-sectional studies and case series (n > 5). The filters 
applied to the search tool were; an original publication date 
between 2013 and 2023 (allowing for an inclusion period of 
10 years), accessible in full text through the University of 
Liverpool, an abstract available in English with sufficient 
data for extraction. Studies that identified exogenous metab-
olites (such as those associated with ingested food products 
or drugs) as biomarkers were excluded alongside secondary 
data and animal studies. The reference lists of relevant litera-
ture were hand-searched to identify any additional eligible 
studies.

The search terms applied to the databases were;
(Glomerulonephritis) 0R (IgA nephropathy) OR (mem-

branous nephropathy) OR (fsgs) OR (focal segmental glo-
merulosclerosis) OR (Nephrotic syndrome) OR (minimal 
change disease) OR (Lupus nephritis) OR (Membranopro-
liferative glomerulonephritis) OR (mpgn) OR (ANCA-asso-
ciated vasculitis) OR (Antineutrophil cytoplasmic antibody 
associated vasculitis) OR (microscopic polyangiitis) OR 
(Mpa) OR (eosinophilic granulomatosis with polyangiitis) 
OR (egpa) OR (wegener's granulomatosis) OR (anti-GBM 
antibody) OR (anti-glomerular basement membrane) OR 
(goodpastures) AND (Omic) OR (Proteomics) OR (Metab-
olomics) OR (Lipidomics) OR (Mass spectrometry) OR 
(GC–MS) OR (NMR) OR (LC–MS).

Selection process

Four reviewers completed title screening independently: 
AC, ED, LO, and AR. Abstract screening and full text 
screening was completed by two reviewers (AC and ED). 
At every level of review any conflicts were discussed and 
subsequently resolved. Duplicate results were screened elec-
tronically by Rayaan software, and any further remaining 
duplicates were manually removed after cross-checking. The 
Critical Appraisal Skills Programme (CASP), Cohort study 
checklist was applied to each included study to evaluate the 
quality of the study to determine the risk of bias [29].

Data collection and analysis

Descriptive analysis was applied to the data collected from 
the included studies and presented in tabular form. The 
data outcomes extracted from each study were; first named 
author, country of study, publication year, study design, 
subtype GN, cohort demographics, sample analysed, ana-
lytical technique utilised and key outcomes. Area under 
curve (AUC) or p-value was presented for those studies that 
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identified potential biomarkers or statistically significant 
molecular discoveries.

Sex distribution was converted to a percentage of males. 
The average age was calculated from those studies which 
provided complete demographic data. Study demographics 
were split into the named GN subtype, disease control or 
healthy control where applicable. Incomplete data values 
were recorded as NA.

The study was split into two groups depending on the 
omic analysis utilised: metabolomics (including lipidomics) 
and proteomics.

Results

Data extraction

An online database search was completed in March 2023 
and yielded 1081 papers. A total of 269 duplicates were 

identified and removed. The remaining 812 records were 
screened by abstract and a subsequent 109 were included 
for full-text review. The final number of papers included 
for review was 27. No further papers were included from 
screening reference lists. The process of article selection is 
shown in Fig. 1.

Quality assessment

The CASP checklist was applied to all included studies. The 
checklist highlighted the risk of bias in those studies with-
out a control cohort and that prior exposure to immunosup-
pression was an important confounding factor that was not 
accounted for in some studies.

Metabolomics and lipidomics

A total of 9 included studies were based on metabolomics 
(n = 8) and lipidomics (n = 1) and used different analytical 

Fig. 1  A flow diagram of the 
screening process. Literature 
search performed on four 
databases returned a total of 
1081 papers. Following removal 
of duplicates, 812 papers were 
screened. After screening by an 
initial and a second independent 
researcher, a total of 27 studies 
were included in the systematic 
review

Records identified from:
Databases
Ovid (n = 304)
Scopus (n = 757)
Cochrane (n = 20)

(n = 1081)

Records removed before screening:
Duplicate records removed 
(n = 269)

Records screened
(n = 812)

Records excluded
(n = 703 )

Reports sought for retrieval
(n = 109)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 109)

Reports excluded:
Incorrect analytical technique (n 
=18)
No histological diagnosis (n = 7)
Wrong study design (n =54)
identified exogenous 
metabolites as biomarkers (n = 
3)

Studies included in review
(n = 27)
Metabolomics (n=9)
Proteomics (n=18)

Identification of studies via databases and registers
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platforms: proton nuclear magnetic resonance (n = 6), gas 
chromatography–mass spectrometry n = (2), liquid chroma-
tography–mass spectrometry (n = 2). The total population 
cohort included 1,196 patients (Average cohort size 133, 
range 13–497), of whom 287 (24%) were healthy controls. 
The overall sex distribution included 45% males with an 
average age of 38 years (range 6–50). The samples ana-
lysed were urine (n = 7), blood (n = 1) and both blood and 
urine samples (n = 1). IgA nephropathy (IgAN) and IgA 
Vasculitis (IgAV) were the most frequently investigated 
GN (n = 4), followed by focal segmental glomerulosclero-
sis (FSGS) (n = 3) membranous nephropathy (MN) (n = 2), 
lupus nephritis (LN) (n = 2), minimal change disease (MCD) 
(n = 2).

Two studies investigating IgAN, did not include a healthy 
cohort of patients for comparison. All studies were cross-
sectional cohort studies.

A summary of the key results from the studies using 
metabolomics and lipidomics in GN is presented in Table 1.

Potential diagnostic biomarkers

Four papers identified potential diagnostic biomarkers for 
specific GN subtypes. The Taherkhani et  al. [35] study 
included 79 MN patients, 83 disease controls and 53 healthy 
controls with an average age of 39 years. A panel of seven 
lipid metabolites in urine was identified that could differenti-
ate idiopathic MN from healthy controls and disease controls 
with an AUC 1.0. This study used two different analytical 
techniques to analyse samples, gas chromatography–mass 
spectrometry and proton nuclear magnetic resonance. The 
proposed metabolites panel reflected those of significance 
across both analytical strategies. Park et al.[32], in a study 
of 201 IgAN compared with 160 disease controls and 136 
healthy controls with an average age of 43 years, analysed 
urine samples using proton nuclear magnetic resonance and 
validated the results with liquid chromatography–mass spec-
trometry. A model was developed using identified biomark-
ers alongside demographics (age and sex), kidney param-
eters (estimated glomerular filtration rate (eGFR), urine 
protein: creatinine ratio), and mean arterial pressure. This 
model was diagnostic of IgAN with AUC 0.931.

Disease phenotype and risk of progression

Two studies without healthy control cohorts analysed sam-
ples from IgAN patients. Zhang et al. [30] identified two 
lipid-related molecules, Choline and Cis-vaccenic acid, pre-
sent in both serum and urine, that could distinguish IgAV 
from IgAN. Forty-six IgAV and 44 IgAN patients were 
included, with an average age of 37 years. A panel of choline 
and cis-vaccenic acid gave an AUC of 0.927 in serum and 

0.7243 in urine, which could distinguish between disease 
phenotypes.

Kalantari et al. [31] studied a cohort of 13 IgA patients 
with an average age of 33 years that were separated into 
mild and severe groups depending on Oxford biopsy clas-
sification. The aim was to establish any urinary biomarkers 
that could correlate with the histological classification of 
disease. Nine metabolites were positively correlated with 
proteinuria, and three were negatively correlated with 
proteinuria. The results also identified that phenylalanine 
metabolism was a significant metabolic pathway that was 
altered and correlated with disease progression.

Distinguishing between systemic lupus erythemato-
sus (SLE) and LN and a healthy control using lipidomic 
analysis of serum samples was investigated by Guleria 
et al. [33], identifying an altered lipid metabolome that 
could identify LN activity. Guleria et al. [33] studied 22 
SLE, 40 LN and 30 healthy controls with an average age 
of 30 years. Elevated serum levels of low-density/very 
low-density lipoproteins (triglyceride and fatty acid) 
and decreased serum levels of acetate were apparent in 
LN. Data analysis included investigating the correlation 
between the discriminatory serum metabolites and SLE 
disease activity index (SLEDAI) for the SLE group, but 
no significant correlation was observed.

Proteomics

A total of 18 studies were included, all studies utilised liquid 
chromatography–mass spectrometry. The cohort included 
622 patients (average cohort size 35, range 10–103) as GN 
or disease controls and 135 healthy controls. The average sex 
distribution across all study cohorts was 55% male, with an 
average age of 32 years (Range 4–60). The samples analysed 
were urine (n = 11), biopsy (n = 6) and blood (n = 2); one 
study analysed both blood and urine samples. IgAN was the 
most frequently investigated GN (n = 7), followed by MN 
(n = 4), LN (n = 4), FSGS (n = 5), and MCD (n = 1).

A total of 15 studies were cross-sectional cohort stud-
ies alongside three longitudinal studies aimed to identify 
responses to treatment. Seven studies had a healthy control 
cohort. Three studies did not have any demographic data. 
Two studies exclusively investigated a paediatric population 
with a cohort size of 61 and 18, respectively.

A summary of the key results from the proteomic studies 
in GN is presented in Table 2.

Potential diagnostic biomarkers

The primary aim of 14 studies was to identify potential new 
biomarkers. Rood et al. [52] analysed urine samples in a 
small cohort of 5 MN patients and discovered LIMP-2 pep-
tides (p < 0.01), a potential biomarker for Idiopathic MN 
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compared to healthy controls and FSGS patients. Pang et al. 
[50] also compared a cohort of idiopathic MN, both Anti-
phospholipase A2 receptor antibody- (PLA2R)negative (32) 
and positive (31), to healthy controls (32). Two potential 
biomarkers were highlighted, alpha-1-antitrypsin and afamin 
with follow up confirmation analysis performed using west-
ern blot analysis.

Samavat et al. [39] aimed to identify biomarkers for IgAN 
in urine samples of 13 patients alongside 8 healthy controls 
with an average age of 34 years. Ten proteins were either up-
regulated or down-regulated compared to healthy controls, 
but no clear statistically significant biomarker was found. 
The outcome was similar for Xue et al. [40], again investi-
gating IgAN using serum samples from 60 patients and 43 
healthy controls, where 12 proteins were identified and vali-
dated but there were no statistically significant differences 
between groups to suggest a clear biomarker.

Disease phenotype and risk of progression

Turnier et al. [46] carried out a paediatric study of LN 
using urine samples of 61 patients obtained within a month 
of renal biopsy. A potential biomarker was unveiled; 
α1-antichymotrypsin, encoded by the SERPINA3 gene, was 
found to have a moderate positive association (p = 0.005) 
with the histological disease severity measure National Insti-
tutes of Health Activity Index (NIH-AI). Mao et al. [49] 
performed proteomics on LN biopsy samples of 10 patients 
with an average age of 33 years. A previously researched 
protein, NEU1 [57], showed increased expression in patients 
with a higher chronicity index of disease and multivariate 
Cox regression analysis (HR, 6.462 (95% CI 1.025–40.732), 
p = 0.047) for renal prognosis. NEU1 was also found to be 
present in greater abundance in the urine samples of those 
patients.

Three further studies analysed a cohort of patients with 
IgAN. Paunas et al. [44] retrospectively analysed the biopsy 
samples of two cohorts of patients; 10 with no disease pro-
gression defined as no end-stage kidney disease (ESKD) 
10 years post biopsy and 9 with ESKD 10 years post biopsy. 
Periostin showed promise as a novel and important risk 
marker of disease progression with AUC 0.91. Furthermore, 
stronger periostin staining by immunohistochemistry was 
subsequently seen in the progressive IgAN patients. Kalan-
tari et al. [42] analysed urine samples from IgAN patients 
of different severity based on biopsy findings. Although no 
biomarkers were identified from 232 proteins, the results 
provided insight on the possible pathogenic pathways linked 
with disease progression. A further paediatric study by 
Fang et al. [41] investigated urine of 19 IgAN and 19 IgAV 
patients with an average age of 9 years and compared them 
to healthy controls. The metabolic pathways associated with 
the proteins identified were the complement and coagulation 

cascades and platelet activation. A1BG and AFM proteins 
were significantly increased in children with IgAN and IgAV 
but could not distinguish the two disease phenotypes.

Treatment response

Three longitudinal studies applied proteomic analysis to 
establish a response to treatment. Ghasemi et al. [48] col-
lected blood and urine samples from 19 LN patients at the 
time of renal biopsy. The patients were followed up for up 
to four years, the primary outcome being disease remission. 
Twenty plasma proteins and ten urine proteins could be iden-
tified as potential biomarkers.

Kalantari et al. [53] utilised urine samples from a cohort 
of 10 patients, six steroid-sensitive and four steroid-resist-
ant, with FSGS at the time of biopsy. Steroid resistance was 
defined as failure to respond to the steroid regimen at eight 
weeks. Results showed a drastic fold change in two proteins, 
APOA-1 and MXRA8.

Ni et al. [55], carried out a paediatric study of 18 FSGS 
patients, 7 steroid-sensitive and 11 steroid-resistant, utilising 
biopsy samples with steroid resistance defined at six weeks. 
Two proteins, LAMP1 and ACSL4, previously described in 
the literature, were raised in steroid-resistant disease. These 
proteins were subsequently stained on biopsy samples to 
confirm their presence.

Discussion

This review outlines the current utility of metabolomics and 
proteomics in children and adults with a histological diag-
nosis of GN. We aimed to establish the existing evidence 
and identify areas of unmet need. We reviewed 27 studies 
in total: 9 using metabolomic and lipidomic analysis, 18 
using proteomics. The most frequently studied GN disease 
was IgAN, reflecting its place as the most prevalent primary 
glomerular disease worldwide [58]. Urine was the most fre-
quently investigated sample type, and the study cohorts had 
an average cohort size of 113 in metabolomics and 35 in 
proteomics. The average age of participants was 35 years, 
and only four studies included a paediatric cohort.

The primary aim of most studies was to identify new diag-
nostic biomarkers. The aim is to produce less invasive and 
more rapid diagnostics alongside personalised medicine. To 
date, this area has been dominated by genomic discoveries 
in cancer [59, 60]. The most notable development in GN has 
been made in MN whereby Beck et al. [61] discovered a novel 
antibody M-type phospholipase A (2) receptor (PLA2R) using 
mass spectrometry, which is now widely used in clinical prac-
tice. This review highlighted several small-scale studies in 
nephrology; however, large studies were sparse. Tofte et al. 
[62] conducted a large multi-centre study of 1775 participants 
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with type 2 diabetes and no proteinuria to validate the use of 
CKD273, a urinary biomarker composed of 273 peptides pre-
viously identified through proteomic analysis of CKD cohorts 
[63]. A scoring system was created based on CKD273 results 
that equate to the risk of developing proteinuria. This longi-
tudinal study showed that patients with a high-risk score from 
the urinary biomarker CKD273 correlated with the develop-
ment of proteinuria over a median of 2.5 years, independent 
of clinical characteristics [62].

Confirming disease activity and prognosis was another 
aim identified in this review applied to LN- and IgA-related 
nephropathy cohorts. In IgA patients, the aim was to identify 
urinary biomarkers that reflect the histological classification 
of disease and establish biomarkers from kidney histology 
that can correlate with predicting disease progression. IgAN 
has been researched using omic methods, and we have bet-
ter insight into the pathogenesis and immunomodulatory 
changes that are key in this disease pattern. However, stud-
ies thus far have not yet succeeded in identifying biomark-
ers that can be utilised to develop precision nephrology and 
achieve personalised therapy [64, 65]. A recent study by 
Pitcher et al.[66] of long term outcomes in IgAN based on a 
UK registry showed a median (95% CI) kidney survival of 
10.8 (10.0 to 12.0) years. At present, the role of immunosup-
pression is unclear in different disease phenotypes, and fur-
ther omic analysis may introduce a better understanding of 
its benefits at certain stages of disease activity. Alonso et al. 
[67] analysed urinary metabolites using nuclear magnetic 
resonance across a range of autoimmune diseases includ-
ing SLE and Crohn's. The results showed a clear pattern 
of metabolites that correlated with disease activity as per 
the currently used disease activity scores [68]. Without the 
advent of specific disease activity biomarkers, we are delay-
ing the early initiation or alteration of treatment regimens 
that can affect the patients' long-term outcomes.

The mainstay of treatment in GN requires immunosup-
pression to achieve and sustain clinical remission. Whilst 
there are globally accepted guidelines for managing these 
diseases [28] there is still an unmet need in delivering per-
sonalised treatment to patients. Immunosuppressive regi-
mens in GN are often dependent on glucocorticoids, which 
are increasingly highlighted as having significant long-term 
effects, including increasing the risk of cardiovascular events 
[69, 70]. The adoption of multi-omic data has led to the 
capture of a vast amount of data in cancer with the ability to 
predict prognosis and treatment response [71, 72]. However, 
this data's most successful progress and clinical adoption has 
been from genomic analysis. In prostate cancer, the devel-
opment of the Decipher score has led to the use of genomic 
data to accurately predict which cancer will behave more 
aggressively and therefore inform treatment choices [73, 
74]. Results from cancer genomics analyses have led to the 
creation of the 'Cancer Genome Atlas', which documents 

the molecular features of an array of cancers. This invalu-
able data tool can aid the classification of cancers and could 
represent a platform for further research to develop targeted 
treatment for specific cancer sub-types [75].

It has long been established that cardiovascular disease 
is the leading cause of mortality in individuals diagnosed 
with CKD [76–79]. To date, we are continuing to unravel 
the interplay of disease processes and sociodemographic 
risk factors that accelerate atherosclerosis in CKD popu-
lations and the unique pro-inflammatory states associated 
[80, 81]. Lipidomic analysis has successfully shown that 
changes within the lipidome interplay and contribute to the 
pro-inflammatory state leading to atherosclerosis in car-
diovascular disease and atherosclerosis in CKD [82, 83].

The main limitation of the included studies is the sample 
size, especially in proteomic analysis, where the average cohort 
size was only 35. To produce statistically significant results and 
uncover potential new biomarkers, these studies should aim to 
recruit larger cohorts. Multiple tools have been developed to 
support the multi-omic analysis power calculation for multi-
omic analysis [84]. The technology needed for multi-omic 
analysis requires expensive infrastructure, which may not be so 
widely accessible, with finances limiting the sample size. The 
papers were heterogeneous in their methodology and data anal-
ysis, making direct comparison of their outcomes and signifi-
cance more challenging. Moreover, only four studies included 
paediatric patients, perhaps representing cohorts with a more 
active phenotype and fewer co-morbidities.

Conclusion

This review details the current metabolomic and lipidomic 
analysis landscape in GN. There is clear evidence that the 
application of omic techniques through the analysis of blood, 
urine and kidney histology can elucidate the immunopatho-
genesis of GN and contribute to the development of preci-
sion medicine in nephrology.
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