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Abstract
Background Non-invasive renal fibrosis assessment is critical for tailoring personalized decision-making and managing 
follow-up in patients with chronic kidney disease (CKD). We aimed to exploit machine learning algorithms using clinical 
and elastosonographic features to distinguish moderate-severe fibrosis from mild fibrosis among CKD patients.
Methods A total of 162 patients with CKD who underwent shear wave elastography examinations and renal biopsies at 
our institution were prospectively enrolled. Four classifiers using machine learning algorithms, including eXtreme Gradi-
ent Boosting (XGBoost), Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and K-Nearest 
Neighbor (KNN), which integrated elastosonographic features and clinical characteristics, were established to differentiate 
moderate-severe renal fibrosis from mild forms. The area under the receiver operating characteristic curve (AUC) and aver-
age precision were employed to compare the performance of constructed models, and the SHapley Additive exPlanations 
(SHAP) strategy was used to visualize and interpret the model output.
Results The XGBoost model outperformed the other developed machine learning models, demonstrating optimal diag-
nostic performance in both the primary (AUC = 0.97, 95% confidence level (CI) 0.94–0.99; average precision = 0.97, 95% 
CI 0.97–0.98) and five-fold cross-validation (AUC = 0.85, 95% CI 0.73–0.98; average precision = 0.90, 95% CI 0.86–0.93) 
datasets. The SHAP approach provided visual interpretation for XGBoost, highlighting the features’ impact on the diagnostic 
process, wherein the estimated glomerular filtration rate provided the largest contribution to the model output, followed by 
the elastic modulus, then renal length, renal resistive index, and hypertension.
Conclusion This study proposed an XGBoost model for distinguishing moderate-severe renal fibrosis from mild forms in 
CKD patients, which could be used to assist clinicians in decision-making and follow-up strategies. Moreover, the SHAP 
algorithm makes it feasible to visualize and interpret the feature processing and diagnostic processes of the model output.
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Introduction

In recent years, chronic kidney disease (CKD) has been 
well-identified as a leading global public health issue [1, 
2]. Approximately 13% of people around the world are 
estimated to have CKD, while between 4.9 and 7.1 million 
people are estimated to require renal replacement therapy 
due to kidney failure [3]. It can be argued that CKD directly 
impacts the burden of morbidity and mortality among non-
communicable diseases, via its effect on cardiovascular risk, 
at the global level. Renal fibrosis, characterized by fibrotic 
remodeling of the extracellular matrix, is a progressive pro-
cess that deteriorates renal function in CKD [4, 5]. In fact, 
it represents the common final pathway in the progression 
of nearly all types of CKD to kidney failure, regardless of 
cause. An accurate diagnosis and staging of renal fibrosis 
are therefore prerequisites for stratifying CKD patients into 
distinct risk groups in order to tailor personalized therapeu-
tic decisions based on the clinical course.

Presently, renal biopsy remains the gold standard for 
assessing renal fibrosis in CKD patients [6]. This method is, 
however, intrinsically limited by its invasive nature, which 
hinders its clinical application in dynamic surveillance to 
monitor disease progression and therapeutic response [7]. 

Shear wave elastography, a cutting-edge imaging technique 
in ultrasound (US) that can measure the elastic properties of 
a tissue by tracking the propagation of shear waves induced 
by acoustic radiation force within the target, has attracted a 
great deal of attention as a promising, non-invasive way to 
assess renal fibrosis in recent years [8, 9]. Despite this, shear 
wave elastography diagnostic efficacy is not yet satisfactory 
in routine clinical practice for this medical condition. In light 
of the aforementioned shortcomings, there is growing inter-
est in exploring noninvasive approaches that may reliably 
evaluate renal fibrosis in CKD patients.

Machine learning is a data-driven approach derived from 
artificial intelligence that involves the computer identifying 
patterns among data sets and making decisions based on 
these patterns [10]. Recent decades have seen a significant 
increase in the application of machine learning algorithms 
for the analysis of critical clinical problems, leading to prac-
tical breakthroughs and research innovations [11–13]. This 
progress has been favored by more and more researchers 
in the medical field and resulted in a comprehensive set of 
capabilities applicable to a variety of medical conditions. 
However, the “black box” problem along with machine 
learning, which is a lack of transparency and interpreta-
tion of the decision-making process, leads to clinicians 
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mistrusting the outcome or even ignoring recommendations 
altogether [14, 15].

To address the issues raised above, in this study, we 
intend to propose an interpretable machine learning model 
to assess renal fibrosis in patients with CKD. The purpose 
of this study was, first, to construct machine learning-based 
models using four distinct classifiers incorporating elas-
tosonographic features with clinical characteristics to dif-
ferentiate mild and moderate-severe renal fibrosis; second, 
to compare and validate the performance of the developed 
diagnostic models; and third, to comprehend the feature pro-
cessing and decision process of the best-performing diag-
nostic model. To the best of our knowledge, this is the first 
study to propose an interpretable machine learning model 
integrating elastosonographic features and clinical variables 
to distinguish moderate-severe fibrosis from mild fibrosis in 
CKD patients.

Materials and methods

Study population

This was a cross-sectional prospective study, for which we 
obtained informed consent from the patients and approval 
from the institution’s ethical committee. Subjects who 
underwent renal shear wave elastography examination and 
renal biopsy in our department were screened for this study 
between April 2019 and December 2021. The inclusion cri-
teria were the following: (1) patients diagnosed with CKD 
as per the Kidney Disease Improving Global Outcomes 
(KDIGO) 2012 guidelines [16]; (2) renal shear wave elas-
tography examination performed before renal biopsy; (3) 
renal biopsy specimens graded according to the degree of 
fibrosis; and (4) complete laboratory evaluations for proper 
clinical management of the patients. The exclusion crite-
ria were the following: (1) patients who had multiple renal 
cysts, renal masses, nephroliths, or hydronephrosis, or who 
failed to hold their breath as instructed during the exami-
nation, which affected the shear wave elastography meas-
urements; (2) patients who were unable to undergo a suc-
cessful shear wave elastography examination due to obesity 
or mental tension; (3) patients whose renal biopsy samples 
were insufficient for an assessment of fibrosis. In this study, 
162 patients were ultimately enrolled as the primary dataset 
based on the inclusion and exclusion criteria. Laboratory 
biochemical indicators of each individual within seven days 
before renal biopsy were collected, including estimated glo-
merular filtration rate (eGFR), blood urea nitrogen, serum 
creatinine, serum uric acid, serum albumin, serum glucose, 
triglycerides, and urine protein to creatinine ratio, as well 
as medical history, including diabetes, hypertension, and 
cardiovascular disease.

Shear wave elastography examination

All renal shear wave elastography examinations were 
conducted by a board-certified radiologist with extensive 
experience in abdominal shear wave elastography within 
two days prior to renal biopsy using the Aixplorer US 
imaging system (SuperSonic Imagine, Aix-en-Provence, 
France) equipped with the convex array probe (SC6-1, 
1–6 MHz). Patients were asked to void their bladders 
before examination and instructed to hold their breath for 
a few seconds during each measurement. On the maxi-
mum coronal section of the right kidney in a supine posi-
tion, a real-time shear wave elastography procedure was 
performed under the guidance of B-mode US to meas-
ure the elastic modulus of the cortex in the renal mid-
dle portion, and the maximum shear wave elastography 
value (displayed as Emax) was recorded (Fig. 1). For each 
patient, five independent and valid shear wave elastogra-
phy values were obtained, and the arithmetic mean was 
calculated to provide further analysis. Additionally, the 
longitudinal diameter, middle parenchyma thickness, and 
interlobar arterial resistive index of the right kidney were 
also measured and recorded. Note that our previous study 
demonstrated that, when compared to other shear wave 
elastography parameters, maximum shear wave elastog-
raphy offered the highest ability to distinguish between 
varying degrees of renal fibrosis severity [9]. A detailed 
description of the examination can also be found in our 
previously published work.

Renal biopsy

An US-guided percutaneous renal biopsy was conducted 
on the lower pole of the right kidney with a 16 or 18 G 
needle (Bard Magnum, Covington, GA). A series of kid-
ney tissue specimens was stained with hematoxylin–eosin, 
Grocott’s methenamine silver, Masson’s trichrome, and 
periodic acid-Schiff and routinely examined by two dedi-
cated pathologists using light microscopy, immunofluo-
rescence, and electron microscopy, wherein disagreements 
between the two experts were resolved via discussion. 
Morphometric analysis of renal chronic histopathological 
changes was performed based on a semiquantitative scor-
ing system described in our previous study [9]. The cases 
were classified into three categories based on their chro-
nicity scoring: mild (9 points), moderate (10–18 points), 
and severe (19 points). Since the severe cases in this study 
are limited (n = 18), the moderately and severely impaired 
groups were combined to form a moderate-severe group 
that was then compared against the mild group in the sub-
sequent analyses.
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Model establishment and evaluation

Using univariate and multivariate analyses, independent risk 
factors from elastosonographic features and clinical charac-
teristics were identified for the differentiation between mild 
and moderate-severe renal fibrosis. That is to say, the vari-
ables with P < 0.05 in the univariate analysis (Chi-squared 
or Fisher’s exact tests for categorical variables and Student’s 
t test or Mann–Whitney U test for continuous variables, 
as appropriate) were entered into the multivariate logistic 
regression analysis to obtain significant factors (P < 0.05). 
Four different machine learning algorithms, namely eXtreme 
Gradient Boosting (XGBoost), Support Vector Machine 
(SVM), Light Gradient Boosting Machine (LightGBM), 
and K-Nearest Neighbor (KNN), were utilized to establish 
the diagnostic model in this study, respectively. For each 
classifier, a grid search strategy was applied to identify the 
optimal hyperparameter configuration [17]. Further, a five-
fold cross-validation scheme was employed to verify the per-
formance and generalization of the developed models. In 
brief, the primary dataset is divided into five complementary 
partitions, of which four-fifths are used for training models 
and one-fifth is used for testing. Five-folds were traversed 
five times as a test set. A single performance metric esti-
mate was created by averaging five classification test results. 
Model performance was assessed with a receiver operating 

characteristic (ROC) curve and a precision-recall curve. The 
corresponding performance metrics were calculated, includ-
ing the area under the ROC curve (AUC), sensitivity, speci-
ficity, accuracy, F1 score, and average precision (i.e., area 
under the precision-recall curve).

Model interpretability in machine learning

In this study, the SHAP (SHapley Additive exPlanations) algo-
rithm is exploited to solve the “black box” problem of machine 
learning [18]. A primary objective of SHAP is to explain the 
diagnosis of an instance by calculating the contributions of 
each feature to the diagnosis. As part of the SHAP explanation 
method, Shapley values are identified from coalitional game 
theory, in which the Shapley values are used to determine how 
to distribute the “payout” (i.e., the diagnosis) among the fea-
tures fairly. Compared to other interpretability methods, SHAP 
is characterized by three desirable characteristics: local accu-
racy, consistency, and missingness. Specifically, SHAP fea-
ture importance was used for ranking features by reducing the 
importance of those features in relation to the average absolute 
Shapley values. Further, a summary plot combining feature 
importance with feature effects was proposed to facilitate the 
visualization of the relationship between feature value and 
diagnosis impact. To analyze diagnosis results at the individual 
level, a SHAP explanation force plot was developed. A feature 

Fig. 1  Using dual-modal display for shear wave elastography examination, the top image shows a color-coded elastogram for renal stiffness 
measurement, while the bottom image shows a grayscale B-mode image for guidance during real-time elasticity imaging
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attribution, such as Shapley value, is visualized as a force that 
either increases (represented by red arrows) or decreases (rep-
resented by blue arrows) the risk probability from the baseline, 
and these forces balance each other out when the data instance 
is actually diagnosed.

Statistical analysis

All statistical analyses were performed using R version 3.6.3 
and Python version 3.7. Continuous variables were presented 
as means ± standard deviations (SD) or medians (interquar-
tile ranges), as appropriate, whereas categorical variables 
were presented as frequencies (percentages). A two-sided P 
value of < 0.05 was considered statistically significant.

Results

Baseline characteristics of study patients

Among the 162 CKD patients included, 74 presented with 
pathology-confirmed mild fibrosis, while 88 exhibited 
moderate-severe fibrosis. Within this patient cohort, IgA 
nephropathy emerged as the predominant condition (44.4%), 
followed by membranous nephropathy (21%) and minimal 
change nephropathy (9.9%). In the subgroup of patients 
with mild fibrosis, 70 cases (94.59%) presented with CKD 
stages 1–3, while 4 cases (5.41%) exhibited CKD stages 
4–5. Within the subset of patients diagnosed with moderate-
severe fibrosis, 76 cases (86.36%) had CKD stages 1–3, and 
12 cases (13.64%) were identified with CKD stages 4–5. A 
univariate analysis revealed significant differences between 
the two renal fibrosis groups regarding age, eGFR, blood 
urea nitrogen, serum creatinine, renal length, renal resis-
tive index, shear wave elastography value, and comorbidi-
ties (such as diabetes, hypertension, and cardiovascular dis-
ease). In multivariate analysis, the following five variables 
remained significantly associated with the study outcome 
and were retained for machine learning modeling: eGFR, 
renal length, renal resistive index, shear wave elastography 
value, and hypertension. In particular, compared to patients 
with mild fibrosis, the moderate-severe fibrosis group exhib-
ited lower eGFR, renal length, and shear wave elastography 
values, as well as higher renal resistive index and hyperten-
sion proportions. Further information regarding baseline 
characteristics can be found in Table 1, while the etiology 
of CKD patients is delineated in Table S1.

Performance comparison of machine learning 
models

In this study, four machine learning models were con-
structed using the aforementioned independent risk fac-
tors. As shown in Figs.  2A and 3A, optimal diagnostic 

performance was observed for XGBoost in the primary dataset 
(AUC = 0.97, 95% confidence interval (CI) 0.94–0.99; aver-
age precision = 0.97, 95% CI 0.97–0.98), followed by KNN 
(AUC = 0.93, 95% CI 0.90–0.97; average precision = 0.93, 
95% CI 0.93–0.94), SVM (AUC = 0.84, 95% CI 0.78–0.91; 
average precision = 0.87, 95% CI 0.86–0.88), and LightGBM 
(AUC = 0.75, 95% CI 0.67–0.83; average precision = 0.83, 
95% CI 0.75–0.90). Thus, XGBoost outperformed the other 
machine learning models in the primary cohort. Using a 
five-fold cross-validation analysis, the XGBoost model still 
achieved excellent AUC and average precision, with values 
of 0.85 (95% CI 0.73–0.98) and 0.90 (95% CI 0.86–0.93), 
which was also superior to the other three models (KNN: 
AUC = 0.83, 95% CI 0.70–0.96; average precision = 0.85, 
95% CI 0.81–0.88; SVM: AUC = 0.83, 95% CI 0.70–0.97; 
average precision = 0.87, 95% CI 0.82–0.93; LightGBM: 
AUC = 0.64, 95% CI 0.44–0.83; average precision = 0.70, 
95% CI 0.61–0.78) (Figs. 2B, 3B). The detailed performance 
metrics for model comparison are presented in Tables 2 and 3.

Model interpretation

According to the above results, XGBoost was the most effec-
tive classification model in distinguishing moderate-severe 
renal fibrosis from mild forms, and thus it was deemed the best 
diagnostic model in this study. Then, the SHAP algorithm was 
applied to visualize the feature processing and diagnostic pro-
cesses of XGBoost. The impact of each variable on the model 
output was evaluated by the SHAP feature importance plot 
(Fig. 4A), which indicated that eGFR made the largest con-
tribution to the diagnostic model, followed by the shear wave 
elastography value, then renal length, renal resistive index, and 
hypertension. In particular, as shown in the SHAP summary 
plot (Fig. 4B), the lower the eGFR, the higher the Shapley 
value, and the greater the likelihood of moderate-severe renal 
fibrosis, while the same trend was observed for the shear wave 
elastography value. Refer to the details in Fig. 4B’s legend. A 
clinical case example is presented in Fig. 4C to illustrate the 
diagnostic process of XGBoost using the SHAP explanation 
force plot. The risk information for this CKD patient is the 
result of two opposing forces coming to a balance, in which 
the risk-decreasing effect derived from the shear wave elas-
tography value is offset by the risk-increasing effect derived 
from eGFR and renal length. Finally, this subject obtained a 
low-risk probability of 4.6%, with the corresponding model 
output being mild renal fibrosis, which was supported by renal 
pathology.
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Discussion

In the current study, four machine learning models com-
bining elastosonographic features and clinical variables 
were developed to discriminate between mild and moder-
ate-severe fibrosis in CKD patients. The XGBoost model 
exhibited optimal diagnostic capability, which could serve 
as an effective and reliable noninvasive tool for clinical 
decision-making relating to CKD patients. As determined 
by the SHAP algorithm, eGFR contributed the most to the 
XGBoost model. In addition, the SHAP approach was also 
used to visualize and interpret the diagnostic process of the 
XGBoost model at the individual level.

As data processing technology develops, machine learn-
ing is increasingly being introduced into the domain of 

medicine to support personalized clinical decisions [19, 20]. 
In fact, there have been several studies that applied machine 
learning to evaluate renal fibrosis or kidney disease status. 
Zhu et al. exploited a SVM model that combined the shear 
wave elastography value with traditional US features to dif-
ferentiate the severity of tubulointerstitial fibrosis among 
CKD patients and obtained AUC values between 0.64 and 
0.94 [21]. However, they did not compare the performance 
of multiple machine learning models with respect to this 
medical issue. A study by Li et al. constructed and compared 
several machine learning models based on US parameters to 
diagnose renal disease, yielding AUC values ranging from 
0.83 to 0.91 [22]. Nevertheless, the assessment of the mod-
els’ performance in that study was inadequate, as none of the 
models underwent internal or external validation, so their 

Table 1  Baseline characteristics and feature analysis of cohort study participants by renal fibrosis categories

Bold values indicate statistical significance
Continuous variables are presented as mean ± standard deviation or median (interquartile range) and categorical variables as n (%) as appropriate
BMI Body mass index; eGFR estimated glomerular filtration rate; UPCR urine protein to creatinine ratio; RI resistive index; SWE shear wave 
elastography

Characteristic Mild fibrosis (n = 74) Moderate-severe fibrosis (n = 88) P-value

Univariate analysis Multivari-
ate analysis

Demographic information
 Age (years) 34.47 ± 12.90 45.40 ± 13.48  < 0.001 0.141
 Sex
  Male 43 (58.11) 48 (54.55) 0.649
  Female 31 (41.89) 40 (45.45)

BMI (kg/m2) 24.49 ± 4.13 23.81 ± 3.30 0.248
Liquid biopsy indicator
 eGFR (mL/min/1.73  m2) 101.21 ± 28.53 67.23 ± 33.67  < 0.001  < 0.001
 Blood urea nitrogen (mmol/L) 4.61 (3.60–5.59) 6.21 (5.01–7.93)  < 0.001 0.650
 Serum creatinine (umol/L) 71.50 (56.25–92.93) 101.00 (82.50–148.00)  < 0.001 0.876
 Serum uric acid (umol/L) 387.85 ± 105.01 398.09 ± 94.34 0.647
 Serum albumin (g/L) 31.86 ± 10.80 33.79 ± 8.13 0.255
 Serum glucose (mmol/L) 4.55 ± 0.81 4.96 ± 1.44 0.062
 Triglyceride (mmol/L) 1.62 (1.16–2.19) 1.63 (1.04–2.35) 0.851
 UPCR (g/gCr) 1.56 (0.36–6.66) 1.88 (0.61–4.56) 0.804

Elastosonographic parameter
 Renal length (cm) 10.62 ± 0.78 10.26 ± 0.95 0.010 0.025
 Parenchyma thickness (cm) 1.64 ± 0.29 1.58 ± 0.27 0.147
 RI 0.62 ± 0.05 0.65 ± 0.07 0.006 0.014
 SWE value (kPa) 39.63 ± 9.26 29.96 ± 8.15  < 0.001  < 0.001

Comorbidity
 Diabetes
  Yes 4 (5.41) 14 (15.91) 0.034 0.540

 Hypertension
  Yes 10 (13.51) 43 (48.86)  < 0.001  < 0.001

 Cardiovascular disease
  Yes 2 (2.70) 12 (13.64) 0.014 0.821
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generalizability is unknown. Last but not least, even though 
these studies led to progress, they only looked at how well 
the model performed. The model’s output, however, lacks 

transparency, interpretability, and a clear understanding of 
risk, making it difficult to implement in clinical practice [15, 
23].

Fig. 2  A comparison of receiver operating characteristic curves for 
each classifier in the primary cohort (A) and five-fold cross-vali-
dation cohort (B). The red, blue, yellow, and green curves repre-

sent XGBoost, SVM, LightGBN, and KNN, respectively. XGBoost 
extreme gradient boosting; SVM support vector machine; LightGBM 
light gradient boosting machine; KNN K-nearest neighbor

Fig. 3  A comparison of precision-recall curves for each classifier 
in the primary cohort (A) and five-fold cross-validation cohort (B). 
The blue, yellow, green and red curves represent XGBoost, SVM, 

LightGBN, and KNN, respectively. XGBoost extreme gradient boost-
ing; SVM support vector machine; LightGBM light gradient boosting 
machine; KNN K-nearest neighbor
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Table 2  Comparison of model performance in the primary cohort

XGBoost Extreme gradient boosting; SVM support vector machine; LightGBM light gradient boosting machine; KNN K-nearest neighbor; AP 
average precision; AUC  area under the curve; CI confidence level

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) F1 score (95% CI) AP (95% CI)

XGBoost 0.97 (0.94–0.99) 0.89 (0.87–0.90) 0.95 (0.92–0.97) 0.91 (0.89–0.92) 0.92 (0.90–0.93) 0.97 (0.97–0.98)
SVM 0.84 (0.78–0.91) 0.77 (0.71–0.83) 0.81 (0.76–0.87) 0.78 (0.77–0.79) 0.80 (0.78–0.81) 0.87 (0.86–0.88)
LightGBM 0.75 (0.67–0.83) 0.60 (0.44–0.76) 0.89 (0.83–0.96) 0.71 (0.63–0.79) 0.70 (0.59–0.80) 0.83 (0.75–0.90)
KNN 0.93 (0.90–0.97) 0.76 (0.74–0.79) 0.96 (0.95–0.97) 0.75 (0.72–0.79) 0.87 (0.85–0.88) 0.93 (0.93–0.94)

Table 3  Comparison of model performance in the fivefold cross-validation

Classifier metrics were the average of values generated using five-fold cross-validation
XGBoost extreme gradient boosting; SVM support vector machine; LightGBM light gradient boosting machine; KNN K-nearest neighbor; AP 
average precision; AUC  area under the curve; CI confidence level

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) F1 score (95% CI) AP (95% CI)

XGBoost 0.85 (0.73–0.98) 0.84 (0.71–0.97) 0.78 (0.63–0.94) 0.73 (0.67–0.79) 0.80 (0.72–0.88) 0.90 (0.86–0.93)
SVM 0.83 (0.70–0.97) 0.80 (0.64–0.95) 0.84 (0.73–0.94) 0.73 (0.62–0.84) 0.79 (0.67–0.91) 0.87 (0.82–0.93)
LightGBM 0.64 (0.44–0.83) 0.63 (0.37–0.88) 0.73 (0.56–0.90) 0.54 (0.45–0.64) 0.60 (0.41–0.79) 0.70 (0.61–0.78)
KNN 0.83 (0.70–0.96) 0.71 (0.56–0.85) 0.89 (0.80–0.98) 0.72 (0.67–0.78) 0.80 (0.71–0.90) 0.85 (0.81–0.88)

Fig. 4  An interpretation of XGBoost based on SHAP. A A ranking 
of feature importance sorted by descending the mean absolute Shap-
ley values of the variables. B SHAP summary plot of each point rep-
resenting a Shapley value for a feature and an instance. The Y-axis 
ranks the features as per their importance to model performance, 
while the X-axis shows the impact of Shapley values corresponding 
to a particular point on the output of the model, where positive values 
contribute to an increase in risk and negative values contribute to a 
decrease in risk. The color spectrum from bright blue to bright red 

indicates feature values from low to high. C An interpretable example 
of a SHAP explanation force plot for a CKD patient with a predicted 
mild fibrosis probability that was confirmed by renal pathology. Each 
Shapley value on the plot represents a force pushing to increase (red 
arrow) or decrease (blue arrow) the prediction, which ultimately bal-
ances out. SHAP shapley additive explanations; XGBoost extreme 
gradient boosting; eGFR estimated glomerular filtration rate; SWE, 
shear wave elastography; RI resistive index
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Four distinct machine learning models were established 
in this study, of which the XGBoost model achieved the 
optimal discrimination ability when compared to the others 
(SVM, LightGBM, and KNN), yielding an AUC of 0.97 
(95% CI 0.94–0.99), average precision of 0.97 (95% CI 
0.97–0.98) in the primary dataset, and an AUC of 0.85 (95% 
CI 0.73–0.98), average precision of 0.90 (95% CI 0.86–0.93) 
in the five-fold cross-validation cohort. XGBoost is a scal-
able end-to-end tree boosting algorithm proposed by Chen 
et al. [24], in which multi-classification and regression trees 
are used to learn nonlinear relationships between input vari-
ables and outcomes in a boosting ensemble manner, captur-
ing and learning nonlinear and complex relations accurately 
[25]. In addition to being highly efficient, flexible, and port-
able, it also provides more accurate output and effectively 
prevents overfitting [26]. This makes the XGBoost algorithm 
suitable for use in critical medical research and has been 
successfully applied in some complex clinical situations. Shi 
et al. applied the US-based radiomics XGBoost model to 
evaluate the risk of central cervical lymph node metastasis 
in patients with papillary thyroid carcinoma and attained a 
satisfactory AUC of 0.91 and 0.90 in the training and test 
cohorts, respectively, which outperformed the other six 
machine learning classifiers and an experienced radiologist 
[27]. A study conducted by Zhang et al. revealed that, among 
the 10 constructed machine learning models, XGBoost had 
the superior comprehensive diagnostic performance for pre-
dicting sentinel lymph node metastasis, yielding an AUC of 
0.95 in the training cohort and 0.91 in the validation cohort 
[28]. Consistent with the findings stated above, in the present 
study, XGBoost was superior to the other classifiers using 
machine learning algorithms in distinguishing moderate-
severe fibrosis from mild forms in CKD patients, providing 
further evidence of the diagnostic capability and robustness 
of the proposed algorithm regarding clinical application.

During the progression of CKD, it is crucial to under-
score the significance of adopting differentiated clinical 
decisions and treatment strategies tailored to the distinct 
stages of renal fibrosis [29, 30]. The application of the 
proposed machine learning model facilitates the prompt 
identification of CKD patients presenting with mild fibro-
sis, thereby enabling the avoidance of aggravating fac-
tors in the initial phases of the ailment. Consequently, this 
affords an opportunity for early interventions, mitigating 
the risk of further fibrotic progression. In instances where 
the machine learning model identifies CKD patients with 
moderate-severe fibrosis, an imperative shift towards a 
more proactive treatment paradigm becomes warranted. 
This approach is designed to prevent the onset of com-
plications, defer the initiation of dialysis treatment, and 
enhance the overall quality of survival. Moreover, the 
deployment of the developed machine learning model 
facilitates a non-invasive, dynamic evaluation of renal 

fibrosis extent during CKD treatment or follow-up. This 
functionality enables judicious modifications to the treat-
ment regimen, optimizing treatment efficacy.

Following a comprehensive set of univariate and mul-
tivariate analyses, five pivotal risk factors associated with 
the outcome event were identified from an initial pool of 18 
potential candidate variables. These crucial factors include 
shear wave elastography value, renal length, renal resis-
tive index, hypertension, and eGFR. Utilizing shear wave 
elastography, an advanced non-invasive imaging modality, 
enables the quantitative evaluation of tissue elastic proper-
ties through monitoring shear wave propagation induced by 
acoustic radiation force impulse excitation within a speci-
fied target. Previous studies have successfully highlighted 
the clinical efficacy of shear wave elastography in assess-
ing renal fibrosis [8, 9, 31]. The progression of pathological 
changes within the renal system is marked by a noticeable 
decrease in kidney size, notably accentuated by a discernible 
reduction in renal length [32]. With the progression of renal 
pathological impairment, discernible alterations in the physi-
cal characteristics of the kidneys become apparent. These 
observable changes in kidney morphology serve as exter-
nal indicators of evolving pathological processes affecting 
renal tissues. Fundamental processes contributing to CKD 
evolution involve alterations in renal microvascular perfu-
sion. Elevated intrarenal resistive index, indicative of renal 
arteriolar sclerosis, correlates with advancing renal dysfunc-
tion and fibrosis [33]. Hypertension plays a critical role in 
both instigating and advancing renal capillary rarefaction, 
influencing the intricate vascular network of the kidneys and 
leading to a reduction in blood vessel density [34–36]. This 
disruption in vascular density disturbs the oxygen supply 
balance, exacerbating hypoxic conditions. Consequently, this 
sequence, initiated by hypertension, emerges as a significant 
driving force behind the intricate series of events contrib-
uting to CKD progression. While the precise mechanism 
by which hypertension triggers renal capillary rarefaction 
remains elusive, hypoxia-induced processes within renal 
capillaries, including cell atrophy and apoptosis, contribute 
to the progression of glomerular sclerosis, renal arteriolar 
sclerosis, and renal tubulointerstitial fibrosis. Within the 
domain of liquid biopsy indicators, eGFR emerged as a uni-
versally embraced and applied marker in medical settings 
for the assessment of CKD progression [16]. Nevertheless, 
none of the alternative liquid biopsy markers passed scrutiny 
in multivariate analysis. While several other liquid biopsy 
indices signal the onset and progression of CKD or renal 
fibrosis, their limitations encompass potential non-spec-
ificity to organs, exclusive association with inflammatory 
states or impaired organ function, and a specific inability to 
distinctly delineate fibrosis stages [37, 38]. Furthermore, the 
clinical significance of eGFR intersects with that of other 
liquid biopsy markers. Owing to its heightened clinical 
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significance, eGFR assumes a robust role as a surrogate that 
efficaciously supplants alternative liquid biopsy indicators.

A prior study employed a multilayer perceptron classifier 
to evaluate renal fibrosis severity by integrating 16 clinical 
variables, resulting in satisfactory diagnostic accuracy [39]. 
As a fundamental neural network, the multilayer percep-
tron classifier exhibits exceptional nonlinear data processing 
abilities [40]. Its efficacy lies in adeptly managing a sub-
stantial volume of input variables and mapping them into a 
higher-dimensional feature space, autonomously assigning 
variable weights throughout the entire training process. With 
an increase in input variables, the algorithm captures more 
valuable information, enhancing output accuracy. However, 
a higher quantity of input variables necessitates more neu-
rons for feature extraction, leading to an increase in model 
parameters. This expansion presents challenges to conver-
gence, resulting in prolonged training times and potential 
issues such as gradient explosion. Additionally, while excel-
ling at feature extraction from relatively large datasets, the 
multilayer perceptron classifier tends to overfit with smaller 
sample sizes, reducing its generalization performance and 
practical applicability. Despite its input handling advantages, 
careful consideration is essential due to parameter escalation 
and potential training challenges. Moreover, incorporating 
additional input variables like demographic data, laboratory 
indicators, and imaging parameters may improve multilayer 
perceptron classifier predictions but raise model applica-
tion costs. The multilayer perceptron classifier built using 
screened independent variables in this study yielded AUCs 
of 0.73 (95% CI 0.64–0.83) and 0.72 (95% CI 0.54–0.89) 
in the training and validation sets, respectively, indicating 
barely satisfactory diagnostic performance in this scenario 
(Table S2). This investigation utilized diverse machine 
learning algorithms, such as XGBoost, SVM, KNN, and 
LightGBM, to tackle the clinical issue. The modeling param-
eters of these classifiers prove relatively straightforward and 
comprehensible. Not only do they demand a minimal set of 
variables for constructing models that achieve decent pre-
dictive accuracy, but they also exhibit efficiency and adapt-
ability in practical use. XGBoost classifier is esteemed for its 
ensemble learning capability and remarkable performance, 
delivering reliable predictions even in sub-optimal feature 
engineering scenarios [41]. The SVM classifier excels at 
handling nonlinear and high-dimensional data, exhibiting 
superior classification accuracy for small-scale datasets [42]. 
The KNN classifier, known for its simplicity and intuitive 
nature, operates without assumptions about data distribu-
tion, proving versatile across various data types while effec-
tively managing nonlinear data [43]. The LightGBM classi-
fier is preferred as a gradient enhancement framework due 
to its efficient training speed [44]. The lightweight design 
of these algorithms and their minimal variable require-
ments significantly contribute to faster training and reduced 

computational costs in practical applications. This aspect 
holds particular significance in clinical settings characterized 
by limited computational resources or real-time processing

It should be noted that when using a machine learning 
algorithm to solve a crucial clinical problem, the “black box” 
problem of the model should be brought into the spotlight 
and addressed [14]. This means that the model’s decision-
making process should be transparent and explainable 
instead of solely obtaining more accurate results. In this 
case, a SHAP strategy was introduced to demonstrate the 
importance and impact of features on the XGBoost model’s 
output and provide individual patients with a visual interpre-
tation of their diagnostic results. As illustrated in the SHAP 
plot, the variable having the greatest impact on model output 
was eGFR, with lower eGFR values corresponding to higher 
Shapley values, driving an increased chance of model out-
put being moderate-severe renal fibrosis. This finding of the 
SHAP algorithm was in line with what was seen in clinical 
practice, as a decline in kidney function was a warning sign 
that renal fibrosis would be exacerbated in CKD patients [45, 
46]. Additionally, the SHAP algorithm revealed that, as the 
feature contributing the second highest amount to model out-
put, a higher shear wave elastography value corresponding to 
a lower Shapley value reduced the likelihood of developing 
moderate-severe renal fibrosis, which was consistent with 
previous research [8, 9, 47]. Consequently, SHAP addresses 
the “black box” issue that has hindered the development of 
complex models by providing a personalized and reasonable 
explanation for diagnosis, significantly improving the appli-
cation value of clinical models and clinicians’ confidence in 
established models.

Despite several strengths of this study, there are still 
some aspects worth noting. First, previous studies have 
identified age as an independent risk factor in renal fibrosis 
progression [48, 49], which aligns with the findings from 
the univariate analysis conducted in this study. However, 
the multivariate analysis did not include age as an inde-
pendent variable. Taking into account the pathophysiologi-
cal impact of age on shear wave elastography-measured 
elasticity, eGFR, renal length, and hypertension, their 
simultaneous incorporation into the multivariate analysis 
might have led to overlapping and intertwining informa-
tion [50–52]. While the multivariate analysis retained 
shear wave elastography value, eGFR, renal length, and 
hypertension—each impacted by age—, it chose to exclude 
age itself as an independent variable. This exclusion could 
be attributed to these variables already capturing the diag-
nostic significance associated with age, thereby render-
ing a separate consideration of the age variable unnec-
essary. Second, elastography in assessing renal fibrosis 
remains controversial in clinical practice. Studies by 
Leong et al. and Yang et al. revealed an increase in shear 
wave elastography-measured renal stiffness corresponding 
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to the progression of chronic renal damage characterized 
by glomerular sclerosis, interstitial fibrosis, and tubular 
atrophy [53, 54]. In contrast, our previous investigation 
revealed a decrease in shear wave elastography-derived 
elastic values as pathological damage progressed in renal 
fibrosis [9]. Another study conducted by Güven et al. uti-
lizing magnetic resonance elastography to assess renal 
fibrosis also concluded that magnetic resonance elas-
tography-derived stiffness values decreased in patients 
with chronic injury, specifically noting reduced stiffness 
as glomerulosclerosis and tubulointerstitial fibrosis pro-
gressed [55]. It is important to emphasize that previous 
studies have exhibited deficiencies in the way they have 
conducted their experiments, resulting in conclusions that 
differ from those reached by our study and that of Güven 
et al. For example, Leong et al.’s study utilized point-shear 
wave elastography for detecting renal fibrosis, lacking an 
elastogram during image acquisition, which hindered arti-
fact-free region identification. Furthermore, point- shear 
wave elastography employed a fixed size for the region of 
interest, potentially leading to inaccuracies in placement 
and increased measurement variability by not excluding 
the renal medulla. In Yang et al.’s study, shear wave elas-
tography values were obtained from the kidney’s inferior 
pole. Conversely, Lin et al.’s research highlighted notably 
lower variability coefficients in the mid-region compared 
to the lower pole, suggesting constrained reproducibility 
in measurements taken from the renal poles [31]. In order 
to improve reproducibility, it is recommended to refrain 
from measuring renal poles [56]. Another study by Leong 
et al. emphasized the importance of these factors on shear 
wave elastography assessment in renal fibrosis, suggest-
ing that they could lead to inaccurate results and, there-
fore, erroneous conclusions [57]. Third, input variables, 
such as shear wave elastography value, renal resistive 
index, and hypertension, collectively indicate the influ-
ence of renal perfusion to some extent and could poten-
tially introduce biases. Machine learning algorithms do 
not exclusively focus on direct associations between these 
variables. Instead, they are trained to manage multivariate 
feature coupling, aiming at precise predictions [58]. These 
algorithms process data by emphasizing collective effects 
among features, rather than concentrating solely on simple 
relationships. By conducting comprehensive analyses and 
processing multiple features, these algorithms adeptly cap-
ture and leverage intricate interactions between features to 
enhance predictive capabilities. Their primary objective 
is to refine prediction accuracy by thoroughly consider-
ing the complexity of multiple features, thereby offering 
a more precise understanding of data patterns and trends.

This study has some limitations. First, as the number of 
patients enrolled in the present study is still relatively small, 
future studies with a large population-based cohort, which 

allows more detailed analyses, are warranted. Second, con-
sidering that the current study is derived from a single center 
cohort, further large-scale, multicenter studies are required 
to validate the present findings.

Conclusions

The proposed XGBoost model, which combines elasto-
sonographic parameters and clinical features, demonstrated 
high discriminatory performance and outperformed other 
machine learning models in distinguishing moderate-severe 
renal fibrosis from mild forms in CKD patients. The SHAP 
algorithm visualizes and interprets the XGBoost model’s 
feature processing and diagnostic processes. This interpret-
able XGBoost model could be used to assist clinicians in 
critical decision-making and follow-up strategies related to 
renal fibrosis severity in CKD patients.
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