Skip to main content

Advertisement

Log in

Anti-infective prescribing practices in critically ill children on continuous renal replacement therapy: a multicenter survey of French-speaking countries

  • original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Use of continuous renal replacement therapy in children receiving anti-infective drugs may lead to inappropriate concentrations with risks related to treatment failure, toxicity and emergence of multidrug-resistant bacteria. We aimed to describe anti-infective prescribing practices in critically ill children undergoing continuous renal replacement therapy.

Methods

An online survey to assess continuous renal replacement therapy, anti-infective prescribing and therapeutic drug monitoring practices was sent by e-mail to physicians working in pediatric intensive care units through the French-speaking Group of Pediatric Intensive Care and Emergency medicine (GFRUP).

Results

From April 1st, 2021 to May 1st, 2021, 26/40 pediatric intensive care units participated in the survey, corresponding to a response rate of 65%. Twenty-one were located in France and five abroad. All pediatric intensive care units administered continuous renal replacement therapy, primarily with Prismaflex™ System. Anti-infective prescriptions were adjusted to the presence of continuous renal replacement therapy in 23 (88%) pediatric intensive care units mainly according to molecular weight in 6 (23%), molecule protein binding in 6 (23%) and elimination routes in 15 (58%) including residual diuresis in 9 (35%), to the continuous renal replacement therapy flow in 6 (23%) and to the modality of continuous renal replacement therapy used in 15 (58%), pediatric intensive care units. There was broad variability among pediatric intensive care units and among physicians within the same unit. Barriers to therapeutic drug monitoring were mainly an excessive delay in obtaining results in 11 (42%) and the lack of an on-site laboratory in 8 (31%) pediatric intensive care units.

Conclusions

Our survey reported wide variability in anti-infective prescribing practices in children undergoing continuous renal replacement therapy, thus highlighting a gap in knowledge and the need for education and recommendations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data discussed in this paper are available on reasonable request to the authors.

References

  1. Schlapbach LJ, Straney L, Alexander J et al (2015) Mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002–13: a multicentre retrospective cohort study. Lancet Infect Dis 15:46–54. https://doi.org/10.1016/S1473-3099(14)71003-5

    Article  PubMed  Google Scholar 

  2. Downes KJ, Hahn A, Wiles J et al (2014) Dose optimisation of antibiotics in children: application of pharmacokinetics/pharmacodynamics in paediatrics. Int J Antimicrob Agents 43:223–230. https://doi.org/10.1016/j.ijantimicag.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  3. Abdul-Aziz MH, Alffenaar J-WC, Bassetti M et al (2020) Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med 46:1127–1153. https://doi.org/10.1007/s00134-020-06050-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Felton TW, Hope WW, Roberts JA (2014) How severe is antibiotic pharmacokinetic variability in critically ill patients and what can be done about it? Diagn Microbiol Infect Dis 79:441–447. https://doi.org/10.1016/j.diagmicrobio.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  5. Roberts DM, Roberts JA, Roberts MS et al (2012) Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 40:1523–1528. https://doi.org/10.1097/CCM.0b013e318241e553

    Article  CAS  PubMed  Google Scholar 

  6. Thakkar N, Salerno S, Hornik CP, Gonzalez D (2017) Clinical pharmacology studies in critically ill children. Pharm Res 34:7–24. https://doi.org/10.1007/s11095-016-2033-y

    Article  CAS  PubMed  Google Scholar 

  7. Groupe d’experts, Van Vong L, Osman D, Vinsonneau C (2014) Épuration extrarénale en réanimation adulte et pédiatrique. Recommandations formalisées d’experts sous l’égide de la Société de réanimation de langue française (SRLF), avec la participation de la Société française d’anesthésie-réanimation (Sfar), du Groupe francophone de réanimation et urgences pédiatriques (GFRUP) et de la Société francophone de dialyse (SFD): Société de réanimation de langue française. Experts Recomm Réanim 23:714–737. https://doi.org/10.1007/s13546-014-0917-6

    Article  Google Scholar 

  8. Li L, Li X, Xia Y et al (2020) Recommendation of antimicrobial dosing optimization during continuous renal replacement therapy. Front Pharmacol 11:786. https://doi.org/10.3389/fphar.2020.00786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pistolesi V, Morabito S, Di Mario F et al (2019) A guide to understanding antimicrobial drug dosing in critically ill patients on renal replacement therapy. Antimicrob Agents Chemother 63:e00583. https://doi.org/10.1128/AAC.00583-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Udy AA, Roberts JA, Lipman J (2013) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070–2082. https://doi.org/10.1007/s00134-013-3088-4

    Article  CAS  PubMed  Google Scholar 

  11. Eysenbach G (2004) Improving the quality of web surveys: the checklist for reporting results of internet E-surveys (CHERRIES). J Med Internet Res 6:e34. https://doi.org/10.2196/jmir.6.3.e34

    Article  PubMed  PubMed Central  Google Scholar 

  12. PICURe (2023) In: gfrup.sfpediatrie.com. https://gfrup.sfpediatrie.com/journees-recherche-du-gfrup/picure. Accessed 28 Feb 2023

  13. Daverio M, Cortina G, Jones A et al (2022) Continuous kidney replacement therapy practices in pediatric intensive care units across Europe. JAMA Netw Open 5:e2246901. https://doi.org/10.1001/jamanetworkopen.2022.46901

    Article  PubMed  PubMed Central  Google Scholar 

  14. Matusik E, Lemtiri J, Wabont G, Lambiotte F (2022) Beta-lactam dosing during continuous renal replacement therapy: a survey of practices in French intensive care units. BMC Nephrol. https://doi.org/10.1186/s12882-022-02678-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stitt G, Dubinsky S, Edginton A et al (2022) Antimicrobial dosing recommendations in pediatric continuous renal replacement therapy: a critical appraisal of current evidence. Front Pediatr. https://doi.org/10.3389/fped.2022.889958

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dubinsky S, Watt K, Saleeb S et al (2021) Pharmacokinetics of commonly used medications in children receiving continuous renal replacement therapy: a systematic review of current literature. Clin Pharmacokinet. https://doi.org/10.1007/s40262-021-01085-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Z, Bai J, Wen A et al (2020) Pharmacokinetic and pharmacodynamic analysis of critically ill patients undergoing continuous renal replacement therapy with imipenem. Clin Ther 42:1564-1577.e8. https://doi.org/10.1016/j.clinthera.2020.06.010

    Article  CAS  PubMed  Google Scholar 

  18. VIDAL (2022) L’intelligence médicale au service du soin. In: VIDAL. https://www.vidal.fr/. Accessed 14 Nov 2022

  19. Rein-Adaptation Posologique (2018). In: SiteGPR. http://sitegpr.com/fr/rein/recherche-par-medicaments/. Accessed 27 Aug 2018

  20. EUCAST (2020) Clinical breakpoints and dosing of antibiotics. https://eucast.org/clinical_breakpoints/. Accessed 22 Jun 2020

  21. Westermann I, Gastine S, Müller C et al (2021) Population pharmacokinetics and probability of target attainment in patients with sepsis under renal replacement therapy receiving continuous infusion of meropenem: Sustained low-efficiency dialysis and continuous veno-venous haemodialysis. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14846

    Article  PubMed  Google Scholar 

  22. Evans L, Rhodes A, Alhazzani W et al (2021) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 47:1181–1247. https://doi.org/10.1007/s00134-021-06506-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ates HC, Mohsenin H, Wenzel C et al (2022) Biosensor-enabled multiplexed on-site therapeutic drug monitoring of antibiotics. Adv Mater Deerfield Beach Fla 34:e2104555. https://doi.org/10.1002/adma.202104555

    Article  Google Scholar 

  24. Cohen J (2013) Confronting the threat of multidrug-resistant gram-negative bacteria in critically ill patients. J Antimicrob Chemother 68:490–491. https://doi.org/10.1093/jac/dks460

    Article  CAS  PubMed  Google Scholar 

  25. Sitzia J (1999) How valid and reliable are patient satisfaction data? An analysis of 195 studies. Int J Qual Health Care 11:319–328. https://doi.org/10.1093/intqhc/11.4.319

    Article  CAS  PubMed  Google Scholar 

  26. Wicha SG, Märtson A-G, Nielsen EI et al (2021) From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther 109:928–941. https://doi.org/10.1002/cpt.2202

    Article  CAS  PubMed  Google Scholar 

  27. Greppmair S, Brinkmann A, Roehr A et al (2023) Towards model-informed precision dosing of piperacillin: multicenter systematic external evaluation of pharmacokinetic models in critically ill adults with a focus on Bayesian forecasting. Intensive Care Med. https://doi.org/10.1007/s00134-023-07154-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ewoldt TMJ, Abdulla A, Rietdijk WJR et al (2022) Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: a multicentre randomised clinical trial. Intensive Care Med 48:1760–1771. https://doi.org/10.1007/s00134-022-06921-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to all participating pediatric ICUs from : Bruxelles, Caen, Clermont Ferrand, Geneve, Grenoble, La Réunion, Marseille, Lausanne, Liège, Lille, Lyon, Mayotte, Montpellier, Montréal, Nancy, Nantes, Paris (Kremlin-Bicêtre, Necker-Enfants Malades, Robert Debré, Trousseau), Reims, Rennes, Rouen, Strasbourg, Toulouse, Tours.

Funding

None.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Michaël Thy.

Ethics declarations

Conflict of interest

None.

Ethical approval

No patient involved and no sensitive data on participants were used in the study.

Human and animal rights

Not applicable.

Informed consent

Information given for participants with consent to respond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thy, M., Naudin, J., Genuini, M. et al. Anti-infective prescribing practices in critically ill children on continuous renal replacement therapy: a multicenter survey of French-speaking countries. J Nephrol 36, 2541–2547 (2023). https://doi.org/10.1007/s40620-023-01762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-023-01762-1

Keywords

Navigation