Skip to main content

Advertisement

Log in

Endocrinological disorders in acute kidney injury: an often overlooked field of clinical research

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is a common comorbidity, affecting approximately one in five hospitalized adults. The kidney is the site for the production, metabolism or excretion of most hormones, including the production of erythropoietin (EPO), the active form of vitamin D, renin, thrombopoietin, and the excretion of insulin, catecholamines, gastrin and many other hormones. Therefore, it is reasonable to say that AKI can have a considerable impact on the endocrine system. Although the effects of AKI on various parameters, including cardiovascular parameters, serum electrolytes and acid–base disorders, neuro-humoral mechanisms and neurological outcomes have been extensively studied, the endocrinological consequences of AKI are understudied. Thyroid dysfunction, mainly euthyroid sick syndrome, hypo/hyperglycemia, bone mineral disorders, changes in EPO and atrial natriuretic peptide (ANP) levels are commonly found in AKI. EPO, thyroxine and ANP administration have been evaluated as potential tools to prevent or treat AKI with varying success, while the effects of AKI on some key hormones, including cortisol and insulin, have never been studied. Aim of this narrative review is to illustrate what is known and what is not known about the endocrinological outcomes of AKI. Few clinical trials are ongoing: however, there is a clear need for large-scale randomized controlled trials investigating the endocrinological consequences of AKI.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No data are available because this is a narrative review.

References

  1. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I et al (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 8(9):1482–1493

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16(11):3365–3370

    Article  PubMed  Google Scholar 

  3. Rewa O, Bagshaw SM (2014) Acute kidney injury—epidemiology, outcomes and economics. Nat Rev Nephrol 10(4):193–207

    Article  CAS  PubMed  Google Scholar 

  4. Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ (2021) Acute kidney injury. Nat Rev Dis Primers 7(1):52

    Article  PubMed  Google Scholar 

  5. Singbartl K, Kellum JA (2012) AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int 81(9):819–825

    Article  CAS  PubMed  Google Scholar 

  6. Villeneuve PM, Clark EG, Sikora L, Sood MM, Bagshaw SM (2016) Health-related quality-of-life among survivors of acute kidney injury in the intensive care unit: a systematic review. Intensive Care Med 42(2):137–146

    Article  PubMed  Google Scholar 

  7. Stengel B, Metzger M, Combe C, Jacquelinet C, Briançon S, Ayav C et al (2019) Risk profile, quality of life and care of patients with moderate and advanced CKD: the French CKD-REIN Cohort Study. Nephrol Dial Transpl 34(2):277–286

    Article  Google Scholar 

  8. Acharya V, Olivero J (2018) The kidney as an endocrine organ. Methodist Debakey Cardiovasc J 14(4):305–307

    Article  PubMed  PubMed Central  Google Scholar 

  9. Danzi S, Klein I (2003) Thyroid hormone and blood pressure regulation. Curr Hypertens Rep 5(6):513–520

    Article  PubMed  Google Scholar 

  10. Kotsis V, Alevizaki M, Stabouli S, Pitiriga V, Rizos Z, Sion M et al (2007) Hypertension and hypothyroidism: results from an ambulatory blood pressure monitoring study. J Hypertens 25(5):993–999

    Article  CAS  PubMed  Google Scholar 

  11. Vargas F, Moreno JM, Rodríguez-Gómez I, Wangensteen R, Osuna A, Alvarez-Guerra M et al (2006) Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol 154(2):197–212

    Article  CAS  PubMed  Google Scholar 

  12. Ichihara A, Kobori H, Miyashita Y, Hayashi M, Saruta T (1998) Differential effects of thyroid hormone on renin secretion, content, and mRNA in juxtaglomerular cells. Am J Physiol Endocrinol Metab 274(2):E224–E231

    Article  CAS  Google Scholar 

  13. van Hoek I, Daminet S (2009) Interactions between thyroid and kidney function in pathological conditions of these organ systems: a review. Gen Comp Endocrinol 160(3):205–215

    Article  PubMed  Google Scholar 

  14. Schmid C, Brändle M, Zwimpfer C, Zapf J, Wiesli P (2004) Effect of thyroxine replacement on creatinine, insulin-like growth factor 1, acid-labile subunit, and vascular endothelial growth factor. Clin Chem 50(1):228–231

    Article  CAS  PubMed  Google Scholar 

  15. Wiesli P, Schwegler B, Spinas GA, Schmid C (2003) Serum cystatin C is sensitive to small changes in thyroid function. Clin Chim Acta 338(1–2):87–90

    Article  CAS  PubMed  Google Scholar 

  16. Lo JC, Chertow GM, Go AS, Hsu C-Y (2005) Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int 67(3):1047–1052

    Article  PubMed  Google Scholar 

  17. Sun MT, Hsiao FC, Su SC, Pei D, Hung YJ (2012) Thyrotropin as an independent factor of renal function and chronic kidney disease in normoglycemic euthyroid adults. Endocr Res 37(3):110–116

    Article  PubMed  Google Scholar 

  18. Zhang D, Gao L, Ye H, Chi R, Wang L, Hu L et al (2019) Impact of thyroid function on cystatin C in detecting acute kidney injury: a prospective, observational study. BMC Nephrol 20(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schmid C, Ghirlanda-Keller C, Zwimpfer C, Zoidis E (2012) Triiodothyronine stimulates cystatin C production in bone cells. Biochem Biophys Res Commun 419(2):425–430

    Article  CAS  PubMed  Google Scholar 

  20. Shin DH, Lee MJ, Kim SJ, Oh HJ, Kim HR, Han JH et al (2012) Preservation of renal function by thyroid hormone replacement therapy in chronic kidney disease patients with subclinical hypothyroidism. J Clin Endocrinol Metab 97(8):2732–2740

    Article  CAS  PubMed  Google Scholar 

  21. Iglesias P, Bajo MA, Selgas R, Díez JJ (2017) Thyroid dysfunction and kidney disease: An update. Rev Endocr Metab Disord 18(1):131–144

    Article  CAS  PubMed  Google Scholar 

  22. Weetman AP, Tomlinson K, Amos N, Lazarus JH, Hall R, McGregor AM (1985) Proteinuria in autoimmune thyroid disease. Acta Endocrinol (Copenh) 109(3):341–347

    CAS  PubMed  Google Scholar 

  23. Iglesias P, Olea T, Vega-Cabrera C, Heras M, Bajo MA, del Peso G et al (2013) Thyroid function tests in acute kidney injury. J Nephrol 26(1):164–172

    Article  CAS  PubMed  Google Scholar 

  24. Kaptein EM, Levitan D, Feinstein EI, Nicoloff JT, Massry SG (1981) Alterations of thyroid hormone indices in acute renal failure and in acute critical illness with and without acute renal failure. Am J Nephrol 1(3–4):138–143

    Article  CAS  PubMed  Google Scholar 

  25. Acker CG, Singh AR, Flick RP, Bernardini J, Greenberg A, Johnson JP (2000) A trial of thyroxine in acute renal failure. Kidney Int 57(1):293–298

    Article  CAS  PubMed  Google Scholar 

  26. Acker CG, Flick R, Shapiro R, Scantlebury VP, Jordan ML, Vivas C et al (2002) Thyroid hormone in the treatment of post-transplant acute tubular necrosis (ATN). Am J Transplant 2(1):57–61

    Article  CAS  PubMed  Google Scholar 

  27. Nigwekar SU, Strippoli GF, Navaneethan SD (2013) Thyroid hormones for acute kidney injury. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006740.pub2

    Article  PubMed  Google Scholar 

  28. Shakoor MT, Moahi K, Shemin D (2020) Hypothyroidism-induced acute kidney ınjury and hyponatremia. R I Med J 103(7):61–64

    Google Scholar 

  29. Neves PD, Bridi RA, Balbi AL, Ponce D (2013) Hypothyroidism and acute kidney injury: an unusual association. BMJ Case Rep. https://doi.org/10.1136/bcr-2013-200585

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cai Y, Tang L (2013) Rare acute kidney injury secondary to hypothyroidism-induced rhabdomyolysis. Yonsei Med J 54(1):172–176

    Article  CAS  PubMed  Google Scholar 

  31. Ghayur A, Elahi Q, Patel C, Raj R (2021) Rhabdomyolysis-induced acute kidney injury in a patient with non-compliance to levothyroxine therapy. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/EDM-21-0034

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bahlmann FH, Kielstein JT, Haller H, Fliser D (2007) Erythropoietin and progression of CKD. Kidney Int Suppl 107:S21–S25

    Article  CAS  Google Scholar 

  33. Hanna RM, Streja E, Kalantar-Zadeh K (2021) Burden of anemia in chronic kidney disease: beyond erythropoietin. Adv Ther 38(1):52–75

    Article  CAS  PubMed  Google Scholar 

  34. Bernhardt WM, Eckardt KU (2008) Physiological basis for the use of erythropoietin in critically ill patients at risk for acute kidney injury. Curr Opin Crit Care 14(6):621–626

    Article  PubMed  Google Scholar 

  35. Kwak J, Kim JH, Jang HN, Jung MH, Cho HS, Chang SH et al (2020) Erythropoietin ameliorates ıschemia/reperfusion-ınduced acute kidney ınjury via ınflammasome suppression in mice. Int J Mol Sci 21(10):3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chou YH, Liao FL, Chen YT, Yeh PY, Liu CH, Shih HM et al (2019) Erythropoietin modulates macrophages but not post-ischemic acute kidney injury in mice. J Formos Med Assoc 118(1 Pt 3):494–503

    Article  PubMed  Google Scholar 

  37. Nakano M, Satoh K, Fukumoto Y, Ito Y, Kagaya Y, Ishii N et al (2007) Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res 100(5):662–669

    Article  CAS  PubMed  Google Scholar 

  38. Sabatino A, Ceresini G, Marina M, Fiaccadori E (2019) Endocrine system in acute kidney injury. In: Rhee CM, Kalantar-Zadeh K, Brent GA (eds) Endocrine disorders in kidney disease: diagnosis and treatment. Springer International Publishing, Cham, pp 321–331

    Chapter  Google Scholar 

  39. Aoun M, Sleilaty G, Boueri C, Younes E, Gabriel K, Kahwaji RM et al (2022) Erythropoietin in Acute Kidney Injury (EAKI): a pragmatic randomized clinical trial. BMC Nephrol 23(1):100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim JH, Shim JK, Song JW, Song Y, Kim HB, Kwak YL (2013) Effect of erythropoietin on the incidence of acute kidney injury following complex valvular heart surgery: a double blind, randomized clinical trial of efficacy and safety. Crit Care 17(5):R254

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oh SW, Chin HJ, Chae DW, Na KY (2012) Erythropoietin improves long-term outcomes in patients with acute kidney injury after coronary artery bypass grafting. J Korean Med Sci 27(5):506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song YR, Lee T, You SJ, Chin HJ, Chae DW, Lim C et al (2009) Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol 30(3):253–260

    Article  CAS  PubMed  Google Scholar 

  43. Tasanarong A, Duangchana S, Sumransurp S, Homvises B, Satdhabudha O (2013) Prophylaxis with erythropoietin versus placebo reduces acute kidney injury and neutrophil gelatinase-associated lipocalin in patients undergoing cardiac surgery: a randomized, double-blind controlled trial. BMC Nephrol 14:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dardashti A, Ederoth P, Algotsson L, Brondén B, Grins E, Larsson M et al (2014) Erythropoietin and protection of renal function in cardiac surgery (the EPRICS trial). Anesthesiology 121(3):582–590

    Article  CAS  PubMed  Google Scholar 

  45. Kim JE, Song SW, Kim JY, Lee HJ, Chung KH, Shim YH (2016) Effect of a single bolus of erythropoietin on renoprotection in patients undergoing thoracic aortic surgery with moderate hypothermic circulatory arrest. Ann Thorac Surg 101(2):690–696

    Article  PubMed  Google Scholar 

  46. de Seigneux S, Ponte B, Weiss L, Pugin J, Romand JA, Martin PY et al (2012) Epoetin administrated after cardiac surgery: effects on renal function and inflammation in a randomized controlled study. BMC Nephrol 13:132

    Article  PubMed  PubMed Central  Google Scholar 

  47. Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Shapiro MJ et al (2002) Efficacy of recombinant human erythropoietin in critically ill patients: a randomized controlled trial. JAMA 288(22):2827–2835

    Article  CAS  PubMed  Google Scholar 

  48. Napolitano LM, Fabian TC, Kelly KM, Bailey JA, Block EF, Langholff W et al (2008) Improved survival of critically ill trauma patients treated with recombinant human erythropoietin. J Trauma 65(2):285–297 (discussion 97-9)

    CAS  PubMed  Google Scholar 

  49. Endre ZH, Walker RJ, Pickering JW, Shaw GM, Frampton CM, Henderson SJ et al (2010) Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int 77(11):1020–1030

    Article  CAS  PubMed  Google Scholar 

  50. Zhao C, Lin Z, Luo Q, Xia X, Yu X, Huang F (2015) Efficacy and safety of erythropoietin to prevent acute kidney injury in patients with critical illness or perioperative care: a systematic review and meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol 65(6):593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Erben RG (2018) Physiological actions of fibroblast growth factor-23. Front Endocrinol (Lausanne) 9:267

    Article  PubMed  Google Scholar 

  52. Leaf DE, Wolf M, Stern L (2010) Elevated FGF-23 in a patient with rhabdomyolysis-induced acute kidney injury. Nephrol Dial Transpl 25(4):1335–1337

    Article  CAS  Google Scholar 

  53. Zhang M, Hsu R, Hsu CY, Kordesch K, Nicasio E, Cortez A et al (2011) FGF-23 and PTH levels in patients with acute kidney injury: a cross-sectional case series study. Ann Intensive Care 1(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leaf DE, Wolf M, Waikar SS, Chase H, Christov M, Cremers S et al (2012) FGF-23 levels in patients with AKI and risk of adverse outcomes. Clin J Am Soc Nephrol 7(8):1217–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leaf DE, Christov M, Jüppner H, Siew E, Ikizler TA, Bian A et al (2016) Fibroblast growth factor 23 levels are elevated and associated with severe acute kidney injury and death following cardiac surgery. Kidney Int 89(4):939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang YH, Wu CH, Chou NK, Tseng LJ, Huang IP, Wang CH et al (2020) High plasma C-terminal FGF-23 levels predict poor outcomes in patients with chronic kidney disease superimposed with acute kidney injury. Ther Adv Chronic Dis 11:2040622320964161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shaker AM, El Mohamed E, Samir HH, Elnokeety MM, Sayed HA, Ramzy TA (2018) Fibroblast growth factor-23 as a predictor biomarker of acute kidney injury after cardiac surgery. Saudi J Kidney Dis Transpl 29(3):531–539

    Article  PubMed  Google Scholar 

  58. Gupta KL, Mohanty T, Sood V, Ramachandran R (2020) Study of FGF 23 levels in patients with acute kidney injury and its outcome. Indian J Nephrol 30(4):293–294

    PubMed  PubMed Central  Google Scholar 

  59. Christov M, Waikar SS, Pereira RC, Havasi A, Leaf DE, Goltzman D et al (2013) Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int 84(4):776–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Oliveira Neves FM, Araújo CB, de Freitas DF, Arruda BFT, de Macêdo Filho LJM, Salles VB et al (2019) Fibroblast growth factor 23, endothelium biomarkers and acute kidney injury in critically-ill patients. J Transl Med 17(1):121

    Article  PubMed  PubMed Central  Google Scholar 

  61. Braun AB, Christopher KB (2013) Vitamin D in acute kidney injury. Inflamm Allergy Drug Targets 12(4):262–272

    Article  CAS  PubMed  Google Scholar 

  62. Levin A, Bakris G, Molitch M, Smulders M, Tian J, Williams L et al (2007) Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 71(1):31–38

    Article  CAS  PubMed  Google Scholar 

  63. Vijayan A, Li T, Dusso A, Jain S, Coyne DW (2015) Relationship of 1,25 dihydroxy vitamin D levels to clinical outcomes in critically ıll patients with acute kidney ınjury. J Nephrol Ther 5(1):90

    Google Scholar 

  64. Park JW, Cho JW, Joo SY, Kim CS, Choi JS, Bae EH et al (2012) Paricalcitol prevents cisplatin-induced renal injury by suppressing apoptosis and proliferation. Eur J Pharmacol 683(1–3):301–309

    Article  CAS  PubMed  Google Scholar 

  65. Hu Z, Zhang H, Yi B, Yang S, Liu J, Hu J et al (2020) VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis 11(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fayed A, Abdulazim DO, Amin M, Elhadidy S, Samir HH, Salem MM et al (2021) Serum sclerostin in acute kidney injury patients. Nefrologia (Engl Ed). https://doi.org/10.1016/j.nefro.2021.01.010

    Article  PubMed  Google Scholar 

  67. Seibert E, Radler D, Ulrich C, Hanika S, Fiedler R, Girndt M (2017) Serum klotho levels in acute kidney injury. Clin Nephrol 87(4):173–179

    Article  CAS  PubMed  Google Scholar 

  68. Neyra JA, Li X, Mescia F, Ortiz-Soriano V, Adams-Huet B, Pastor J et al (2019) Urine klotho ıs lower in critically ıll patients with versus without acute kidney ınjury and associates with major adverse kidney events. Crit Care Explor 1(6):e0016

    Article  PubMed  PubMed Central  Google Scholar 

  69. Conger JD, Falk SA, Hammond WS (1991) Atrial natriuretic peptide and dopamine in established acute renal failure in the rat. Kidney Int 40(1):21–28

    Article  CAS  PubMed  Google Scholar 

  70. Roy DR (1986) Effect of synthetic ANP on renal and loop of Henle functions in the young rat. Am J Physiol 251(2 Pt 2):F220–F225

    CAS  PubMed  Google Scholar 

  71. Mitaka C, Ohnuma T, Murayama T, Kunimoto F, Nagashima M, Takei T et al (2017) Effects of low-dose atrial natriuretic peptide infusion on cardiac surgery-associated acute kidney injury: a multicenter randomized controlled trial. J Crit Care 38:253–258

    Article  CAS  PubMed  Google Scholar 

  72. Swärd K, Valsson F, Odencrants P, Samuelsson O, Ricksten SE (2004) Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med 32(6):1310–1315

    Article  PubMed  Google Scholar 

  73. Moriyama T, Hagihara S, Shiramomo T, Nagaoka M, Iwakawa S, Kanmura Y (2017) The protective effect of human atrial natriuretic peptide on renal damage during cardiac surgery. J Anesth 31(2):163–169

    Article  PubMed  Google Scholar 

  74. Kurnik BR, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS (1998) Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy. Am J Kidney Dis 31(4):674–680

    Article  CAS  PubMed  Google Scholar 

  75. Yamada H, Doi K, Tsukamoto T, Kiyomoto H, Yamashita K, Yanagita M et al (2019) Low-dose atrial natriuretic peptide for prevention or treatment of acute kidney injury: a systematic review and meta-analysis. Crit Care 23(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  76. Salzberg SP, Filsoufi F, Anyanwu A, von Harbou K, Gass A, Pinney SP et al (2005) High-risk mitral valve surgery: perioperative hemodynamic optimization with nesiritide (BNP). Ann Thorac Surg 80(2):502–506

    Article  PubMed  Google Scholar 

  77. Beaver TM, Winterstein AG, Shuster JJ, Gerhard T, Martin T, Alexander JA et al (2006) Effectiveness of nesiritide on dialysis or all-cause mortality in patients undergoing cardiothoracic surgery. Clin Cardiol 29(1):18–24

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fiaccadori E, Sabatino A, Morabito S, Bozzoli L, Donadio C, Maggiore U et al (2016) Hyper/hypoglycemia and acute kidney injury in critically ill patients. Clin Nutr 35(2):317–321

    Article  CAS  PubMed  Google Scholar 

  79. Stamou SC, Nussbaum M, Carew JD, Dunn K, Skipper E, Robicsek F et al (2011) Hypoglycemia with intensive insulin therapy after cardiac surgery: predisposing factors and association with mortality. J Thorac Cardiovasc Surg 142(1):166–173

    Article  CAS  PubMed  Google Scholar 

  80. Guimarães SM, Lima EQ, Cipullo JP, Lobo SM, Burdmann EA (2008) Low insulin-like growth factor-1 and hypocholesterolemia as mortality predictors in acute kidney injury in the intensive care unit. Crit Care Med 36(12):3165–3170

    Article  PubMed  Google Scholar 

  81. Liu P, Feng Y, Dong D, Liu X, Chen Y, Wang Y et al (2016) Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep 6:20287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Friedlaender M, Popovtzer MM, Weiss O, Nefesh I, Kopolovic J, Raz I (1995) Insulin-like growth factor-1 (IGF-1) enhances recovery from HgCl2-induced acute renal failure: the effects on renal IGF-1, IGF-1 receptor, and IGF-binding protein-1 mRNA. J Am Soc Nephrol 5(10):1782–1791

    Article  CAS  PubMed  Google Scholar 

  83. Goes N, Urmson J, Vincent D, Ramassar V, Halloran PF (1996) Effect of recombinant human insulin-like growth factor-1 on the inflammatory response to acute renal injury. J Am Soc Nephrol 7(5):710–720

    Article  CAS  PubMed  Google Scholar 

  84. Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L et al (2007) Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 18(11):2921–2928

    Article  CAS  PubMed  Google Scholar 

  85. Wu Z, Yu Y, Niu L, Fei A, Pan S (2016) IGF-1 protects tubular epithelial cells during injury via activation of ERK/MAPK signaling pathway. Sci Rep 6:28066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ficek R, Kokot F, Chudek J, Adamczak M, Ficek J, Wiecek A (2004) Plasma leptin concentration in patients with acute renal failure. Clin Nephrol 62(2):84–91

    Article  CAS  PubMed  Google Scholar 

  87. Li S, Zhuang K, He Y, Deng Y, Xi J, Chen J (2022) Leptin relieves ischemia/reperfusion induced acute kidney injury through inhibiting apoptosis and autophagy. Zhong Nan Da Xue Xue Bao Yi Xue Ban 47(1):8–17

    PubMed  Google Scholar 

  88. Jin X, Chen J, Hu Z, Chan L, Wang Y (2013) Genetic deficiency of adiponectin protects against acute kidney injury. Kidney Int 83(4):604–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cheng CF, Lian WS, Chen SH, Lai PF, Li HF, Lan YF et al (2012) Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARα-heme oxygenase-1 signaling pathway. J Cell Physiol 227(1):239–249

    Article  CAS  PubMed  Google Scholar 

  90. Ahn SW, Kim TY, Lee S, Jeong JY, Shim H, Han YM et al (2016) Adrenal insufficiency presenting as hypercalcemia and acute kidney injury. Int Med Case Rep J 9:223–226

    Article  PubMed  PubMed Central  Google Scholar 

  91. Si J, Ge Y, Zhuang S, Wang LJ, Chen S, Gong R (2013) Adrenocorticotropic hormone ameliorates acute kidney injury by steroidogenic-dependent and -independent mechanisms. Kidney Int 83(4):635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding agency granted the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Basile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants performed by any of the authors.

Research involving human participants and/or animals.

(1) Statement of human rights. (2) Statement on the welfare of animals. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No verbal and written informed consent was necessary for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copur, S., Demiray, A., Basile, C. et al. Endocrinological disorders in acute kidney injury: an often overlooked field of clinical research. J Nephrol 36, 885–893 (2023). https://doi.org/10.1007/s40620-022-01554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-022-01554-z

Keywords

Navigation