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Abstract
With its robust ability to integrate and learn from large sets of clinical data, artificial intelligence (AI) can now play a role in 
diagnosis, clinical decision making, and personalized medicine. It is probably the natural progression of traditional statisti-
cal techniques. Currently, there are many unmet needs in nephrology and, more particularly, in the kidney transplantation 
(KT) field. The complexity and increase in the amount of data, and the multitude of nephrology registries worldwide have 
enabled the explosive use of AI within the field. Nephrologists in many countries are already at the center of experiments 
and advances in this cutting-edge technology and our aim is to generalize the use of AI among nephrologists worldwide. In 
this paper, we provide an overview of AI from a medical perspective. We cover the core concepts of AI relevant to the prac-
ticing nephrologist in a consistent and simple way to help them get started, and we discuss the technical challenges. Finally, 
we focus on the KT field: the unmet needs and the potential role that AI can play to fill these gaps, then we summarize the 
published KT-related studies, including predictive factors used in each study, which will allow researchers to quickly focus 
on the most relevant issues.
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Introduction

Artificial Intelligence (AI), described as the science and 
engineering of making intelligent machines able to mimic 

human intelligence and to learn, was officially intro-
duced in 1956 with the invention of robots. Recently, AI 
has evolved considerably and has become a basic tool in 
many sectors, such as banking [1], agriculture [2], and 
medicine [3]. It also provides a significant contribution in 
decreasing the involvement of humans in critically danger-
ous activities [4, 5]. After the explosion of numeric data 
availability, and the ability of AI algorithms to integrate 
and learn from large datasets, AI has been largely applied 
in clinical decision-making, biomedical research, and 
medical education [6]. The US Food and Drug Adminis-
tration (FDA) and other regulatory agencies have allowed 
clinicians to use AI-based tools in several medical fields 
[6, 7]. Currently, AI can be used for routine detection of 
diabetic retinopathy without the need for ophthalmologist 
confirmation. AI applications also extend into the physi-
cal realm with robotic prostheses, physical task support 
systems, and mobile manipulators assisting in the deliv-
ery of telemedicine. Many endoscopy manufacturers have 
launched their AI devices on the market with regulatory 
approval in Europe and Asia [8]. Nephrology seems to 
have all the assets to lend itself to AI experiments and 
advances. The kidney transplantation (KT) field is taking 
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the lead in the use of AI in Nephrology. There is a large 
number of existing studies in the literature interested in 
the application of AI in KT in its different aspects. Some 
authors used machine learning (ML) to predict bioavail-
ability of tacrolimus during the immediate post-transplant 
period and to estimate the risk of post-transplant diabetes 
mellitus. These outcomes were predicted based on ABCB1 
and CYP3A5 genetic phenotypes, age, gender, and body 
mass index [9]. Predicting KT outcomes using data-driven 
approaches has drawn the interest of many researchers. 
Senanayake [10] and Sekercioglu [11] recently reviewed 
the ML models used in the field of KT. Actually, ML is 
a subtype of AI commonly used for prediction tasks. The 
first review was published in 2019 and covered eighteen 
studies that developed ML-based models to predict short- 
and long-term KT outcomes in adult patients. These stud-
ies were performed in the US, Iran, Italy, UK, Australia, 
Korea, Belgium, Germany, and Egypt. The second review 
was published in 2021, and the authors reviewed ML stud-
ies for predicting long-term kidney allograft survival. They 
identified eleven studies, most of which are case studies 
and pilot projects. Very few of them resulted in approved 
tools being officially introduced into daily practice.

This paper covers the AI basics, core concepts, and 
challenges, after which we focus on the KT field. We 
review the related studies and summarize the predictive 
factors to help nephrologists quickly concentrate on the 
most relevant work.

Core concepts

The ability to supervise the development of AI tools and 
their use will become a must-have skill for Nephrologists 
in the near future [12].The first step to understanding AI 
methods is to familiarize oneself with the basic concepts 
and the terms in use. In this section, we provide a precise 
and simplified explanation of the core concepts of AI use-
ful to healthcare practitioners which will help them ade-
quately understand how predictive models are created so that 
they can: (1) evaluate the models critically; (2) participate 
actively to minimize current limitations; and (3) collaborate 
with computer scientists and data scientists and take actions 
in order to meet the current needs in their field.

A summary of the basic terms used in the AI-related pub-
lished medical articles, is listed in Table 1.

Big data

Big Data is data with large size and high complexity. The 
concept of big data includes an ensemble of techniques used 
to collect, store, analyze and manage an immense volume 
of both structured and unstructured data that is beyond the 
ability of traditional data management tools [13].

There are many types and structures of data that can be 
used in AI. Algorithms can learn from structured data, which 
is data that adheres to a pre-defined model and is therefore 

Table 1   Glossary of commonly used terms in artificial intelligence applied to healthcare

Term Definition

Algorithm A set of rules that precisely defines a sequence of operations for computers
Feature Image/instance attributes extracted by humans or machines
Feature Selection Process of selecting relevant features for predictive model development
Instance A single row of data is called an instance (structured data). It is a single observation from the dataset
Label Target or reference assigned to instances*/images that machine learning algorithms aim to predict
Model A mathematical data structure created with machine learning algorithms, which can predict and improve by 

transforming input data into output
Black-box Algorithm with an unknown internal processing pattern resulting in difficulty to comprehend how the model 

reaches the outcome
Classification Prediction of categorical outputs
Clustering The task of grouping a set of objects similar to each other into clusters
Convolutional neural network Deep learning algorithm commonly used in diagnostic imaging
Regression Prediction of numeric outputs
Segmentation Process of delineating the boundaries of an organ/lesion in an image
Training The automatic process of the model after providing a machine learning algorithm (the learning algorithm) with 

data to learn from
Training dataset Dataset used for model development
Testing dataset Dataset unseen by the model during training used to evaluate the model’s performance
Overfitting Model showing high performance with training data and poor performance with testing data
Underfitting Model showing poor performance with both training and testing data
Neural network A model composed of layers consisting of connected nodes inspired by neurons in the human brain
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ready to analyze. Structured data conforms to a tabular for-
mat with a relationship between the different rows and col-
umns. Excel files are common examples of structured data 
with structured rows and columns that can be sorted. Train-
ing data can also be unstructured, and information either 
does not have a pre-defined data model or is not organized 
in a pre-defined manner. Unstructured information may 
contain photos (e.g., Computed Tomography images, X-ray 
images, pathology images, etc.), videos, audio files, or text 
(e.g., medical record, datasheet, etc.). Machines cannot read 
texts and images. The input data need to be transformed or 
encoded into numbers. These numbers will be presented as 
vectors and matrices, so that they can be used to train and 
deploy the models. For example, in ML an image is consid-
ered an ensemble of pixels.

Artificial intelligence

AI is a branch of computer science that implies the use 
of a computer to model intelligent behaviors with mini-
mal human intervention. AI started with the invention of 
robots [14], however, it evolved to cover a multitude of other 
branches (see Fig. 1).

Machine learning

ML is a branch of AI. It focuses on developing computer 
programs that can access data and use it to learn from, with-
out being explicitly programmed for a specific task. This 
property makes ML fundamentally different from classic sta-
tistics [15]. ML uses a set of algorithms to analyze, interpret, 
and learn from a given set of data, and based on the learn-
ings, make the best possible decisions.

An algorithm is a set of rules that precisely defines a 
sequence of operations. ML algorithms learn from data 
without human intervention. The algorithm is fed with data 
from which it learns and adapts without following explicit 
instructions. It analyzes the dataset and draws inferences 
from patterns in the data.

For example, if we want to predict 10-year kidney graft 
survival (the output), we provide the algorithm with a data-
base with many variables such as recipient age, gender, his-
tory of rejection, infections, etc. and each KT (instance) is 
labeled: survived/failed by 10 years. The algorithm uses the 
provided data to detect the function that matches the input 
variables to the output values. After that, the trained algo-
rithm generates a model capable of predicting the output for 
new input values different from the training data.

The input to any ML algorithm is called predictors/fea-
tures, and the output from the algorithm is referred to as a 
target/label.

Supervised/unsupervised learning

In ML, there are two main types of tasks: supervised learn-
ing and unsupervised learning.

Supervised learning requires prior knowledge of the 
output values; therefore, the goal is to determine a func-
tion that best approximates the relationship between input 
and output, given a sample of data and the desired outputs 
(labels). Since kidney allograft biopsy contextualization 
will be based on ML in the upcoming Banff classifica-
tions [16], we will explain the concepts of supervised and 
unsupervised learning using similar examples. For exam-
ple, to train the machine to classify a given image from 
kidney allograft biopsy, we input multiple specimens with 
known labels. The label of each image will be one of the 

Fig. 1   Branches of artificial 
intelligence
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six categories of the Banff classification [17]. Then the 
trained model will predict the category of a new input 
image. For this, the machine generates the output as a vec-
tor of scores: one score for each category. The goal is for 
the desired category to be assigned the highest score after 
training. An objective function that measures the error (or 
distance) between the output scores and the desired pat-
tern of scores is computed. The machine then modifies 
its internal parameters to reduce this error. Farris et al. 
used supervised learning to develop a model for kidney 
allograft image analysis for evaluation and fibrosis quan-
tification with satisfactory accuracy levels [18].

Supervised learning is applicable in the context of clas-
sification when we want to map the input to output classes, 
such as predicting whether the graft will survive or not [19] 
or classifying images into different categories [18]. Super-
vised learning can also be applied in the context of regres-
sion when we want to map the input to a continuous output, 
such as predicting the estimated glomerular filtration rate 
[20].

Unsupervised learning, on the other hand, does not have 
labeled outputs, so its goal is to infer the natural structure 
present within a set of data points. The most common task 
within unsupervised learning is clustering where we wish to 
learn the inherent structure of our data without using explic-
itly-provided labels. If we take the same previous example 
of the kidney allograft biopsy analysis with unsupervised 
learning, we will provide the algorithm with a set of images 
with no label, then the machine will infer the patterns in the 

images and will automatically divide them into groups with 
similar features (categories).

Deep learning

Conventional ML algorithms are limited in their ability to 
process data in their raw form. For several years, construct-
ing a ML model required considerable domain expertise and 
meticulous engineering to implement a feature extractor in 
order to transform the raw data (e.g., the pixel values of 
an image) into a suitable internal representation or feature 
vector from which the learning algorithm, often a classifier, 
could detect or classify patterns in the input.

Deep learning is a learning method where a machine can 
be fed with raw data and automatically discover the rep-
resentations/features needed for detection or classification. 
Suppose that a model wants to predict if an image contains a 
malignant tumor. The algorithm will learn from data (mam-
mogram images) and try to find the patterns (features) pre-
sent in the images labeled as containing a malignant tumor.

Deep learning structures the algorithm into multiple lay-
ers to create an artificial neural network (ANN). ANNs are 
algorithms that mimic human brain structure. An ANN has 
one input layer, optional hidden layers, and one output layer. 
Layers are rows of so-called “Neurons”. The number of neu-
rons in each layer, the number of layers, and the type of con-
nections between the layers (fully connected/not fully con-
nected) are modifiable parameters for each ANN. In Fig. 2 
we present an example of an ANN aiming to predict kidney 

Fig. 2   Architecture of an artificial neural network (ANN) for predict-
ing kidney graft survival: a deep neural network with one input layer, 
two hidden layers, and one output layer. In this network, each neuron 

(N) of a layer is connected to neurons in the next one, yielding a fully 
connected network
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graft survival. Deep Learning is called “deep” because of the 
additional layers added to learn from the provided data. In 
an ANN the input layer takes the input signals and passes 
them to the next layer. Several weights are applied within the 
nodes of the hidden layers. Weights define the importance of 
a feature in predicting the target value. For example, a single 
node may take the input data and multiply it by an assigned 
weight value, then add a bias before passing the data to the 
next layer (input × weight + bias = output). The final layer of 
the neural network, the output layer, uses the inputs from 
the hidden layers to produce the desired output. When a 
deep learning model is learning, it is simply updating the 
weights through an optimization function. Through these 
transformations, the machine will learn complex functions. 
For classification tasks, the layers of representation amplify 
aspects of the input that are important for discrimination 
and suppress irrelevant variations. This helps the system to 
understand the complex perception tasks with maximum 
accuracy. Deep learning requires much more data than a 
traditional ML algorithm to function properly.

In their recent study, Kers et al. used deep learning to 
classify the histology of kidney allograft biopsies into a 
three-category output (normal/rejection/other diseases) 
using 5844 digital slide images of kidney allograft biopsies. 
Their model’s area under the curve reached 87% [21].

Barriers to the integration of artificial 
intelligence

AI applications have been validated as standard solutions for 
different tasks in many medical fields [6, 7]. Nephrology has all 
the characteristics to benefit from AI advances since patients are 
followed for several decades. There are enough universal recom-
mendations and consensus to make the practice homogeneous, 
whether for dialysis, KT, or clinical nephrology. Actually, in 
many countries, nephrology has been digitalized for more than 
20 years [22], which resulted in well-organized databases and 
easily exploitable data. Table 2 presents a number of nephrology 
registries worldwide.

Table 2   Examples of existing 
nephrology registries

Region Registry

Australia Austrian Dialysis and Transplant Registry (ÖDTR)
Australia and New Zealand Dialysis and Transplant Registry (ANZDATA)

Brazil Brazilian Kidney Transplant and Dialysis Registries
Canada Canadian Organ Replacement Register (CORR)
Croatia Croatian Registry for Renal Replacement Therapy
Denmark Danish Nephrology Registry
Egypt Egyptian Renal Data System (ERDS)
Europe Eurotransplant Registry

The European Renal Association – European Dialysis and Transplant 
Association (ERA-EDTA) Registry

European Registry for Children with Chronic Renal Failure (ESPN/ERA 
Registry)

France Reseau Epidemiologie et Information en Nephrologie (REIN)
Registre de Dialyse Peritoneale de Langue Francaise (RDPLF)

Finland Finnish Registry for Kidney Diseases
Germany Dutch Renal Registry (RENINE)
Italy Italian Registry of Dialysis and Transplantation (RIDT/SIN)
Japan Japan Renal Biopsy Registry and Japan Kidney Disease Registry
Latin America Latin American Dialysis and Transplant Registry (LADTR)
Lebanon Lebanese Kidney Registry
Norway Norwegian Renal Registry
Spain Valencian Renal Registry: Registro de Enfermos Renales de la Comunidad 

Valenciana (RERCV)
Catalan Kidney Patients Registry/Catalan Transplantation Organization 

(OCATT)
Sweden Swedish Renal Registry (SRAU)
UK The UK Renal Registry (UKRR)

Scottish Renal Registry (SRR)
USA The United States Renal Data System (USRDS)

Scientific Registry of Transplant Recipients (SRTR)
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The development and implementation of AI tools in 
healthcare are fundamentally different than the use of ML 
or big data in other fields. The limitations holding AI back 
from being fully integrated into the healthcare systems are 
mainly linked to the data structure, ethical challenges, and 
legal concerns [23]. These limitations can be categorized 
as follows:

•	 Incompatible data formats
•	 Unstructured datasets
•	 High data sparsity
•	 Lack of precision
•	 Difficult data storage or transfer
•	 Legal concerns
•	 Heterogeneous data types
•	 Large volumes of data
•	 Data standardization (terminology, language …)
•	 Data timelines, time-series, real-time analyses, etc
•	 Lack of skills
•	 Privacy protection

Actually, in healthcare, no two patient experiences are 
similar. Even at a standardized routine exam, two differ-
ent doctors would likely record different data for the same 
patient. This problem is solved partially by the elaboration of 
international classifications and guidelines, such as the defi-
nition and classification of chronic kidney disease. Hence 
the importance of a homogeneous practice of nephrology 
worldwide [24].

Moreover, outcomes in healthcare such as kidney func-
tion or kidney graft survival are affected by complex param-
eters [25], most of which cannot be collected during a doctor 
visit. Some other data that affect the outcome of interest, if 
present in the record at all, are usually based on the patient’s 
imperfect recall and subjective description. Moreover, these 
clinical features may vary in diverse time scales, and this 
variability plays a vital role in indicating the health status. 
For example, intra-individual variability in kidney function 
biomarkers is associated with negative outcomes in terms of 
patient survival and renal survival [26].

Recent research may help overcome these issues. We cite 
the example of AdaCare which is a representation learning 
model that captures the variability of the biomarkers in the 
short and long term as clinical features to predict the health 
status at different time points [27]. It adaptively selects the 
clinical features that strongly indicate the health status of 
patients in diverse conditions and provides a personalized 
feature selection.

Data size is another concern in the healthcare field. ML 
shines when the model is trained with large databases [28]. 
In other fields data are easily collectible, sometimes with a 
simple click, such as the example of the Google ads model 
which is one of the most robust AI tools in the world. It is 

an AI model that determines when and where ads are shown 
for specific audiences and on specific pages. Data are col-
lected when the client searches for something on Google and 
clicks on a result. Every step is captured as data [29]. Clini-
cal datasets are inevitably far smaller which means less train-
ing data for algorithms to learn from. A randomized clinical 
trial aiming to collect high-quality data might involve less 
than 100 patients. In a systematic review of 40,970 clinical 
trials including 1054 nephrology trials, the authors found 
that compared with other specialties, nephrology trials were 
more likely to be smaller, with 64.5% of them enrolling less 
than 100 patients [30].

Bigger medical datasets do exist with millions of patients 
produced from imaging, electronic health record, telemedi-
cine, genomic, and other sources of data [23]. However, poor 
quality remains the main issue with these datasets. They 
require rigorous data cleaning which is very challenging, 
though it reduces the data size considerably. Data cleaning 
is the process that ensures that datasets are correct, accu-
rate, relevant, and consistent. Messy data can derail a big AI 
project, especially when disparate data sources are brought 
together [31]. While many data cleaning processes are still 
performed manually, some vendors do offer increasingly 
sophisticated data cleaning tools that use intelligent rules to 
correct large datasets which reduces the time and expense 
required to obtain high levels of integrity and accuracy in 
medical databases [32]. Recent research also proposed mod-
els to handle irregular medical records and extract feature 
interrelationships for individualized healthcare prediction 
[33].

Besides these data processing techniques, transfer learn-
ing can help to overcome the lack of data available for analy-
sis. It is a method of ML where knowledge developed from 
previous training is recycled to help perform a new task.

Ma et al. [34] proposed a transfer learning framework, 
which leverages the massive publicly available online medi-
cal records, then learns to embed the medical features rele-
vant to a specific task. Finally, the transferred parameters are 
further used for training. The authors applied the proposed 
framework for COVID-19 prognosis assessment and end-
stage renal disease (ESRD) mortality prediction.

Another concern in the medical field is that the timelines 
are far longer than those in other sectors. In nephrology, we 
mainly deal with chronic diseases where our biggest concern 
is often chronic kidney disease and reaching ESRD. Simi-
larly, in the KT field, interests have shifted to forecasting 
long-term outcomes [35]. An AI tool that is built to predict 
a long-term outcome will take years to begin to collect any 
feedback.

Not only is the nature of healthcare data more complex 
and variable, but ethical challenges exist as well, and include 
the cost of the error itself, interpretability issues, and patient 
privacy protection concerns.
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Errors made by the models in industry sectors generally 
result in lost revenue, however in healthcare, mistakes are 
far costlier where the problem may be a question of life or 
death [36].

The lack of interpretability is another major ethical prob-
lem with ML algorithms.

ML aims to perform a prediction that is as accurate as 
possible, at the expense of clear interpretability. Broadly, 
interpretability is focused on finding an explanation for the 
decisions made by the models.

Most of the powerful ML algorithms operate as black 
boxes which raises reliability issues for both doctors and 
patients [37]. This issue may prevent the wide adoption of 
these methods by practitioners. It is easier for humans to 
trust a system that explains its decisions. On the other hand, 
it is hard to ignore the benefits of black box algorithms such 
as deep learning algorithms. Hence, we recommend using 
what works best after careful testing and large external vali-
dations [25].

Developing useful AI tools for healthcare is therefore 
challenging but the promise is enormous [38]. It is the way 
to make healthcare practice benefit from the vast amounts 
of data and experiences generated daily. An AI model is 
able to analyze and learn from the experience of millions of 
patients and the knowledge of thousands of clinicians, thus 
dramatically improving diagnosis and treatment. AI tools in 
healthcare will never replace physicians. Instead, they will 
help them do more than they could before.

Kidney transplantation outcomes: unmet 
needs and potential role of artificial 
intelligence

Since the early 1980s, short-term outcomes of KT have 
markedly improved due to the advancement of surgical 
techniques and immunosuppressive drugs; however, when 
it comes to long-term outcomes, no significant improvement 
has been achieved since the 2000s. Interest has now shifted 
to forecasting long-term patient and graft survival after KT 
[39–41].

Many factors such as delayed graft function (DGF) due to 
ischemia reperfusion injury, acute rejection (AR) and more 
particularly antibody-mediated rejection (AMR), chronic 
allograft nephropathy, and morbidities related to immuno-
suppressive treatment are blamed for the lack of long-term 
improvements in terms of patient and graft survival.

Table 3 provides an overview of the published studies 
aiming to predict these complications with AI: the predicted 
outcome, year, sample size, and findings of the studies in 
terms of predictors and performance measures of the predic-
tive models.

Delayed graft function

There are many definitions of DGF in the literature but the 
most commonly adopted one is that of the United Network 
for Organ Sharing (UNOS), which is “the need for dialysis 
at least once within the first seven days after transplanta-
tion, indicated outside the context of hyperacute rejection, 
vascular or urinary tract complications, or hyperkalemia” 
[42].

DGF contributes to poor long-term gains [43], and its 
impact on KT outcomes is expected to grow as the use of 
marginal kidneys increases due to organ shortages.

DGF is associated with a significant reduction in the graft 
half-life. In an American cohort including more than 65,000 
KTs, the half-life was 11.5 years in the absence of DGF graft 
function versus 7.2 years in cases involving DGF [44].

To date, no treatment or therapeutic strategy has become 
standard of care in the prevention or treatment of DGF. An 
accurate prediction of DGF can help establish an effective 
preventive strategy based on the predictors selected by the 
ML algorithm. Such a model may be beneficial not only in 
better graft allocation but also in determining the factors 
that predict DGF which enables interventions to prevent the 
modifiable ones.

Many authors used AI (ML) for predicting DGF 
(Table 3). However, most of the published studies did not 
generate an approved predictive model which can be intro-
duced into daily practice. Such achievement can be obtained 
with the use of large, high-quality datasets including the 
relevant variables needed to predict DGF. The rate of DGF 
may also be reduced with more robust kidney graft alloca-
tion systems, which is also achievable with AI.

Antibody‑mediated rejection

Several studies have evaluated the impact of AR on long-
term graft survival, and it has been demonstrated that an 
AR episode is a major risk factor of chronic graft dysfunc-
tion and graft failure [45–47]. The FDA held an open public 
workshop in June 2010 to discuss the challenges in the treat-
ment of AMR and highlighted the need for a clinical trial 
design aimed at improving the long-term outcomes [48]. 
In April 2017, another workshop was held to discuss new 
advances in AMR and the challenges of clinical trial design 
for its prevention and treatment [49]. Such trials can now be 
performed thanks to the advances of AI [50].

Shaikhina et al. used a very small dataset (80 KTs) for 
predicting acute AMR at 30 days post KT using ML algo-
rithms, and their model had an accuracy of 85% [51].

Despite the decrease in its incidence AR is still a major 
issue because of the high rates of subclinical rejection which 
is detectable only by protocol biopsies [52]. AI and more 
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particularly, deep learning, can help in extracting the fea-
tures of this subtype of rejection. AI was introduced into 
the Banff classification in 2019 and its contribution was dis-
cussed with regards to form image recognition and rejection 
type recognition [16].

Graft survival

The definition of long-term kidney graft survival is not 
unanimous in the literature [53]. Several thresholds have 
been used in the published studies (3 years, 5 years, 10 years, 
etc.) [25, 53]. All practitioners desire a graft that remains 
functional for life, hence the interest of extending the period 
required to judge prolonged survival.

For long-term graft survival, the main endpoint over time 
in some of the published studies was defined as the time of 
graft failure by either a return to dialysis or retransplantation 
[54]. Other studies developed models for a combined out-
come of graft failure and death (graft and patient survival) 
[55]. The challenge in predicting and improving long-term 
graft survival is: (1) the multiplicity and the complexity of 
the involved factors; (2) the lack of study designs that can 
address this need. These limitations can be overcome thanks 
to the ML ability to integrate and learn from large and com-
plex datasets, and its powerful prediction ability. The predic-
tive models can be used as surrogate endpoints in the clinical 
trials on long-term outcomes (see Sect. 4.5).

Patient survival

Patient survival after KT is also far below that of the general 
population. The leading causes of death in the KT popula-
tion have changed in the past few years. Even if cardiovas-
cular disease and infections are still the main causes of death 
in this population, higher rates of death from malignancy are 
observed, even overtaking cardiovascular disease in some 
series. Infections and malignancies in KT are primarily due 
to immunosuppressive therapy. Cardiovascular complica-
tions can also be partly linked to immunosuppressive drugs. 
Hence, there is a vital need for new therapies in KT.

Development of new treatments and new study 
designs

The development of innovative therapies that are safer and 
better able to prevent DGF and reduce AMR is critical to 
improving long-term graft and patient outcomes.

The main barrier to the development of new drugs is the 
lack of acceptable new study designs that can address the 
current needs in KT. The main end-points accepted by the 
FDA for the past 20 years have been the incidence of biopsy-
proven rejection, as well as 1-year patient and graft sur-
vival. These end-points, however, are insufficient to assess 

the long-term impact of the drugs. The traditional end-points 
have now forced non-inferiority trial designs, given that 
short-term outcomes are relatively good. Long-term effi-
ciency assessment requires clinical trials with a follow-up 
period of 5–10 years. The extended survey periods result in 
an inefficient return on investment for pharmaceutical com-
panies; therefore, the regulatory agencies do not enforce 
them. Moreover, long-term studies impose delays in offer-
ing potentially beneficial treatments to transplant recipients. 
This led two of the main regulatory agencies worldwide, 
the FDA and the European Medicines Agency (EMA), to 
emphasize the need for an early and powerful alternative tool 
in KT that pertinently predicts long-term outcomes [56]. AI 
has been used to meet this requirement. The iBox, which is 
a validated AI-based predictive model, has been approved as 
an alternative endpoint of long-term kidney graft survival. 
It has been applied in the large randomized controlled trial 
TRANSFORM in KT in order to project the long-term risk 
of kidney graft failure up to 11 years post-randomization 
using the 1-year post-randomization validated data [25, 50].

Conclusions

The areas of application of AI in the world are expanding 
exponentially. Nephrologists will have to interact with AI 
in their daily practice in the near future; however, the neph-
rology community needs to be well-informed regarding 
this technology. AI has the potential to help them reach the 
unmet needs in the field by enabling accurate predictions 
and data analysis of the use of conventional statistics, espe-
cially in this era of data abundance, by capturing complex 
relationships among large datasets with a large number of 
variables. With the existing KT databases and registries, AI 
technologies seem to be the best solution to meet current 
gaps, especially long-term outcomes. In order to generalize 
the use of AI in nephrology, nephrologists worldwide are 
required to understand the core concepts of AI and its sub-
types in order to understand how the models are created so 
that they can evaluate them critically and participate actively 
to minimize current challenges.
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