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Soluble urokinase plasminogen activator receptor (suPAR) 
is an immune-derived glycoprotein implicated in kidney 
disease and associated with various clinical outcomes [1]. 
The rising interest in exploring suPAR’s role in kidney and 
cardiovascular disease has led to its measurement in vari-
ous cohorts [1]. Different assays have been used to meas-
ure suPAR levels including enzyme-linked immunosorbent 
assays (ELISA) such as the Human uPAR Quantikine ELISA 
(R&D Systems, Minneapolis, MN) and the suPARnostic 
ELISA (Virogates, Copenhagen, Denmark); and proteom-
ics platforms such as the aptamer-based assay SomaLogic 
SOMAscan (SomaLogic, Boulder, CO) and the proximity 
extension assay Olink Explore (Olink, Uppsala, Sweden). 
SuPAR values and associations with clinical outcomes have 
differed greatly according to the assay used [2–5], warrant-
ing an exploration of assay-related differences in suPAR 
levels. To that end, we leveraged cohorts in which suPAR 

was measured using two different approaches, and examined 
the correlation between assays, the association between lev-
els and clinical characteristics, and their risk discrimination 
ability for relevant outcomes.

Data on plasma suPAR measurement, clinical characteris-
tics and outcomes were obtained from the following cohorts: 
a subset (n = 4637) of the Malmö Diet and Cancer Study 
(MDCS)which is a Swedish population-based cohort in 
which suPAR was measured using the suPARnostic ELISA 
and Olink CVD-I panel; a subset (n = 1492) of the Jackson 
Heart Study (JHS) which recruited African American par-
ticipants from Jackson, Mississippi in whom suPAR was 
measured using the Human uPAR Quantikine ELISA and 
SOMAscan; and lastly, a subset (n = 487) of the Emory 
Cardiovascular Biobank (EmCAB) which enrolled patients 
undergoing coronary catheterization, in whom suPAR was 
measured with the suPARnostic and Human uPAR Quan-
tikine ELISAs [1].

Data transformation and normalization procedures were 
performed for the SOMAscan and Olink assays according to 
standard protocols developed by the manufacturers as part 
of the data processing in the original assays. The procedures 
are necessary to account for intra- and inter-assay variation 
and for the interpretation of raw data. In JHS, SOMAscan 
values were natural log-transformed, standardized to a mean 
of 0 and an SD of 1 within each of three batches, and then 
inverse-normalized across batches. In MDCS, Olink’s nor-
malized protein expression units were log-based 2 trans-
formed. We used Spearman-Rank to report the pair-wise 
correlation between assays. We report standardized esti-
mates for the association between clinical characteristics 
and suPAR measures derived using linear regression, with 
the suPAR level as the dependent variable and clinical char-
acteristics as independent covariates. Lastly, we computed 
Harrell’s C-statistic as a measure of risk discrimination for 
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each suPAR assay for the following outcomes: all-cause 
mortality, cardiovascular mortality, and incident chronic 
kidney disease (defined as a decrease in creatinine-derived 
eGFR to below 60 ml/min/1.73 m2). Analyses were per-
formed using SPSS 24 (IBM, NY, USA) and R (R Core 
Team, 2014).

We found extensive variation in the correlation between 
suPAR assays (Table 1). The correlation between the prot-
eomics platforms and ELISAs were modest at best, with a 
correlation of 0.285 between the Human uPAR Quantikine 
and SOMAScan, and 0.586 between the suPARnostic and 
Olink. The correlation between immunoassays (suPARnostic 
and Human uPAR Quantikine) was relatively better at 0.753, 
with values obtained using the suPARnostic assay on aver-
age 50% higher than the Quantikine-derived values, albeit 
with significant variability given a standard deviation of 
50%. Associations with relevant clinical characteristics and 
their directionality were mostly consistent across measures, 
except for the lack of an association between SOMAScan-
derived suPAR levels and diabetes mellitus (Table 1). Risk 

discrimination as quantified using Harrell’s C-statistic for 
all-cause death, cardiovascular death and incident chronic 
kidney disease differed between suPAR assays, with the 
most notable differences between the SOMAScan and Quan-
tikine measures (Table 1).

This study highlights major discrepancies between 
suPAR measurements across commonly used assays, 
with modest correlations and differences in associations 
with outcomes. These findings warrant caution in deriv-
ing conclusions related to suPAR measures, notably when 
comparing results from different assays. Proteomics plat-
forms, while useful for discovery, have limitations including 
cross-reactivity, lack of specificity, protein complexes and 
single nucleotide polymorphisms altering aptamer/antibody 
affinities, amongst others which may be more relevant for 
some assayed proteins such as suPAR [3]. The correlation 
in suPAR levels measured with SOMAScan and Olink has 
been previously reported to be modest (r = 0.48) [2]. Most 
importantly, proteomics-derived suPAR measures have not 
been previously cross-validated with ELISAs. We also found 

Table 1   Correlation, associations with clinical characteristics, and C-statistics stratified by cohort and assay

Chronic kidney disease is defined as a decrease in eGFR to below 60 ml/min/1.73 m2 at follow-up. Harrell’s C-statistic is derived from time to 
event models which include only suPAR levels
MDCS Malmö Diet and Cancer Study, JHS Jackson Heart Study, EmCAB Emory Cardiovascular Biobank, eGFR estimated glomerular filtration 
rate

MDCS (N = 4637) JHS (n = 1905) EmCAB n( = 487)

SuPARnostic Olink Quantikine SOMAScan SuPARnostic Quantikine

Spearman's rank cor-
relation

Overall cohort 0.566 0.285 0.753
Predictors of suPAR 

levels
Standardized β, P-value
Age, per 1 year 0.09, P < 0.001 0.09,  P < 0.001 0.07,  P = 0.035 0.08,  P = 0.010 − 0.12,  P = 0.002 − 0.09,  P = 0.024
Male gender − 0.08,  P < 0.001 − 0.06,  P < 0.001 − 0.47,  P < 0.001 − 0.27,  P < 0.001 − 0.16,  P < 0.001 − 0.18,  P < 0.001
Body-mass index, per 

1 kg/m2
0.04,  P = 0.005 0.02,  P = 0.13 0.07,  P = 0.002 − 0.06,  P = 0.022 0.01,  P = 0.80 0.01,  P = 0.90

Current smoker 0.30,  P < 0.001 0.35,  P < 0.001 0.44,  P < 0.001 0.34,  P < 0.001 0.00,  P = 0.92 0.03,  P = 0.41
Hypertension 0.01,  P = 0.50 0.02,  P = 0.22 0.02,  P = 0.55 − 0.01,  P = 0.90 0.03,  P = 0.39 0.00,  P = 0.94
Diabetes mellitus 0.05,  P = 0.001 0.05,  P < 0.001 0.29,  P < 0.001 0.06,  P = 0.26 0.18,  P < 0.001 0.18,  P < 0.001
High-density lipoprotein 

level, per 1 mg/dl
− 0.12,  P < 0.001 − 0.09,  P < 0.001 − 0.03,  P = 0.20 − 0.03,  P = 0.29 − 0.04,  P = 0.35 − 0.03,  P = 0.42

Creatinine-derived 
eGFR, per 1 ml/min

− 0.15,  P < 0.001 − 0.18,  P < 0.001 − 0.38,  P < 0.001 − 0.17,  P < 0.001 − 0.57,  P < 0.001 − 0.49,  P < 0.001

Harrell's C-statistic
All-cause mortality n = 1799 n = 446 n = 107

0.628 0.603 0.678 0.588 0.685 0.655
Cardiovascular mortality n = 530 n = 67 n = 49

0.619 0.582 0.742 0.566 0.678 0.628
Incident chronic kidney 

disease
n = 977 n = 128 n = 75
0.620 0.616 0.614 0.537 0.529 0.502
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differences between the ELISA measurements, consistent 
with a prior report by Winnicki et al. in which suPAR lev-
els using the suPARnostic assay were higher and outper-
formed the Human Quantikine uPAR ELISA in differen-
tiating between patients with and without focal segmental 
glomerulosclerosis [4]. SuPAR exists in circulation in dif-
ferent forms originating from splice variants and proteolytic 
processing with varying levels of glycosylation and distinct 
biological activity. The suPARnostic ELISA consists of two 
monoclonal capture antibodies: one targeting the DIII subu-
nit, and the other the DII subunit, thus capturing full-length 
suPAR (DIDIIDII) and the DIIDIII fragment, but not DI. The 
Human uPAR Quantikine assay uses a monoclonal capture 
antibody and polyclonal detection antibodies. The specific 
suPAR forms detected by the various proteomics platforms 
are unknown. The discrepancy between assays may relate to 
their differing ability in detecting the various suPAR forms, 
with the suPARnostic assay’s ability to detect both full 
length and cleaved suPAR forms explaining the higher lev-
els reported and overall better risk discrimination. As suPAR 
is increasingly measured in clinical settings, understanding 
the differences in the methods of suPAR measurements is 
crucial for interpreting findings.
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