Skip to main content

Advertisement

Log in

AKI: an increasingly recognized risk factor for CKD development and progression

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is an increasing health burden with high morbidity and mortality rates worldwide. AKI is a risk factor for chronic kidney disease (CKD) development and progression to end stage renal disease (ESRD). Rapid action is required to find treatment options for AKI, plus to anticipate the development of CKD and other complications. Therefore, it is essential to understand the pathophysiology of AKI to CKD transition. Over the last several years, research has revealed maladaptive repair to be an interplay of cell death, endothelial dysfunction, tubular epithelial cell senescence, inflammatory processes and more—terminating in fibrosis. Various pathological mechanisms have been discovered and reveal targets for potential interventions. Furthermore, there have been clinical efforts measures for AKI prevention and progression including the development of novel biomarkers and prediction models. In this review, we provide an overview of pathophysiological mechanisms involved in kidney fibrosis. Furthermore, we discuss research gaps and promising therapeutic approaches for AKI to CKD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADQI:

Acute disease quality initiative

Ag-presentation:

Antigen presentation

AKD:

Acute kidney disease

AKI:

Acute kidney injury

Akt:

Protein kinase B, PKB

Alpha-SMA:

α-Smooth muscle actin

AQP2:

Aquaporine 2

ASC:

Adipose mesenchymal stem cells

ATN:

Acute tubular necrosis

BC-SC:

Blood cord stem cells

bFGF:

Basic fibroblast growth factor

BM:

Bone marrow

BUN:

Blood urea nitrogen

CCL2:

CC-chemokine ligand 2

CCR2:

C–C chemokine receptor type 2

CDDO-dhTFEA:

CDDO-9,11-dihydro-trifluoroethyl Amide

CDDO-Im:

CDDO-imidazole

CDDO-Me:

CDDO-methyl ester

CI:

Confidence interval

CKD:

Chronic kidney disease

CRAC channel:

Ca2+ release-activated Ca2+ channel

CRRT:

Continuous renal replacement therapy

CTGF:

CCN2 or connective tissue growth factor

Cxcl12:

CXC-Motif-Chemokin 12

CVD:

Cardiovascular diseases

DAMPs:

Damaged-associated molecular patterns

DCs:

Dendritic cells

DGF:

Delayed graft function

DM:

Diabetes mellitus

DN:

αβTCR double negative T cells

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMP:

Epithelial-mesenchymal plasticity

EMT:

Epithelial-mesenchymal transition

EndMT:

Endothelial-to-mesenchymal transition

EPC:

Endothelial progenitor cells

ER:

Endoplasmic reticulum

ERK 1/2:

Extracellular-signal-regulated kinase 1/2

ESRD:

End stage renal disease

EVs:

Extracellular vesicles

FGF-2:

Fibroblast growth factor

GFR:

Glomerular filtration rate

Glom:

Glomerular

HGF:

Hepatocyte growth factor

HPSE:

Heparanase

HR:

Hazard ratio

HSC:

Hematopoietic SC

IFN-γ:

Interferon γ

IGF1:

Insulin-like growth factor 1

IGFBP7:

Insulin-like growth factor-binding protein 7

IL:

Interleukin

iPS:

Induced pluripotent SC

IRI:

Ischemic reperfusion injury

ISN:

International Society of Nephrology

KC:

Keratinocyte-derived chemokine

KDIGO:

Kidney disease improving global outcomes

Keap1:

Kelch-like ECH-associated protein 1

KIM-1:

Kidney injury molecule-1

KO:

Knock out

LSC:

Liver stem cells

M2:

M2 macrophages

MCP-1:

Monocyte chemoattractant protein-1

MHC:

Major histocompatibility complex

MLKL:

Mixed lineage kinase domain-like protein

MMP:

Matrix metalloprotease

MSC:

Mesenchymal stem cells

NET:

Neutrophil extracellular traps

NF-κB:

Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells

NGAL:

Neutrophil gelatinase-associated lipocalin

NK cells:

Natural killer cells

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

Orai1:

Calcium release-activated calcium channel protein 1

PDGF:

Platelet-derived growth factor

PIIINP:

Procollagen type III N-terminal peptide

PTEN:

Phosphatase and Tensin homolog

RANTES:

Regulated upon activation, normal T-cell expressed and secreted

RIPK1:

Receptor-interacting protein kinase-1

SC:

Stem cells

Snai1:

Snail Family Transcriptional Repressor 1

T2DM:

Type 2 diabetes mellitus

TEC:

Tubular epithelial cells

TGF-β:

Transforming growth factor β

Th cells:

T helper cells,

Th1:

T helper cell 1

Th2:

T helper cell 2

Th17:

T helper cell 17

TIMP-2:

Tissue inhibitor of metalloproteinases-2

TNF:

Tumor necrosis factor

TRADD:

TNF-receptor dead domain

Treg:

Regulatory T cells

Twist1:

Twist Family BHLH Transcription Factor 1

UUO:

Unilateral ureter obstruction

VEGF:

Vascular endothelial growth factor

References

  1. Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA, Collins AJ (2009) Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 20(1):223–228. https://doi.org/10.1681/asn.2007080837

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pechman KR, De Miguel C, Lund H, Leonard EC, Basile DP, Mattson DL (2009) Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol 297(5):R1358–1363. https://doi.org/10.1152/ajpregu.91022.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. James MT, Ghali WA, Knudtson ML, Ravani P, Tonelli M, Faris P, Pannu N, Manns BJ, Klarenbach SW, Hemmelgarn BR (2011) Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation 123(4):409–416. https://doi.org/10.1161/circulationaha.110.970160

    Article  PubMed  Google Scholar 

  4. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, Jaber BL (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 8(9):1482–1493. https://doi.org/10.2215/cjn.00710113

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, Honore PM, Joannes-Boyau O, Joannidis M, Korhonen AM, Lavrentieva A, Mehta RL, Palevsky P, Roessler E, Ronco C, Uchino S, Vazquez JA, Vidal Andrade E, Webb S, Kellum JA (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41(8):1411–1423. https://doi.org/10.1007/s00134-015-3934-7

    Article  PubMed  Google Scholar 

  6. Cerda J, Bagga A, Kher V, Chakravarthi RM (2008) The contrasting characteristics of acute kidney injury in developed and developing countries. Nat Clin Pract Nephrol 4(3):138–153. https://doi.org/10.1038/ncpneph0722

    Article  PubMed  Google Scholar 

  7. Mehta RL, Cerda J, Burdmann EA, Tonelli M, Garcia-Garcia G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MS, Cruz D, Jaber B, Lameire NH, Lombardi R, Lewington A, Feehally J, Finkelstein F, Levin N, Pannu N, Thomas B, Aronoff-Spencer E, Remuzzi G (2015) International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385(9987):2616–2643. https://doi.org/10.1016/s0140-6736(15)60126-x

    Article  Google Scholar 

  8. Losito A, Nunzi E, Pittavini L, Zampi I, Zampi E (2018) Cardiovascular morbidity and long term mortality associated with in hospital small increases of serum creatinine. J Nephrol 31(1):71–77. https://doi.org/10.1007/s40620-017-0413-y

    Article  CAS  PubMed  Google Scholar 

  9. Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, Bittleman D, Cruz D, Endre Z, Fitzgerald RL, Forni L, Kane-Gill SL, Hoste E, Koyner J, Liu KD, Macedo E, Mehta R, Murray P, Nadim M, Ostermann M, Palevsky PM, Pannu N, Rosner M, Wald R, Zarbock A, Ronco C, Kellum JA (2017) Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol 13(4):241–257. https://doi.org/10.1038/nrneph.2017.2

    Article  PubMed  Google Scholar 

  10. KDIGO (2012) (Kidney Disease: Improving Global Outcomes). Clinical Practice. Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 3:1–150

  11. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 80(1):17–28. https://doi.org/10.1038/ki.2010.483

    Article  PubMed  Google Scholar 

  12. See EJ, Jayasinghe K, Glassford N, Bailey M, Johnson DW, Polkinghorne KR, Toussaint ND, Bellomo R (2019) Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int 95(1):160–172. https://doi.org/10.1016/j.kint.2018.08.036

    Article  PubMed  Google Scholar 

  13. Parr SK, Matheny ME, Abdel-Kader K, Greevy RA Jr, Bian A, Fly J, Chen G, Speroff T, Hung AM, Ikizler TA, Siew ED (2018) Acute kidney injury is a risk factor for subsequent proteinuria. Kidney Int 93(2):460–469. https://doi.org/10.1016/j.kint.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  14. Thakar CV, Christianson A, Himmelfarb J, Leonard AC (2011) Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus. Clin J Am Soc Nephrol 6(11):2567–2572. https://doi.org/10.2215/cjn.01120211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE (2009) Outcomes following diagnosis of acute renal failure in US veterans: focus on acute tubular necrosis. Kidney Int 76(10):1089–1097. https://doi.org/10.1038/ki.2009.332

    Article  PubMed  Google Scholar 

  16. Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL, Macias WL (2007) Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin J Am Soc Nephrol 2(1):22–30. https://doi.org/10.2215/cjn.02510706

    Article  CAS  PubMed  Google Scholar 

  17. Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81(5):442–448. https://doi.org/10.1038/ki.2011.379

    Article  PubMed  Google Scholar 

  18. Silver SA, Chertow GM (2017) The economic consequences of acute kidney injury. Nephron. https://doi.org/10.1159/000475607

    Article  PubMed  PubMed Central  Google Scholar 

  19. Collister D, Pannu N, Ye F, James M, Hemmelgarn B, Chui B, Manns B, Klarenbach S (2017) Health care costs associated with AKI. Clin J Am Soc Nephrol 12(11):1733–1743. https://doi.org/10.2215/cjn.00950117

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD (2014) Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci US A 111(4):1527–1532. https://doi.org/10.1073/pnas.1310653110

    Article  CAS  Google Scholar 

  21. Sureshbabu A, Patino E, Ma KC, Laursen K, Finkelsztein EJ, Akchurin O, Muthukumar T, Ryter SW, Gudas L, Choi AMK, Choi ME (2018) RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction. JCI Insight. https://doi.org/10.1172/jci.insight.98411

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu W, Chen B, Wang Y, Meng C, Huang H, Huang XR, Qin J, Mulay SR, Anders HJ, Qiu A, Yang B, Freeman GJ, Lu HJ, Lin HY, Zheng ZH, Lan HY, Huang Y, Xia Y (2018) RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proc Natl Acad Sci USA 115(7):E1475–E1484. https://doi.org/10.1073/pnas.1716959115

    Article  CAS  PubMed  Google Scholar 

  23. Mulay SR, Linkermann A, Anders HJ (2016) Necroinflammation in kidney disease. J Am Soc Nephrol 27(1):27–39. https://doi.org/10.1681/asn.2015040405

    Article  CAS  PubMed  Google Scholar 

  24. Komada T, Muruve DA (2019) The role of inflammasomes in kidney disease. Nat Rev Nephrol 15(8):501–520. https://doi.org/10.1038/s41581-019-0158-z

    Article  PubMed  Google Scholar 

  25. Yuan Q, Tan RJ, Liu Y (2019) Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv Exp Med Biol 1165:253–283. https://doi.org/10.1007/978-981-13-8871-2_12

    Article  CAS  PubMed  Google Scholar 

  26. Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallee M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT (2019) Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 15(2):87–108. https://doi.org/10.1038/s41581-018-0098-z

    Article  PubMed  Google Scholar 

  27. Stasi A, Intini A, Divella C, Franzin R, Montemurno E, Grandaliano G, Ronco C, Fiaccadori E, Pertosa GB, Gesualdo L, Castellano G (2017) Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant 32(1):24–31. https://doi.org/10.1093/ndt/gfw250

    Article  CAS  PubMed  Google Scholar 

  28. Curci C, Castellano G, Stasi A, Divella C, Loverre A, Gigante M, Simone S, Cariello M, Montinaro V, Lucarelli G, Ditonno P, Battaglia M, Crovace A, Staffieri F, Oortwijn B, van Amersfoort E, Gesualdo L, Grandaliano G (2014) Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway. Nephrol Dial Transpl 29(4):799–808. https://doi.org/10.1093/ndt/gft516

    Article  CAS  Google Scholar 

  29. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15(1):1–12. https://doi.org/10.1097/01.asn.0000106015.29070.e7

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21(2):212–222. https://doi.org/10.1681/asn.2008121226

    Article  CAS  PubMed  Google Scholar 

  31. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97. https://doi.org/10.2353/ajpath.2010.090517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kriz W, Kaissling B, Le Hir M (2011) Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 121(2):468–474. https://doi.org/10.1172/jci44595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fintha A, Gasparics Á, Rosivall L, Sebe A (2019) Therapeutic targeting of fibrotic epithelial-mesenchymal transition-an outstanding challenge. Front Pharmacol 10:388. https://doi.org/10.3389/fphar.2019.00388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grande MT, Sánchez-Laorden B, López-Blau C, De Frutos CA, Boutet A, Arévalo M, Rowe RG, Weiss SJ, López-Novoa JM, Nieto MA (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21(9):989–997. https://doi.org/10.1038/nm.3901

    Article  CAS  PubMed  Google Scholar 

  35. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, Nischal H, Allison JP, Zeisberg M, Kalluri R (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21(9):998–1009. https://doi.org/10.1038/nm.3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Masola V, Zaza G, Gambaro G, Onisto M, Bellin G, Vischini G, Khamaysi I, Hassan A, Hamoud S, Nativ O, Heyman SN, Lupo A, Vlodavsky I, Abassi Z (2016) Heparanase: a potential new factor involved in the renal epithelial mesenchymal transition (EMT) induced by ischemia/reperfusion (I/R) injury. PLoS ONE 11(7):e0160074. https://doi.org/10.1371/journal.pone.0160074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11(5):264–276. https://doi.org/10.1038/nrneph.2015.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Castellano G, Franzin R, Sallustio F, Stasi A, Banelli B, Romani M, De Palma G, Lucarelli G, Divella C, Battaglia M, Crovace A, Staffieri F, Grandaliano G, Stallone G, Ditonno P, Cravedi P, Cantaluppi V, Gesualdo L (2019) Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/betacatenin signaling after ischemia/reperfusion injury. Aging (Albany NY) 11(13):4382–4406. https://doi.org/10.18632/aging.102059

    Article  CAS  Google Scholar 

  39. Hu MC, Shi M, Gillings N, Flores B, Takahashi M, Kuro OM, Moe OW (2017) Recombinant alpha-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int 91(5):1104–1114. https://doi.org/10.1016/j.kint.2016.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castellano G, Intini A, Stasi A, Divella C, Gigante M, Pontrelli P, Franzin R, Accetturo M, Zito A, Fiorentino M, Montinaro V, Lucarelli G, Ditonno P, Battaglia M, Crovace A, Staffieri F, Oortwijn B, van Amersfoort E, Pertosa G, Grandaliano G, Gesualdo L (2016) Complement modulation of anti-aging factor Klotho in ischemia/reperfusion injury and delayed graft function. Am J Transpl 16(1):325–333. https://doi.org/10.1111/ajt.13415

    Article  CAS  Google Scholar 

  41. Castellano G, Franzin R, Stasi A, Divella C, Sallustio F, Pontrelli P, Lucarelli G, Battaglia M, Staffieri F, Crovace A, Stallone G, Seelen M, Daha MR, Grandaliano G, Gesualdo L (2018) Complement activation during ischemia/reperfusion injury induces pericyte-to-myofibroblast transdifferentiation regulating peritubular capillary lumen reduction through pERK signaling. Front Immunol 9:1002. https://doi.org/10.3389/fimmu.2018.01002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burne-Taney MJ, Yokota N, Rabb H (2005) Persistent renal and extrarenal immune changes after severe ischemic injury. Kidney Int 67(3):1002–1009. https://doi.org/10.1111/j.1523-1755.2005.00163.x

    Article  PubMed  Google Scholar 

  43. Mehrotra P, Patel JB, Ivancic CM, Collett JA, Basile DP (2015) Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney Int 88(4):776–784. https://doi.org/10.1038/ki.2015.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ascon M, Ascon DB, Liu M, Cheadle C, Sarkar C, Racusen L, Hassoun HT, Rabb H (2009) Renal ischemia-reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes. Kidney Int 75(5):526–535. https://doi.org/10.1038/ki.2008.602

    Article  CAS  PubMed  Google Scholar 

  45. Burne-Taney MJ, Liu M, Ascon D, Molls RR, Racusen L, Rabb H (2006) Transfer of lymphocytes from mice with renal ischemia can induce albuminuria in naive mice: a possible mechanism linking early injury and progressive renal disease? Am J Physiol Renal Physiol 291(5):F981–986. https://doi.org/10.1152/ajprenal.00229.2005

    Article  CAS  PubMed  Google Scholar 

  46. Yokota N, Burne-Taney M, Racusen L, Rabb H (2003) Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 285(2):F319–325. https://doi.org/10.1152/ajprenal.00432.2002

    Article  CAS  PubMed  Google Scholar 

  47. Jang HR, Gandolfo MT, Ko GJ, Satpute SR, Racusen L, Rabb H (2010) B cells limit repair after ischemic acute kidney injury. J Am Soc Nephrol 21(4):654–665. https://doi.org/10.1681/asn.2009020182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burne-Taney MJ, Ascon DB, Daniels F, Racusen L, Baldwin W, Rabb H (2003) B cell deficiency confers protection from renal ischemia reperfusion injury. J Immunol 171(6):3210–3215. https://doi.org/10.4049/jimmunol.171.6.3210

    Article  CAS  PubMed  Google Scholar 

  49. Renner B, Strassheim D, Amura CR, Kulik L, Ljubanovic D, Glogowska MJ, Takahashi K, Carroll MC, Holers VM, Thurman JM (2010) B cell subsets contribute to renal injury and renal protection after ischemia/reperfusion. J Immunol 185(7):4393–4400. https://doi.org/10.4049/jimmunol.0903239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cippa PE, Liu J, Sun B, Kumar S, Naesens M, McMahon AP (2019) A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat Commun 10(1):1157. https://doi.org/10.1038/s41467-019-09092-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clements M, Gershenovich M, Chaber C, Campos-Rivera J, Du P, Zhang M, Ledbetter S, Zuk A (2016) Differential Ly6C expression after renal ischemia-reperfusion identifies unique macrophage populations. J Am Soc Nephrol 27(1):159–170. https://doi.org/10.1681/asn.2014111138

    Article  CAS  PubMed  Google Scholar 

  52. Baek JH (2019) The impact of versatile macrophage functions on acute kidney injury and its outcomes. Front Physiol 10:1016. https://doi.org/10.3389/fphys.2019.01016

    Article  PubMed  PubMed Central  Google Scholar 

  53. Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer U, Kaden S, Quaggin SE, Floege J, Grone HJ, Kurts C (2009) Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest 119(5):1286–1297. https://doi.org/10.1172/jci38399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Snelgrove SL, Kausman JY, Lo C, Lo C, Ooi JD, Coates PT, Hickey MJ, Holdsworth SR, Kurts C, Engel DR, Kitching AR (2012) Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am J Pathol 180(1):91–103. https://doi.org/10.1016/j.ajpath.2011.09.039

    Article  CAS  PubMed  Google Scholar 

  55. Kitching AR (2014) Dendritic cells in progressive renal disease: some answers, many questions. Nephrol Dial Transpl 29(12):2185–2193. https://doi.org/10.1093/ndt/gfu076

    Article  CAS  Google Scholar 

  56. Rees A (2009) Cross dendritic cells anger T cells after kidney injury. J Am Soc Nephrol 20(1):3–5. https://doi.org/10.1681/asn.2008111200

    Article  CAS  PubMed  Google Scholar 

  57. Dong Y, Yang M, Zhang J, Peng X, Cheng J, Cui T, Du J (2016) Depletion of CD8+ T cells exacerbates CD4+ T cell-induced monocyte-to-fibroblast transition in renal fibrosis. J Immunol 196(4):1874–1881. https://doi.org/10.4049/jimmunol.1501232

    Article  CAS  PubMed  Google Scholar 

  58. Meng XM, Nikolic-Paterson DJ, Lan HY (2014) Inflammatory processes in renal fibrosis. Nat Rev Nephrol 10(9):493–503. https://doi.org/10.1038/nrneph.2014.114

    Article  CAS  PubMed  Google Scholar 

  59. Bradding P, Pejler G (2018) The controversial role of mast cells in fibrosis. Immunol Rev 282(1):198–231. https://doi.org/10.1111/imr.12626

    Article  CAS  PubMed  Google Scholar 

  60. Mehrotra P, Collett JA, McKinney SD, Stevens J, Ivancic CM, Basile DP (2017) IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats. Am J Physiol Renal Physiol 312(3):F385–F397. https://doi.org/10.1152/ajprenal.00462.2016

    Article  CAS  PubMed  Google Scholar 

  61. Cortvrindt C, Speeckaert R, Moerman A, Delanghe JR, Speeckaert MM (2017) The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology 49(3):247–258. https://doi.org/10.1016/j.pathol.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  62. Wang H, Gao M, Li J, Sun J, Wu R, Han D, Tan J, Wang J, Wang B, Zhang L, Dong Y (2019) MMP-9-positive neutrophils are essential for establishing profibrotic microenvironment in the obstructed kidney of UUO mice. Acta Physiol (Oxf) 227(2):e13317. https://doi.org/10.1111/apha.13317

    Article  CAS  Google Scholar 

  63. D'Alessio FR, Kurzhagen JT, Rabb H (2019) Reparative T lymphocytes in organ injury. J Clin Invest 129(7):2608–2618. https://doi.org/10.1172/jci124614

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim J, Seok YM, Jung KJ, Park KM (2009) Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol 297(2):F461–470. https://doi.org/10.1152/ajprenal.90735.2008

    Article  CAS  PubMed  Google Scholar 

  65. Stenvinkel P, Meyer CJ, Block GA, Chertow GM, Shiels PG (2019) Understanding the role of the cytoprotective transcription factor nuclear factor erythroid 2-related factor 2-lessons from evolution, the animal kingdom and rare progeroid syndromes. Nephrol Dial Transpl. https://doi.org/10.1093/ndt/gfz120

    Article  Google Scholar 

  66. Nezu M, Suzuki N, Yamamoto M (2017) Targeting the KEAP1-NRF2 system to prevent kidney disease progression. Am J Nephrol 45(6):473–483. https://doi.org/10.1159/000475890

    Article  CAS  PubMed  Google Scholar 

  67. Nezu M, Souma T, Yu L, Suzuki T, Saigusa D, Ito S, Suzuki N, Yamamoto M (2017) Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int 91(2):387–401. https://doi.org/10.1016/j.kint.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  68. Noel S, Martina MN, Bandapalle S, Racusen LC, Potteti HR, Hamad AR, Reddy SP, Rabb H (2015) T lymphocyte-specific activation of Nrf2 protects from AKI. J Am Soc Nephrol 26(12):2989–3000. https://doi.org/10.1681/asn.2014100978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Noel S, Arend LJ, Bandapalle S, Reddy SP, Rabb H (2016) Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice. BMC Nephrol 17(1):110. https://doi.org/10.1186/s12882-016-0310-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Suzuki T, Seki S, Hiramoto K, Naganuma E, Kobayashi EH, Yamaoka A, Baird L, Takahashi N, Sato H, Yamamoto M (2017) Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus. Nat Commun 8:14577. https://doi.org/10.1038/ncomms14577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Noel S, Lee SA, Sadasivam M, Hamad ARA, Rabb H (2018) KEAP1 editing using CRISPR/Cas9 for therapeutic NRF2 activation in primary human T lymphocytes. J Immunol 200(5):1929–1936. https://doi.org/10.4049/jimmunol.1700812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7):2440–2448. https://doi.org/10.1182/blood-2007-03-078709

    Article  CAS  PubMed  Google Scholar 

  73. Kim H, Kim D, Nam H, Moon S, Kwon YJ, Lee JB (2019) Engineered extracellular vesicles and their mimetics for clinical translation. Methods. https://doi.org/10.1016/j.ymeth.2019.10.005

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, Sordi A, Biancone L, Tetta C, Camussi G (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82(4):412–427. https://doi.org/10.1038/ki.2012.105

    Article  CAS  PubMed  Google Scholar 

  75. Liu C, Wang J, Hu J, Fu B, Mao Z, Zhang H, Cai G, Chen X, Sun X (2020) Extracellular vesicles for acute kidney injury in preclinical rodent models: a meta-analysis. Stem Cell Res Ther 11(1):11. https://doi.org/10.1186/s13287-019-1530-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang C, Zhu G, He W, Yin H, Lin F, Gou X, Li X (2019) BMSCs protect against renal ischemia-reperfusion injury by secreting exosomes loaded with miR-199a-5p that target BIP to inhibit endoplasmic reticulum stress at the very early reperfusion stages. FASEB J 33(4):5440–5456. https://doi.org/10.1096/fj.201801821R

    Article  CAS  PubMed  Google Scholar 

  77. Pan T, Jia P, Chen N, Fang Y, Liang Y, Guo M, Ding X (2019) Delayed remote ischemic preconditioning confersrenoprotection against septic acute kidney injury via exosomal miR-21. Theranostics 9(2):405–423. https://doi.org/10.7150/thno.29832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu X, Yan T, Wang Z, Wu X, Cao G, Zhang C, Tian X, Wang J (2018) Micro-vesicles derived from human Wharton's Jelly mesenchymal stromal cells mitigate renal ischemia-reperfusion injury in rats after cardiac death renal transplantation. J Cell Biochem 119(2):1879–1888. https://doi.org/10.1002/jcb.26348

    Article  CAS  PubMed  Google Scholar 

  79. Vinas JL, Spence M, Gutsol A, Knoll W, Burger D, Zimpelmann J, Allan DS, Burns KD (2018) Receptor-ligand interaction mediates targeting of endothelial colony forming cell-derived exosomes to the kidney after ischemic injury. Sci Rep 8(1):16320. https://doi.org/10.1038/s41598-018-34557-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dominguez JM 2nd, Dominguez JH, Xie D, Kelly KJ (2018) Human extracellular microvesicles from renal tubules reverse kidney ischemia-reperfusion injury in rats. PLoS ONE 13(8):e0202550. https://doi.org/10.1371/journal.pone.0202550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang G, Yang Y, Huang Y, Zhang L, Ling Z, Zhu Y, Wang F, Zou X, Chen M (2017) Hypoxia-induced extracellular vesicles mediate protection of remote ischemic preconditioning for renal ischemia-reperfusion injury. Biomed Pharmacother 90:473–478. https://doi.org/10.1016/j.biopha.2017.03.096

    Article  CAS  PubMed  Google Scholar 

  82. Wang B, Jia H, Zhang B, Wang J, Ji C, Zhu X, Yan Y, Yin L, Yu J, Qian H, Xu W (2017) Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Res Ther 8(1):75. https://doi.org/10.1186/s13287-016-0463-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, Tapparo M, Biancone L, Gontero P, Frea B, Camussi G (2017) The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther 8(1):24. https://doi.org/10.1186/s13287-017-0478-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dominguez JH, Liu Y, Gao H, Dominguez JM 2nd, Xie D, Kelly KJ (2017) Renal tubular cell-derived extracellular vesicles accelerate the recovery of established renal ischemia reperfusion injury. J Am Soc Nephrol 28(12):3533–3544. https://doi.org/10.1681/asn.2016121278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bruno S, Tapparo M, Collino F, Chiabotto G, Deregibus MC, Soares Lindoso R, Neri F, Kholia S, Giunti S, Wen S, Quesenberry P, Camussi G (2017) Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng Part A 23(21–22):1262–1273. https://doi.org/10.1089/ten.TEA.2017.0069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zou X, Gu D, Zhang G, Zhong L, Cheng Z, Liu G, Zhu Y (2016) NK cell regulatory property is involved in the protective role of msc-derived extracellular vesicles in renal ischemic reperfusion injury. Hum Gene Ther 27(11):926–935. https://doi.org/10.1089/hum.2016.057

    Article  CAS  PubMed  Google Scholar 

  87. Zou X, Gu D, Xing X, Cheng Z, Gong D, Zhang G, Zhu Y (2016) Human mesenchymal stromal cell-derived extracellular vesicles alleviate renal ischemic reperfusion injury and enhance angiogenesis in rats. Am J Transl Res 8(10):4289–4299

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G, Chen M, Zhu Y (2016) Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res 41(2):119–128. https://doi.org/10.1159/000443413

    Article  CAS  PubMed  Google Scholar 

  89. Vinas JL, Burger D, Zimpelmann J, Haneef R, Knoll W, Campbell P, Gutsol A, Carter A, Allan DS, Burns KD (2016) Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int 90(6):1238–1250. https://doi.org/10.1016/j.kint.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  90. Shen B, Liu J, Zhang F, Wang Y, Qin Y, Zhou Z, Qiu J, Fan Y (2016) CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury. Stem Cells Int 2016:1240301. https://doi.org/10.1155/2016/1240301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin KC, Yip HK, Shao PL, Wu SC, Chen KH, Chen YT, Yang CC, Sun CK, Kao GS, Chen SY, Chai HT, Chang CL, Chen CH, Lee MS (2016) Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury. Int J Cardiol 216:173–185. https://doi.org/10.1016/j.ijcard.2016.04.061

    Article  PubMed  Google Scholar 

  92. Gu D, Zou X, Ju G, Zhang G, Bao E, Zhu Y (2016) Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int 2016:2093940. https://doi.org/10.1155/2016/2093940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Almeida DC, Bassi EJ, Azevedo H, Anderson L, Origassa CS, Cenedeze MA, de Andrade-Oliveira V, Felizardo RJ, da Silva RC, Hiyane MI, Semedo P, Dos Reis MA, Moreira-Filho CA, Verjovski-Almeida S, Pacheco-Silva A, Camara NO (2016) A regulatory miRNA-mRNA network is associated with tissue repair induced by mesenchymal stromal cells in acute kidney injury. Front Immunol 7:645. https://doi.org/10.3389/fimmu.2016.00645

    Article  CAS  PubMed  Google Scholar 

  94. Ju GQ, Cheng J, Zhong L, Wu S, Zou XY, Zhang GY, Gu D, Miao S, Zhu YJ, Sun J, Du T (2015) Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS ONE 10(3):e0121534. https://doi.org/10.1371/journal.pone.0121534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Burger D, Vinas JL, Akbari S, Dehak H, Knoll W, Gutsol A, Carter A, Touyz RM, Allan DS, Burns KD (2015) Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes. Am J Pathol 185(8):2309–2323. https://doi.org/10.1016/j.ajpath.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  96. Zou X, Zhang G, Cheng Z, Yin D, Du T, Ju G, Miao S, Liu G, Lu M, Zhu Y (2014) Microvesicles derived from human Wharton's Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 5(2):40. https://doi.org/10.1186/scrt428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang G, Zou X, Miao S, Chen J, Du T, Zhong L, Ju G, Liu G, Zhu Y (2014) The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats. PLoS ONE 9(3):e92129. https://doi.org/10.1371/journal.pone.0092129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Herrera Sanchez MB, Bruno S, Grange C, Tapparo M, Cantaluppi V, Tetta C, Camussi G (2014) Human liver stem cells and derived extracellular vesicles improve recovery in a murine model of acute kidney injury. Stem Cell Res Ther 5(6):124. https://doi.org/10.1186/scrt514

    Article  CAS  PubMed  Google Scholar 

  99. Choi HY, Moon SJ, Ratliff BB, Ahn SH, Jung A, Lee M, Lee S, Lim BJ, Kim BS, Plotkin MD, Ha SK, Park HC (2014) Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury. PLoS ONE 9(2):e87853. https://doi.org/10.1371/journal.pone.0087853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4(2):34. https://doi.org/10.1186/scrt194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kilpinen L, Impola U, Sankkila L, Ritamo I, Aatonen M, Kilpinen S, Tuimala J, Valmu L, Levijoki J, Finckenberg P, Siljander P, Kankuri E, Mervaala E, Laitinen S (2013) Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.21927

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, Tetta C, Camussi G (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS ONE 7(3):e33115. https://doi.org/10.1371/journal.pone.0033115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, Camussi G (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transpl 26(5):1474–1483. https://doi.org/10.1093/ndt/gfr015

    Article  CAS  Google Scholar 

  104. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067. https://doi.org/10.1681/asn.2008070798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cantaluppi V, Medica D, Mannari C, Stiaccini G, Figliolini F, Dellepiane S, Quercia AD, Migliori M, Panichi V, Giovannini L, Bruno S, Tetta C, Biancone L, Camussi G (2015) Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transpl 30(3):410–422. https://doi.org/10.1093/ndt/gfu364

    Article  CAS  Google Scholar 

  106. Hodgson LE, Selby N, Huang TM, Forni LG (2019) The role of risk prediction models in prevention and management of AKI. Semin Nephrol 39(5):421–430. https://doi.org/10.1016/j.semnephrol.2019.06.002

    Article  PubMed  Google Scholar 

  107. Sykes L, Nipah R, Kalra P, Green D (2018) A narrative review of the impact of interventions in acute kidney injury. J Nephrol 31(4):523–535. https://doi.org/10.1007/s40620-017-0454-2

    Article  PubMed  Google Scholar 

  108. Malhotra R, Kashani KB, Macedo E, Kim J, Bouchard J, Wynn S, Li G, Ohno-Machado L, Mehta R (2017) A risk prediction score for acute kidney injury in the intensive care unit. Nephrol Dial Transpl 32(5):814–822. https://doi.org/10.1093/ndt/gfx026

    Article  CAS  Google Scholar 

  109. Abdelaziz TS, Fouda R, Hussin WM, Elyamny MS, Abdelhamid YM (2020) Preventing acute kidney injury and improving outcome in critically ill patients utilizing risk prediction score (PRAIOC-RISKS) study. A prospective controlled trial of AKI prevention. J Nephrol 33(2):325–334. https://doi.org/10.1007/s40620-019-00671-6

    Article  CAS  PubMed  Google Scholar 

  110. Zhang WR, Parikh CR (2019) Biomarkers of acute and chronic kidney disease. Annu Rev Physiol 81:309–333. https://doi.org/10.1146/annurev-physiol-020518-114605

    Article  CAS  PubMed  Google Scholar 

  111. Silver SA, Harel Z, Harvey A, Adhikari NK, Slack A, Acedillo R, Jain AK, Richardson RM, Chan CT, Chertow GM, Bell CM, Wald R (2015) Improving care after acute kidney injury: a prospective time series study. Nephron 131(1):43–50. https://doi.org/10.1159/000438871

    Article  PubMed  Google Scholar 

  112. Silver SA, Siew ED (2017) Follow-up care in acute kidney injury: lost in transition. Adv Chronic Kidney Dis 24(4):246–252. https://doi.org/10.1053/j.ackd.2017.05.008

    Article  PubMed  Google Scholar 

  113. Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, Ray JG, Luo J, Li P, Quinn RR, Forster A, Perl J, Bell CM (2013) Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int 83(5):901–908. https://doi.org/10.1038/ki.2012.451

    Article  PubMed  Google Scholar 

  114. KDIGO (2012) KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-Blood-Pressure-Guideline-English.pdf(online im Internet)

Download references

Funding

This study was (partially) funded by the Italian Ministry of Education, University and Research (MIUR) program “Departments of Excellence 2018-2022”, AGING Project—Department of Translational Medicine, Università del Piemonte Orientale (UPO). HR was supported by grants from the NIDDK and philanthropic gifts from Rogelio Miro and Sammy Eldin. JTK was supported with a scholarship by the Dr. Werner Jackstädt-Foundation (project number S 134–10.117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rabb.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

V. Cantaluppi: On behalf of the AKI and CRRT Project Group of the Italian Society of Nephrology (SIN).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurzhagen, J.T., Dellepiane, S., Cantaluppi, V. et al. AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 33, 1171–1187 (2020). https://doi.org/10.1007/s40620-020-00793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00793-2

Keywords

Navigation