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Abstract
Patients with chronic kidney disease (CKD) have a greatly enhanced risk of cardiovascular morbidity and mortality. Over 
the past decade it has come clear that a disturbed calcium-phosphate metabolism, with Fibroblast Growth Factor-23 as a key 
hormone, is partly accountable for this enhanced risk. Numerous studies have been performed unravelling FGF23s actions 
and its association with clinical conditions. As FGF23 is strongly associated with adverse outcome it may be a promising 
biomarker for risk prediction or, even more important, targeting FGF23 may be a strategy to improve patient outcome. This 
review elaborates on the clinical usefulness of FGF23 measurement. Firstly it discusses the reliability of the FGF23 meas-
urement. Secondly, it evaluates whether FGF23 measurement may lead to improved patient risk classification. Finally, and 
possibly most importantly, this review evaluates if lowering of FGF23 should be a target for therapy. For this, the review 
discusses the current evidence indicating that FGF23 may be in the causal pathway to cardiovascular pathology, provides an 
overview of strategies to lower FGF23 levels and discusses the current evidence concerning the benefit of lowering FGF23.
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Introduction

Chronic kidney disease (CKD) is a major health concern, 
given its high prevalence and associated cardiovascular mor-
bidity and mortality, leading to a high rate of health care 
consumption [1]. This high burden of cardiovascular disease 
(CVD) is seen in CKD stage 3 and beyond. Although tradi-
tional risk factors, such as hypertension, diabetes and smok-
ing contribute to the development of CVD in CKD, they 
cannot fully explain the high incidence of cardiovascular 
mortality in these patients [2, 3]. Disturbances in calcium-
phosphate homeostasis are probably contributing to this 
high mortality risk [4]. A key hormone, in the regulation 
of calcium-phosphate homeostasis is the 32-kDa peptide 
Fibroblast Growth Factor-23 (FGF23). This hormone was 
discovered in the early 2000s in patients with autosomal 
dominant hypophosphataemic rickets (ADHR) [5]. This 

disease is characterized by hypophosphatemia and hyper-
phosphaturia resulting in growth retardation, bone deformi-
ties and rickets [6, 7]. FGF23 appeared to be the humoral 
factor to induce this excess renal phosphate loss. FGF23 
is secreted by osteocytes in bone and is one of the three 
regulators of phosphate homeostasis, together with PTH and 
1,25 dihydroxycholecalciferol (1,25(OH)2D3). The first two 
hormones both have phosphate lowering effects by decreas-
ing tubular phosphate reabsorption by downregulation of 
the sodium dependent phosphate transporters (NaPi2a and 
NaPi2c) [8], but have opposite effects on vitamin D regula-
tion, which is activated by PTH, but catabolized by FGF23 
[9–12] (see Fig. 1). FGF23 acts on its main target organs, the 
kidney and parathyroid, by binding to the FGF23 receptors 
with α-Klotho as a co-receptor. This co-receptor is gener-
ally considered to be necessary to induce intracellular signal 
transduction, at least so for FGFR1 [13–15].

Nowadays FGF23 has gained wide attention in chronic 
kidney disease associated mineral bone disease (CKD-
MBD) and appears to be a candidate as missing link between 
chronic kidney disease and cardiovascular morbidity and 
mortality. FGF23 levels increase during progression of CKD 
[16, 17]. Although this, initially physiological, adaptation 
is crucial for maintaining phosphate balance in early CKD, 
prolonged exposure and extreme concentrations in advanced 
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CKD may have deleterious effects, in particular on the car-
diovascular system [18–20]. Several observational studies 
showed an independent association between FGF23 levels 
and adverse outcome through all stages of CKD.

Over the last decade a legion of studies has been pub-
lished on FGF23, unravelling its biology, physiological 
actions and its association with clinical conditions. Some 
epidemiological data and experimental studies suggest that 
FGF23 not only acts as regulator of parathyroid hormone 
(PTH), vitamin D, or phosphorus, but may actually be in 
the causal pathway to cardiovascular pathology. However, 
definite proof of causality is lacking, since many questions 
still remain. This review will focus on the clinical usefulness 
of FGF23 as a biomarker and its potential use as a target for 
therapy.

Reliability of FGF23 measurement

Currently, FGF23 is rarely measured in routine clinical 
practice. There are four immunoassays commercially avail-
able for measurement of FGF23: Immutopics (1st and 2nd 
generation, San Clemente, USA), Kainos (Tokyo, Japan), 
Millipore (Billerica, USA) and DiaSorin (Saluggia, Italy). 
Most assays measure the intact 251 amino-acid protein 
(iFGF23) by simultaneous recognition of epitopes on the 
N- and C-terminal domains close to the proteolytic cleavage 
site. Additionally, Immutopics has an assay which meas-
ures both iFGF23 and the C-terminal fragment of FGF23 
(cFGF23) by two antibodies against two epitopes within the 
C-terminal portion.

The four assays differ substantially as they are using dif-
ferent antibodies targeting different epitopes on the FGF23 
protein. Besides different reported units [iFGF23 in pico-
grams per milliliter (pg/ml) and cFGF23 in relative units 
(RU) per milliliter], absolute values between the assays vary 
substantially due to different calibration, and no harmoniza-
tion has ever been conducted [21, 22].

If FGF23 would be used as a new biomarker certain 
issues need to be assessed. An ideal biomarker would be 
stable (no degradation ex vivo), show minimal diurnal vari-
ability and the analysis should be accurate, reproducible and 
affordable [23].

Stability of FGF23

There are several studies performed to assess the stability of 
FGF23, since intact FGF23 may be degraded by proteases 
or modified after blood withdrawal. First of all, iFGF23 is 
significantly more stable in plasma (EDTA) than in serum 
[24]. Even if samples after venepuncture are directly centri-
fuged and processed, there is the possibility of direct post-
venepuncture instability of FGF23. The latter was inves-
tigated by Dirks et al. who found no differences between 
FGF23 concentrations in normal EDTA collecting tubes 
compared to tubes pre-coated with a protease-inhibitor, sug-
gesting that no immediate protein proteolysis occurs after 
normal blood withdrawal [25].

However, when centrifugation is delayed a significant 
decrease of intact FGF23 concentrations was observed in 
several studies, both in healthy volunteers as well as in 
patients on dialysis, of 12% with the Immutopics assay, 

Fig. 1  FGF23 physiol-
ogy. Figure with permission 
adapted from Vervloet et al. 
Nature Reviews Nephrology 
2017 (155) FGF23; Fibroblast 
growth factor 23, factor-23; 
Na-Pi-2a; Sodium-Phosphate 
co=transporter 2a
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7% with the Millipore assay and 5% with the Kainos assay 
(all p < 0.05) [25]. This confirmed two earlier studies that 
showed 23% reduction of FGF23 measured after a 8 h delay 
of centrifugation (compared with prompt centrifugation) 
using the second generation Immutopics assay [21]. Com-
parable reductions were found with the Millipore and Kainos 
assays [21, 26]. With the DiaSorin assay no such decrease in 
FGF23 concentrations was found [27].

Also, post-centrifugal stability of intact FGR 23 has 
been tested. No decrease of intact FGF23 concentrations 
are observed when in directly centrifuged samples delayed 
measurement of intact FGF23 was performed (after 8 h or 
more) with all the four currently used assays [25, 28, 29]. 
Besides, there are no indications of degradation of intact 
FGF23 after storage of processed samples at − 80 °C [25].

Biological variability

In healthy subjects, iFGF23 is subject to significant diur-
nal variation as iFGF23 concentrations peak in the early 
morning and fall during the day (mean decrease of 25%) 
[30, 31]. In contrast, cFGF23 concentrations show only a 
modest non-significant increase during the day [31]. The 
inequality of diurnal variation between iFGF23 and cFGF23 
concentrations likely reflects the difference in clearance of 
the intact protein or its C-terminal fragment [32]. iFGF23 
concentrations increase after phosphate intake with a delay 
of at least 12 h [31, 33]. Therefore it is preferable when 
measuring iFGF23 to use fasting samples or early morn-
ing samples as it is shown that iFGF23 concentrations in 
early morning samples are comparable to fasting samples 
[30]. In contrast, cFGF23 shows no significant postprandial 
changes in healthy individuals or patients with early CKD 
[31, 34, 35]. It is unlikely that a circadian rhythm is of clini-
cal relevance in situations like advanced CKD, where FGF23 
levels are extremely elevated.

Accuracy and reproducibility of methods for FGF23 
measurement of different assays

In healthy adults, the 95% reference limits for plasma 
iFGF23 is 11.7–48.6 pg/ml and for cFGF23 21.6–91.0 RU/
ml [30]. The intra- and inter-assay coefficient of variation 
are respectively, < 2.4% and < 4.7% for the second genera-
tion Immutopics cFGF23, < 9.7% and < 14% for the Kainos 
assay [36], < 2.9% and < 6.3% for the DiaSorin assay [28], 
and lastly, < 10% and < 8% for the Millipore assay. These 
latter variations are values provided by the manufacturer. 
The Millipore assay also reports to have a wider functional 
analytical range, this comes at the expense of poor sensitiv-
ity at low concentrations [21]. The first generation intact 
assay of Immutopics had an unacceptably high inter-assay 

coefficient of variation [36], that was substantially improved 
in the second generation assay to < 5% [37].

In patients on dialysis FGF23 concentrations become 
very high (frequently exceeding 100,000 RU/ml in prevalent 
patients). As the functional analytical range of the avail-
able assays is limited, large dilutions may be necessary to 
bring the concentration within this range. Another problem 
is that in patients on haemodialysis substantial intra-indi-
vidual (week-to-week) variation in cFGF23 concentration 
has been reported [38, 39]. For all commercially available 
assays applies that they have not been validated for clinical 
use. Age- and renal function adapted reference ranges have 
not been established yet.

Using intact or c‑terminal FGF23 assay and when?

The measurement of cFGF23 has, as earlier stated, the 
advantage of little diurnal variation and has more desirable 
variance characteristics with higher inter-individual than 
intra-individual variation. Besides, cFGF23 is more consist-
ently associated with outcome as shown in the meta-analysis 
of Xiao et al. in which c-term FGF23 was associated with 
mortality in HD patients whereas iFGF23 measurement did 
not correlate to mortality [40]. Furthermore cFGF23 is a 
better predictor for identifying patients with declining renal 
function [41], atherosclerosis associated cardiovascular dis-
ease and heart failure [42]. Therefore, the cFGF23 assay may 
outperform the iFGF23 assay for clinical use, especially for 
the purpose of patients individuals risk assessment.

However, iFGF23 may better represent the biological 
effect of FGF23 [43], especially since it is reported that the 
c-terminal fragments might have counter-regulator effects 
to the biologically active full-length hormone [32]. A recent 
study on the effect of dietary phosphate restriction on FGF23 
levels found a more pronounced effect on iFGF23, than on 
cFGF23 [44].

FGF23 as a risk predictor

FGF23 is associated with progression of kidney failure and 
initiation of dialysis [41, 45–49]. This raises the question if 
FGF23 measurement might be a useful tool for risk predic-
tion for progression of CKD and for other adverse outcome. 
Tangri et al. developed a model to predict progression of 
CKD that was validated in thirty-one cohorts, including 
721,357 participants with CKD stages 3 to 5 (including 
age, gender, eGFR, albuminuria, serum calcium, serum 
phosphate, serum bicarbonate, and serum albumin) with 
a good performance of overall C-statistics (0.90; 95% CI 
0.89–0.92). Several studies evaluated if FGF23 was able to 
improve this predictive value using specific statistics such as 
the area under the ROC curve and net reclassification index 
(NRI) statistics [50]. However, only one small study found 
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that adding FGF23 to a base model improved the agree-
ment of predicted and observed probability of renal function 
decline [51], all other studies found no significant improve-
ment of risk prediction for decline in renal function or ESRD 
with the addition of FGF23 [49, 52–54].

However, for the prediction of all-cause mortality it 
has been reported that FGF23 might have added value in 
patients with CKD. [49, 53, 54] In a large study from the 
CRIC cohort by Edmonston et al. an improved prediction 
for all-cause mortality and hospital admission for heart fail-
ure was found when FGF23 concentration was added to the 
model, but the NRI did not reach statistical significance. For 
cardiovascular mortality no improved risk prediction was 
found [54]. Furthermore, in patients on hemodialysis, addi-
tion ofFGF23 did not improve risk prediction for mortality 
[55, 56].

Concerning cardiovascular events, FGF23 does not con-
sistently improve prediction of novel events in hemodialy-
sis patients [57]. Although one study showed that FGF23 
improved prediction of fatal and non-fatal cardiovascular 
events in predialysis patients [49], another study showed 
small improvement of prediction only, yet without improved 
(NRI) classification. However, other studies showed no 
improvement at all [42, 54]. Interestingly the study by 
Emrich et al. found that when NT proBNP was added to the 
model the predictive value of FGF23 was largely eliminated 
and NT proBNP had a much stronger discriminating ability 
than FGF23 [42]. Overall, FGF23 only marginally improved 
the prediction for outcome. An overview of several risk pre-
dicting studies is provided in Table 1.

Future studies should evaluate whether multiple measure-
ments of FGF23 may be advantageous compared to a single 
measurement for individual patients risk assessment in those 
with CKD, as it was shown that especially increasing FGF23 
concentrations over time are associated with increased mor-
tality [58, 59].

Apart from being a risk predictor, FGF23 might serve 
as an useful tool to identify patients to benefit from certain 
therapy. Udell et al. showed in their study among patients 
with stable ischemic heart disease that FGF23 was able 
to identify patients profiting from angiotensin-converting 
enzyme inhibitor therapy resulting in reduced cardiovascular 
death or incident heart failure [60].

Indications of FGF23 toxicity from epidemiological 
studies

The question however arises if FGF23, besides being a 
potential risk predictor for adverse outcomes, might also 
have an instrumental role in the pathogenesis of complica-
tions. A great number of epidemiological studies sought an 
answer to this question.

Mortality

One of the first studies to report an association between 
FGF23 and mortality was the study by Gutierrez et al. [61] 
In this nested case control study among incident haemodi-
alysis patients, a concentration dependent effect of FGF23 
levels on mortality was observed. Even more interesting, 
this association became stronger after multiple adjustments, 
including adjustment for serum phosphate. This observation 
was confirmed in subsequent studies that followed, mainly 
in incident HD patients [62–65]. However, this finding is 
not consistent, as other studies found no association between 
FGF23 and mortality in patients on haemodialysis [66–70]. 
Overall, when 8 studies in patients on haemodialysis were 
pooled, a relative risk for the highest third of FGF23 ver-
sus the lowest third of FGF23 of 1.5 (95% CI 1.29–1.73) 
for all-cause mortality and of 1.42 (95% CI 0.96–2.39) for 
cardiovascular mortality was found the meta-analysis by 
Marthi et al. [71] Remarkably, the association of FGF23 
with mortality is stronger in CKD patients not on dialysis 
despite much lower absolute levels of FGF23 [45, 46, 49, 
53, 72–75]. Concerning the general population, although 
there are a few studies that found no association of FGF23 
with all-cause mortality ([76, 77] most epidemiological 
studies (some consisting of great number of participants), 
report modest associations, even when adjusted for eGFR 
[75, 77–80].

Cardiovascular disease; myocardial infarction and stroke

In a post hoc analysis of the EVOLVE trial (vide infra) by 
Moe et al. among nearly three thousand patients on dialy-
sis, FGF23 was statistically significantly associated with the 
incidence of myocardial infarction [81], an association also 
found in CKD [45, 75] and in the general population [82, 
83]. However, for ischaemic stroke, no consistent association 
with FGF23 was found in in patient on dialysis [81], nor in 
the general population [75, 84]. Although some reports do 
suggest an association may exist with haemorrhagic stroke 
or thromboembolic stroke [82, 85, 86]. Concerning patients 
with pre-dialysis CKD, one cohort consisting of nearly four 
thousand patients found an association between FGF23 and 
a composite endpoint including myocardial infarction, stroke 
and peripheral vascular disease [87], an observation con-
firmed in other CKD cohorts and in the meta-analysis by 
Marthi et al. [45, 71, 75].

Left ventricular hypertrophy

There are epidemiological data linking FGF23 and left ven-
tricular hypertrophy (LVH). The relatively small studies by 
Hsu et al. in 2009 and by Kirkpantur et al. in 2011 found 
an positive association between FGF23 and left ventricular 
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mass in haemodialysis patients [66, 88]. However, in a sub 
analysis of the Evolve trial, among nearly three thousand 
haemodialysis patients, there was no association of FGF23 
with heart failure [71, 81]. In CKD patients not on dialy-
sis, the association with heart failure is more consistent. 
Although the study by Bouma -de Krijger et al. in in the 
Masterplan cohort found no association between FGF23 and 
congestive heart failure [73], other studies did report such an 
association [18, 75, 87, 89, 90]. Most epidemiological stud-
ies in the general population, one consisting of eleven thou-
sand participants [79], also found an association between 
FGF23 and heart failure [79, 83, 91–93]. Combining sev-
eral population studies [79, 83, 84, 91], the meta-analysis 
by Marthi et al. calculated a relative risk of FGF23 on heart 
failure of 1.24 (95% CI 1.29–1.69) for the highest versus the 
lowest tertile of FGF23 [71].

Is there evidence that FGF23 can directly induce 
tissue pathology leading to organ damage?

Apart from its associations with clinical events in etiologi-
cal driven epidemiological analyses, numerous experimental 
studies investigated potential mechanisms by which FGF23 
might induce cardiovascular pathology.

FGF23 as a cause for left ventricular hypertrophy

Left ventricular hypertrophy (LVH) is an important con-
tributor to cardiovascular morbidity in patients with CKD 
and LVH is associated with high FGF23 concentration [18]. 
Several studies explored the potential mechanisms by which 
FGF23 might induce LVH. For this, Faul et al. administered 
recombinant FGF23 (rFGF23) to isolated cardiomyocytes 
and to wild type and klotho deficient mice, where subse-
quently hypertrophic growth of the myocytes and cardiac 
hypertrophy in mice was observed, even so in the klotho 
knock-out animals [18]. FGF23 activated the FGF Recep-
tor leading to calcineurin and nuclear factor of activated T 
cells (NFAT) signalling in cardiomyocytes. When a pan-
FGF Receptor blocker was added to the CKD mice model, 
LVH was attenuated [18, 94]. Subsequent studies identified 
FGFR4 as the klotho-independent receptor for FGF23 on 
cardiomyocytes [95]. Specific blockade of FGFR4 by an 
antibody inhibited hypertrophy in the isolated cardiac myo-
cytes and mice lacking the FGFR4 did not develop LVH in 
response to FGF23 [96], establishing FGFR4 as the receptor 
involved in FGF23-induced LVH [97]. However, these find-
ings are not consistently reported, as in a transgenic mouse 
model of CKD, with high serum phosphate and FGF23, no 
signs of pathological cardiac remodelling were found [98].

Interestingly, LVH itself causes cardiac expression of 
FGF23. Matsui et al. developed two mice models of LVH. 
In both the transgenic and the pressure overload models, 

increased expression of FGF23 in the cardiomyocyte (induc-
ing NFAT signaling) followed the development of LVH, 
while bone expression of FGF23 remained normal [99]. 
These findings were confirmed in an experimental animal 
models and in humans where, after myocardial infarction, 
expression of FGF23 in the heart is described [100, 101]. 
The upregulation of FGFR4 receptor, the culprit receptor 
for FGF23-induced cardiotoxicity, in the myocardium might 
further contribute to hypertrophy, which would imply a feed-
forward loop [102].

However, contradictory to the above findings, are the 
results of different mouse models of x-linked hypophos-
phatemia (XLH). Mice models of XLH have excess FGF23 
production, yet those mice do not develop cardiac hypertro-
phy [103, 104]. This finding is confirmed in XLH patients, 
where no cardiac hypertrophy is observed [105]. There are 
several possible explanations for these contractionary find-
ings. Unlike the situation in CKD, XLH is accompanied with 
low serum phosphate, normal blood pressure, serum calcium 
and renal function, and the absence of vascular calcification, 
and this very different phenotype may explain the discor-
dancy. Also, in end stage CKD, FGF23 concentrations can 
reach values that are more than 1000 fold above normal, and 
as such much higher than in patients with XLH. Also, the 
different animal models of LVH had a variety of systemic 
alterations, such as high phosphate, uraemia or hypertension. 
It is possible that the deleterious effect of high FGF23 levels 
might result from a synergy between those abnormalities.

FGF23 and vascular calcification

Another mechanism contributing to the high burden of 
cardiovascular disease and mortality in CKD is arte-
rial stiffness [106]. This can be worsened, among other 
causes, by vascular calcification or endothelial dysfunc-
tion. Arterial stiffness, regardless of its cause, increases 
pulse wave velocity, promotes the development of left 
ventricular hypertrophy, and can result in heart failure. 
An unresolved question is whether FGF23 can directly 
act on vascular cells to promote or inhibit matrix calcifi-
cation. Two studies, by Scialla et al. and Lindberg et al., 
performed with vascular smooth muscle cells in vitro, 
showed no calcification when FGF23 was added [107, 
108]. Also aortic rings or ex vivo mesenteric arteries of 
mice showed no calcification or changed vasoreactivity 
in response to FGF23 [107, 108]. On the other hand, Zhu 
et al. reported that addition of recombinant FGF23 had a 
protective effect on calcification in cultured murine SMCs 
[109]. In contrast, Jimbo et al. showed that FGF23 ampli-
fied Pi-induced calcification in cultured human vascu-
lar SMCs overexpressing α-Klotho [110]. Other studies 
focussed on the presence of α-klotho expression, necessary 
for FGFR1-mediated FGF23 action, in the vasculature. 
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However, these results are also conflicting. Although some 
studies reported α-klotho expression and FGF23 signalling 
through FGFR1s receptor activation in the arterial wall 
[109–111], more compelling evidence refutes its presence 
[107, 112, 113].

FGF23 and endothelial dysfunction

As outlined, besides medial layer calcification, endothe-
lial dysfunction can also contribute to arterial stiffness. 
Yilmaz et al. found a negative association between FGF23 
and flow-mediated vasodilation (FMD) accompanied by 
increased concentrations of asymmetrical dimethyl argi-
nine (ADMA), an endogenous competitive inhibitor of 
the vasodilator nitric oxide (NO) [114]. Since FGF23 and 
ADMA are both associated with progression of CKD, 
ADMA was added to a statistical model and was found 
to attenuate the effect of FGF23 on FMD. In two cohorts 
of CKD patients Tripepi et al. found a strong competitive 
interaction between FGF23 and ADMA suggesting that 
FGF23 is a modifier for ADMA levels, leading to dys-
regulation of the nitric oxide system associated with CKD 
progression [115].

Different experimental models have been used to explore 
this aspect of potential FGF23 toxicity. In an ex vivo model 
of isolated mice aortic rings, addition of recombinant FGF23 
increased superoxide levels and reduced the bioavailabil-
ity of nitric oxide in endothelial cells resulting in impaired 
relaxation [116]. When a pan FGF23 blocker was adminis-
tered this effect was eliminated. Another experimental study 
suggested that the effect of FGF23 on endothelial cells is 
mediated by reactive oxygen species (ROS) that negatively 
influence arterial vasodilator capacity [117]. In that study 
mouse and human aortic rings (the latter obtained after aor-
tic valve bypass surgery) and umbilical cord subjected to 
high concentrations of recombinant FGF23, recombinant 
soluble Klotho or phosphate in parallel showed increased 
ROS production. Addition of sKlotho attenuated the effect 
of FGF23 and Pi through increasing NO production, thereby 
protecting the vessel to some extend against the potentially 
noxious effects of high phosphate or FGF23 concentrations. 
In the study by Verkaik et al. resistance arteries from mice 
with renal failure and healthy mouse were studied ex vivo. 
They showed that pre-treatment with recombinant FGF23 
impaired acetylcholine (Ach)-induced vasodilatation, which 
was restored after administration of FGF23 blocking anti-
bodies regardless of the presence of renal failure.

Collectively, there is evidence that FGF23 induces arterial 
stiffness. This can be attributed to a large extent to impaired 
endothelial function, but unlikely to arterial calcification. 
This effect on endothelial layer mediated arterial stiffness 
would provide a rationale to target FGF23 as treatment goal. 

Obviously, before implementing such an approach, this 
needs clinical proof from prospective trials.

Is FGF23 modifiable?

There are several potential strategies for reducing excess 
FGF23 levels or bioactivity, principally through dietary 
phosphate restriction or use of oral phosphate binders, by 
inhibiting FGFR signalling, by FGF23 blocking agents, and 
by the use of calcimimetics. In addition, in patients on dialy-
sis, hemodiafiltration is able to reduce of FGF23 levels.

Dietary phosphate restriction to lower FGF23

Several studies evaluated if FGF23 could be reduced by the 
use of dietary phosphate restriction. Most studies in healthy 
individuals with normal kidney function reported a decline 
of intact FGF23 with dietary phosphate restriction and an 
increased iFGF23 after a phosphate-enriched diet. Stud-
ies in CKD found also a reduction of intact FGF23 with a 
phosphate restricted diet and increased FGF23 with dietary 
phosphate loading [118–120]. Interestingly, studies that 
measured C-terminal FGF23 did not report modification 
of cFGF23 with either phosphate loading or restriction, in 
healthy participants [31, 34, 35], as well as in patients with 
CKD [121, 122]. A possible explanation for this different 
findings for iFGF23 and cFGF23 was postulated by Smith 
et al. in their review on the different FGF23 assays [23]. 
They hypothesized that dietary phosphate loading might 
lead to enhanced FGF23 stability, thus a greater propor-
tion of biologically active intact compared to the C-termi-
nal peptide, in order to restore phosphate homeostasis. Of 
importance is that not only the absolute phosphate content in 
food counts, but also the source of phosphate matters, since 
bioavailability of phosphate is different between organic 
and inorganic phosphate. Phosphate as a food additive (for 
taste or conservation) is inorganic phosphate and is easily 
absorbed (bioavailability above 90%) compared to organic 
phosphate derived from vegetables such as in peas, nuts and 
cereals (absorption between 40 and 60%). The study by Moe 
et al. in CKD patients, elegantly showed that a vegetarian 
diet compared to a meat diet, despite both diets containing 
comparable amounts of phosphate, induced a decrease in 
iFGF23, whereas iFGF23 increased in the meat diet [123].

Lowering FGF23 by phosphate binders

Table 2 provides an overview of several different interven-
tion trials using phosphate binders that also reported effects 
on FGF23 levels. When calcium-containing phosphate 
binders were used, all of six studies reported no decrease 
of FGF23 [124–129]. Block et al. even found in their pla-
cebo controlled trial among 148 patients with moderate 
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CKD (eGFR 20–45 ml/min/1.73  m2), an increase of intact 
FGF23 with the use of calcium acetate as a phosphate binder 
[127]. In that study, in which patients were randomized to 
either placebo, lanthanum carbonate, calcium acetate or 
sevelamer carbonate, only the group of patients receiv-
ing sevelamer carbonate had a significant decline of intact 
FGF23 compared to placebo. Interestingly, these findings 
were assay-dependent as these results were not found when 
the c-terminal assay was used. Other prospective interven-
tion studies that evaluated non-calcium based oral phosphate 
binders showed a similar pattern. Most studies in CKD 
patients measuring the intact FGF23 assay found a decrease 
of FGF23 with the use of either sevelamer [124–126, 128], 
or lanthanum carbonate [129–131] in CKD stage 2–5 
patients. Ketteler and colleagues did report a 64% reduction 
of intact FGF23 using sucroferric oxyhydroxide (Velphoro) 
in patients on dialysis [132]. However, several other stud-
ies in predialysis CKD did not find a reduction of FGF23 
levels with the use of sevelamer carbonate measuring intact 
FGF23 [133–136]. In addition, in several studies measuring 
c-terminal FGF23, no reduction was found after treatment 
with either lanthanum carbonate or sevelamer carbonate, 
sometimes even not so when combined with a low phos-
phate diet [121, 135, 137–140]. Only one of studies meas-
uring c-terminal FGF23 found a reduction of FGF23 with 
dietary phosphate restriction [122]. However, the group with 
FGF23 reduction in this study had a higher baseline FGF23 
concentration than the other groups making interpretation 
difficult. Another factor that might influence whether or not 
FGF23 reduction was achieved in the different studies, is the 
duration of phosphate binder use. Duration of therapy pos-
sibly should be 3-6 months or more since it is demonstrated 
that in kidney transplant patients high FGF23 levels may 
sustain for this period even when overt hypophosphatemia 
exists [141, 142], suggesting autonomous FGF23 produc-
tion, which vanishes only after time. As outlined in Table 2, 
most studies were of relatively short duration.

FGF23 antibodies and FGF23 receptor blockers

Burosumab is an FDA approved monoclonal antibody 
targeting FGF23 and was developed for the treatment of 
XLH. In FGF23-mediated hypophosphataemic disorders 
it improves hypophosphatemia and bone abnormalities in 
children [143]. However, there are no data on its use in CKD 
and its use might be even induce harm by disturbing the 
adaptive response of FGF23, as was shown in an experi-
mental model of CKD [144]. In that animal study, FGF23 
antibodies resulted in decrease of FGF23 and ameliorated 
uremic hyperparathyroidism. However, urinary phosphate 
excretion decreased and hyperphosphatemia developed, pro-
moting vascular calcification and increased mortality. The 
same observations were found in an experimental study with Ta
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a pan-FGFR inhibitor [145], showing that FGF23 remains 
necessary to maintain serum Pi levels within range, at least 
in non-dialysis dependent CKD. A more promising strategy 
might be to specifically inhibit FGFR4 signalling to prevent 
the development of LVH associated with high FGF23 levels 
[96]. However, this was only tested in an animal model and 
there are currently no data available to suggest a clinical 
benefit for patients with CKD.

Calcimimetics

Several studies showed that FGF23 concentrations can be 
reduced by the use of cinacalcet or etelcalcetide. In a ran-
domized trial by Wetmore et al. it was demonstrated that 
patients assigned to cinacalcet compared to low dose calci-
triol had a decrease of serum FGF23 concentrations [146]. 
However, it was not clear if this was caused by the rela-
tively low dose of active vitamin D in the cinacalcet treat-
ment arm, considering that active vitamin D being a strong 
stimulator of FGF23. The study by Koizumi et al. found 
that the decrease of FGF23 during cinacalcet treatment was 
independent of active vitamin D [147]. Also data from the 
Evolve trial showed that cinacalcet is a potent suppressor 
of FGF23 [81]. The newer intravenously used calcimimetic 
etelcalcetide appears to be an even more potent suppres-
sor of FGF23 compared to cinacalcet [148]. However, the 
mechanism by which cinacalcet or etelcalcetide suppresses 
FGF23 is unclear. Both a direct effect on the calcium sensing 
receptor on osteocytes or a decline of the calcium-phosphate 
product may have accomplished this effect.

Haemodiafiltration (HDF)

Previous studies have shown that FGF23 with its 32 kDa 
middle molecular size can be cleared by HDF and not by 
low-flux HD [149]. Several studies have shown a percent 
reduction of serum FGF23 within a single HDF session of 
around 50% (±  25%), with FGF23 detected in spent dialysate 
samples [150–152]. The study by Bouma et al. showed a sus-
tained decline FGF23 over time, of greater size with higher 
convection volume [70].

Is it useful to measure serial FGF23 concentrations?

Whether change of FGF23 better reflects risks and pos-
sibly impacts on outcomes is an open question. There are 
some studies that do shed some light in this issue. Prob-
ably the best of these is the study by Isakova on the CRIC 
cohort, consisting of 1135 patients with a mean eGFR of 
46.3 (± 14.7) ml/min per 1.73 m2. Although, the majority 
of patients from this cohort had stable FGF23 concentra-
tions during the 5 years of follow-up, patients with rapidly 
increasing FGF23 concentrations had an exceptionally high 

mortality risk [58]. Also, in a sub analysis of the CON-
TRAST study in prevalent haemodialysis patients, increas-
ing levels of FGF23 were associated with increased mortal-
ity [70]. Both studies found, in different populations, that 
increasing FGF23 is disadvantageous. However, the study 
by Jovanovich in over 900 dialysis patients showed that, 
although over 24 month stable low FGF23 concentration 
was associated with a favourable outcome compared to sta-
ble high FGF23 concentrations, the group with high FGF23 
in which FGF23 further increased over time, had no further 
increased risk for all-cause mortality [59]. More importantly, 
this study also showed that in patient with high baseline, 
and subsequently decreasing FGF23 concentrations had no 
improved risk for mortality. Likewise, in the sub analysis of 
the CONTRAST study, a decrease in FGF23 was not associ-
ated with improved mortality compared to a stable FGF23 
concentration. A secondary analysis of the EVOLVE trial 
[153] analysed the impact of cinacalcet-induced reductions 
in FGF23. This analysis, different from the studies discussed 
above, did suggest that decreasing FGF23 might be ben-
eficial [81]. Here, a more than 30% reduction of FGF23 in 
20 weeks among participants allocated to cinacalcet, was 
associated with a reduced risk on the composite outcome 
of cardiovascular mortality, sudden cardiac death and heart 
failure. Remarkably, in the placebo treated group there were 
also (yet fewer) patients with more than 30% FGF23 reduc-
tion, but in those patients no association with reduced risk 
on outcome was found. This suggests that not the decline 
of FGF23 itself, but the way it was achieved, determined 
the more favourable outcome. Since the main outcome of 
the EVOLVE trial demonstrated no improvement of the 
primary combined outcome in cinacalcet treated patients, 
FGF23 reduction probably just identified patients who might 
benefit more from cinacalcet treatment [153]. Since FGF23 
has been implicated with the development of LVH, Seifert 
et al. studied CKD patients with an increase of LVH over 
12 months. This worsening of LVH was not associated with 
an increase of FGF23 [154]. Moreover, Chue et al. identified 
in their study, among CKD patients treated with sevelamer, a 
subgroup with a decrease of FGF23, which was however not 
accompanied with a change in arterial stiffness, left ventricu-
lar mass or cardiac function [133]. Therefore, there is cur-
rently no compelling evidence that FGF23 reduction leads to 
improved outcome and this leaves the role of FGF23 in the 
pathway to adverse outcome still under debate.

FGF23 are we ready to use it in clinical practice? 
(conclusion)

In conclusion, FGF23 is a promising biomarker in CKD. 
Although the different FGF23 assays should be harmonized 
and assay specific reference intervals should be established, 
FGF23 measurement has shown to be consistently associated 
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for adverse outcome in different populations. Furthermore, 
FGF23 measurement was shown, and validated, to predict 
mortality in CKD. However, FGF23 has limited value in 
predicting progression of renal failure in CKD or in risk pre-
diction in patients on dialysis. Future studies should evaluate 
the predictive validity of repeated FGF23 testing. Increasing 
FGF23 concentrations over time, both in CKD and dialysis 
patients are associated with dismal outcomes.

Considering the fact that there is currently no, or very 
limited, evidence that FGF23 reduction leads to improved 
outcome, it is preliminary to use FGF23 concentrations as 
target for therapy in everyday clinical practice, despite the 
ability of dietary phosphate restriction and phosphate bind-
ers to lower FGF23 concentrations in CKD. For patients on 
haemodialysis both calcimimetics, non-calcium containing 
phosphate binders and HDF are effective modes to lower 
FGF23. The availability of interventions that lower FGF23 
sets the stage for clinical trials that target FGF23 (and not 
phosphate concentrations) and have clinical events as pri-
mary endpoint.
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