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Abstract
Oliguria is often observed in critically ill patients. However, different thresholds in urine output (UO) have raised discussion 
as to the clinical importance of a transiently reduced UO of less than 0.5 ml/kg/h lasting for at least 6 h. While some studies 
have demonstrated that isolated oliguria without a concomitant increase in serum creatinine is associated with higher mortal-
ity rates, different underlying pathophysiological mechanisms suggest varied clinical importance of reduced UO, as some 
episodes of oliguria may be fully reversible. We aim to explore the clinical relevance of oliguria in critically ill patients and 
propose a clinical pathway for the diagnostic and therapeutic management of an oliguric, critically ill patient.
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Introduction

Oliguria is observed in many critically ill patients and was 
one of the very first “biomarkers” of acute kidney injury 
(AKI) [1] being described as early as 100–200 AD by Ephe-
seus and Galen with Galen proposing a differential diag-
nostic pathway for the workup of an oliguric patient [2, 3]. 
The English physician Heberden later described renal failure 
accompanied by oliguria, at that time named as ‘ischuria 
renalis’ [1]. Although many new AKI biomarkers have been 
identified, oliguria is still of clinical importance, indeed all 
classification systems for AKI (RIFLE (Risk, Injury, Failure, 
Loss of kidney function, and End-stage kidney disease) [4], 
AKIN (Acute Kidney Injury Network) [5] and the KDIGO 
(Kidney Disease: Improving Global Outcomes) AKI criteria 
[6]) include urine output (UO) as part of the diagnostic cri-
teria for AKI. Oliguria is most commonly defined as a urine 
output < 0.5 ml/kg over a period of 6 h although different 

time periods as well as cut-offs have been described varying 
between 1 and 24 h [6, 7].

Epidemiology

A recent evaluation from intensive care patients found that 
nearly 50% experienced an episode of oliguria during their 
intensive care unit (ICU) stay [8]. Vaara et al. evaluated 
2160 critically ill patients and found that nearly 30% of 
these patients experienced oliguria (UO < 0.5 ml/kg/h for 
≥ 6 consecutive hours) and therefore fulfilled the criteria 
for oliguric AKI [9]. As was shown for an isolated serum 
creatinine (sCr) increase, oliguria per se is also associated 
with increased mortality. For example, one study found 
an increased ICU mortality in oliguric patients without 
a change in sCr (8.8%), which was similar to an isolated 
increase in sCr (10.4%). In both cases mortality rates were 
significantly higher than in patients without AKI (1.3%) [8]. 
A further large retrospective study with over 23,000 patients 
documented more adverse events in patients who reached 
maximum AKI stage according to both UO and creatinine 
criteria compared to UO or creatinine criteria alone. The 
observed mortality rates in patients with AKI at 90-days 
and 1-year when classified either by UO (19.1% and 28%) or 
creatinine (22.9% and 31.9%) were similar, but were much 
higher at 90 days and one year, respectively, in patients who 
reached maximum AKI stage using both criteria (37.8% and 
47.9%) [10]. Similar findings have been reported previously 

 *	 Michael Joannidis 
	 michael.joannidis@i‑med.ac.at

1	 Division of Intensive Care and Emergency Medicine, 
Department of Internal Medicine, Medical University 
Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria

2	 Department of Clinical and Experimental Medicine, Faculty 
of Health Sciences, University of Surrey, Guildford, UK

3	 Intensive Care Unit, Royal Surrey County Hospital NHS 
Foundation Trust, Guildford, UK

http://orcid.org/0000-0002-6996-0881
http://crossmark.crossref.org/dialog/?doi=10.1007/s40620-018-0539-6&domain=pdf


856	 Journal of Nephrology (2018) 31:855–862

1 3

by analyzing the multicenter international SAPS 3 database 
with data on 14,000 patients [11, 12]. Furthermore, in a 
recently published trial, a urine output < 0.5 ml/kg/h was 
associated with lower rates of resolving AKI (HR 0.31; 95% 
CI 0.20–0.47) [13]. This was also found in another trial of 
264 patients receiving CRRT for AKI after cardiac surgery, 
where significantly fewer patients with oliguria recovered 
renal function (40.2% vs. 62.5%, p < 0.001) [14].

However, despite a seemingly large body of evidence, it 
must be emphasised that most of these studies were retro-
spective with heterogeneous patient groups. Another limita-
tion of many studies examining oliguria and UO thresholds 
is the fact, that, with exception of two studies [15, 16], vol-
ume status was not specifically reported before assessment 
of oliguria [8, 9]. This might be of importance, since cor-
rection for volume expansion improves prediction of both 
UO and sCr KDIGO criteria with respect to mortality [17]. 
Furthermore, only one study adjusted for diuretic use in mul-
tivariate analysis [9], whilst most studies did not emphasize 
this important point [7, 12, 13]. Moreover, different time 
intervals for UO and sCr measurement were used and that 
the definition of baseline creatinine differed across studies. 

These factors can all contribute to a variable reported preva-
lence of AKI.

The suggested consequences of these results is that, 
oliguria without a concomitant elevation of SCr may be of 
clinical importance, as it is still associated with increased 
mortality in ICU patients. However, interpretation of iso-
lated oliguria as with many observations in medicine must 
be taken in context.

Pathophysiology

When considering the etiology of oliguria, one has to dis-
tinguish whether it is a normal physiological response or 
reflects an underlying pathological process (Fig. 1). Physi-
ological oliguria may result, for example, from antidiuresis 
due to hypovolemia, after significant food and water fast-
ing and also after ultra-endurance events, where oliguria is 
experienced by some athletes during and up to some hours 
after the event [18], however, these episodes of oliguria 
seem to be fully reversible, and do not increase the risk 
for subsequent kidney injury [19]. Transitory oliguria is 
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Fig. 1   Physiological and pathological stimuli leading to oliguria (RAA​ renin–angiotensin–aldosterone system, AKI acute kidney injury)
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also frequently observed in post-operative non-critically 
ill patients associated with vasopressin-release and acti-
vation from the sympathetic nervous system from pain or 
nausea [20].

In critically ill patients, however, different pathophysi-
ological pathways may lead to oliguria. First, there is the 
neuro-hormonal pathway influencing kidney function 
through activation of the sympathetic nervous system 
leading to elevated activity of the renin-angiotensin-aldos-
terone system (RAAS), higher levels of circulating vaso-
pressin and activation of the tubuloglomerular feedback 
system (TGF). This results in systemic vasoconstriction, 
reduced renal filtration as well as water and sodium reten-
tion [21]. In patients suffering from chronic heart failure, 
those neuro-humoral effects can often be observed, fur-
thermore these neuro-humoral response are responsible 
for certain types of AKI like the hepatorenal syndrome 
(HRS) [22, 23].

Absolute (hypovolemia) and relative (hemodynamic per-
turbations) reductions in effective blood volume may lead to 
a reduced renal blood flow (RBF). However, this reduction 
in RBF alone is not usually sufficient to lead to a reduced 
glomerular filtration rate (GFR). Furthermore, in some situ-
ations, like sepsis-associated AKI, RBF may be preserved or 
even be increased [24]. What seems to be more influential 
than global RBF is intra-renal blood flow influenced by pre- 
and post-glomerular resistance and intra-renal shunting. This 
dissociation between global and intra-renal blood flow is 
supported by a study measuring the interlobar artery resis-
tivity index, which found that in response to fluid adminis-
tration, even without a relevant (> 10%) change in MAP and 
therefore in global RBF, an improvement in intra-renal per-
fusion translating into an increased UO was observed [25].

While pre-renal reasons for oliguria, like activation of the 
RAAS are thought to be—at least in part—rapidly revers-
ible, this often does not apply to oliguria/AKI resulting 
from direct pathological insults to the kidney. Here, oligu-
ria is the consequence of diminished GFR, tubular obstruc-
tion from tubular casts and back-leak of tubular solutes. 
Inflammation and sepsis is another important mechanism 
for oliguria as demonstrated by the fact, that sepsis is often 
accompanied by oliguria [26]. While systemic vasodila-
tion in sepsis is predominant, macro- and microcirculatory 
alterations may diminish blood flow to certain regions of 
the kidney. This leads to the phenomenon, that despite an 
increase in renal blood flow (RBF), oliguria followed by 
AKI may rapidly develop. Furthermore, besides circulatory 
changes, immunologic and inflammatory mechanisms (dam-
age- and pathogen-associated molecular pattern molecules 
[DAMPs, PAMPs], Microvesicles and TNF-α) [24] may lead 
to endothelial injury, among others. This endothelial injury 
may induce increased vascular permeability, followed by 
interstitial edema [27–30].

Urine output threshold

As outlined, consensus opinion defines oliguria as a urine 
output of < 0.5 ml/kg/h for more than 6 h. This threshold 
is predictive for AKI defined by increase in SCr in criti-
cally ill patients but recent findings in surgical patients 
question this threshold for the perioperative period. Mizota 
et al. found that a cut-off < 0.3 ml/kg/h was independently 
associated with postoperative AKI (adjusted OR 2.65; 95% 
CI 1.77–3.97) in a Japanese patient cohort. No correla-
tion was found for a cut-off between 0.3 and 0.5 mL/kg/h 
and the development of postoperative AKI [16]. These 
findings provide further support for interpreting oliguria 
within the clinical context in that a relatively reduced urine 
output albeit greater than 0.3/ml/kg/h is likely to repre-
sent a (reversible) physiological response to perioperative 
stimuli including intravascular hypovolemia, reduced renal 
perfusion due to hypotension and release of anti-diuretic 
hormone in response to nausea or pain [31]. Ralib et al. 
were able to confirm by analyzing 725 admissions to a 
general ICU, that a urine output threshold of 0.5 ml/kg/h 
may be too liberal given that a threshold for 6-h UO of 
0.3 ml/kg/h was best associated with the combined end-
point of dialysis or mortality. Interestingly, they found 
that the optimal threshold of UO was linearly related to 
the duration of the collection period [32], which might 
reflect the presence of non-pathological mechanisms that 
occur in addition to major pathophysiological processes 
within the observed time period. This was supported by 
Prowle et al. who showed significant improvement of pre-
diction of worsening AKI after an episode of at least 12 h 
of oliguria [33]. This may explain why the optimal UO 
threshold used to identify relevant end-point-determining 
pathophysiologic events increases along with the duration 
of collection. Another important fact when considering 
weight-based urine output criteria is that in obese patients, 
these may lead to an overdiagnosis of AKI and therefore 
the ideal body weight should be used in calculating the 
urine output rather than the actual body weight [34, 35].

Diagnostic and therapeutic approach

When considering the diagnostic and therapeutic options 
in treating an oliguric patient a step wise approach may 
be employed. Firstly, hemodynamic stabilization must be 
achieved taking into consideration premorbid parameters if 
known. Subsequently, the patient’s response to diuretics in 
the standardized form of the Furosemide Stress Test (FST) 
may be tested, after euvolaemia has been established [36]. 
Novel biomarkers like neutrophil gelatinase-associated 
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lipocalin (NGAL) may also improve risk stratification 
although there is still lack of clear evidence to strongly 
support the routine use of such biomarkers in isolated 
oliguria [37, 38]. If the patient’s UO does not improve 
after hemodynamic stabilization and is unresponsive to 
diuretics [39], further AKI workup should be conducted 
[6]. Finally, while an adequate volume status should be 
achieved, volume overload must be avoided and possibly 
treated, either with diuretics where responsive or ulti-
mately with renal replacement therapy (RRT) [39].

Hemodynamic stabilization (Step 1)

Initially, hypovolemia must be excluded in an oliguric 
patient and corrected to obtain adequate renal perfusion 
although care should be taken to avoid volume overload 

[39]. Starches should be avoided as they may lead to 
osmotic tubular damage. If large fluid volumes are needed 
for fluid resuscitation, balanced crystalloids are preferable. 
An adequate hemodynamic state should be achieved to 
ensure proper RBF. Ideally, vasopressor therapy should 
target a MAP of 65–70 mmHg, unless the patients suffers 
from chronic hypertension (Fig. 2) [39].

When a patient is developing oliguria, UO should be 
monitored. This is easily achievable in ICU patients, who 
often are catheterized and hourly urine monitoring is 
therefore feasible, but should also be achieved on general 
wards. A retrospective cohort study including over 15,000 
adult ICU patients found that intensive monitoring of UO 
yields significantly higher rates of AKI (OR 1.22) and was 
even associated with improved survival, but only among 
patients who suffered from AKI [40].

Oliguria

(UO < 0.5ml kg-1 h-1 x6 h) 

rule out hypovolaemia
target MAP 65-70
monitor UO

FST: 1.0-1.5 mg
furosemide/kg
→ if UO ≤ 100ml/h in first 2
hours, patient likely to
progress to higher AKI
stage

limited data in oliguric
patients
e.g. CysC, NGAL,
TIMP2xIGFBP-7

bloodwork (serum
creatinine, BUN/urea...)
urine dipstick
urine microscopy
urinary electrolytes
renal/abdominal ultrasound
→ AKI treatment

monitor for signs of volume
overload
if patient is diuretic-
responsive, those may be
used to control fluid
balance
RRT should be considered,
if no adequate volume
control is achievable with
diuretics

Hemodynamic stabilization

1

AKI workup

3

Management and treatment
of volume overload

4

Response to
diuretics and FST

2a
Biomarkers

2b

Fig. 2   4-step approach  (step 1 - hemodynamic stabilization, step 
2a - response to diuretics and FST, step 2b  - biomarkers  [steps 
2a and 2b may be considered as alternative approaches], step 3 - AKI 
workup, step 4 - management and treatment of volume overload)  to 
the clinical management of the oliguric patient (UO urine output, 

MAP mean arterial pressure, FST furosemide stress test, AKI acute 
kidney injury, CysC cystatin C, NGAL neutrophil gelatinase-associ-
ated lipocalin, TIMP-2 x IGFBP-7 tissue inhibitor of metalloprotein-
ase 2 × insulin-like growth factor binding protein 7, BUN blood urea 
nitrogen, RRT​ renal replacement therapy)
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Response to diuretics and furosemide stress 
test (Step 2a)

If the patient remains oliguric after achieving adequate 
volume and hemodynamic status, the response to diuretics 
may be tested. While diuretics are already frequently used in 
oliguric patients [41], it is advisable to utilize a standardized 
approach to maximize their diagnostic ability.

A common difficulty when managing patients either at 
risk of, or with, AKI is to predict which patients will pro-
gress to a higher stage/severity of illness. A tool that may 
be used for risk stratification is the furosemide stress test 
(FST), a standardized test of the functional integrity of the 
tubule and which was developed to aid such decision mak-
ing. A urinary output of ≤ 100 ml/h in the first 2 h following 
a dose of 1.0–1.5 mg furosemide/kg (FST non-responsive) 
predicted progression to a higher AKI stage with both high 
sensitivity and specificity [36]. Clearly, when conducting a 
FST it is important that the patient is not hypovolemic with 
blood pressure and heart rate closely monitored. The FST 
may also turn out to be a useful tool for decision support 
on initiating renal replacement therapy (RRT). In a recent 
feasibility trial, only 13.6% of FST responsive patients ulti-
mately needed RRT, while of patients who were FST non-
responsive 75% required RRT [42]. This is a novel aspect 
because oliguria per se does not reliably predict the require-
ment of RRT in critically ill patients [43]. If a patient is 
responding to diuretics, these should be used for volume 
control [39, 44].

Biomarkers (Step 2b)

Biomarkers may be used to assess the risk of AKI as an 
underlying reason for oliguria and to guide appropriate 
therapeutic actions. To date, one randomized trial has 
evaluated the implementation of a care bundle in high risk 
patients after cardiac surgery, who had elevated levels of 
TIMP-2 × IGFBP-7. This approach lead to a reduced rate 
of AKI as mainly diagnosed by UO criteria [45] suggest-
ing a possible benefit of biomarkers in risk assessment.

However, few studies have assessed biomarkers for 
predicting worsening AKI specifically in oliguric patients 
[37, 38, 46]. One trial, measuring biomarkers in blood 
(neutrophil gelatinase-associated lipocalin [NGAL] among 
others) and urine of oliguric patients, tried to utilize these 
biomarkers for better risk stratification of poor renal out-
come. However, those biomarkers were not better than sCr 
leading to the conclusion that not all episodes of oliguria 
carry the same risk for adverse outcomes, which could 
have diminished the predictive ability of those biomarkers 
[38]. In the study by Egal et al., neutrophil gelatinase-asso-
ciated lipocalin (NGAL) was able to discriminate between 
patients experiencing functional oliguria and those who 

developed AKI according to SCr criteria [37]. Another 
study, which evaluated the prediction of fluid respon-
siveness of uNa+, fractional excretion of sodium (FENa) 
and the fractional excretion of urea in oliguric patients, 
found that those biomarkers had no significant predictive 
value [46]. While NGAL was able to help in differentiat-
ing reversible from non-reversible forms of oliguria in the 
study by Egal et al. [37], Legrand et al. reported no better 
risk stratification by utilizing NGAL as compared to SCr 
[38]. In light of these results, further studies are necessary, 
before novel biomarkers are routinely employed for risk 
stratification in oliguric patients [11].

When evaluating biomarker levels in urine, controversy 
exists, particularly as to whether those biomarker levels 
should be normalized to urinary creatinine, thereby account-
ing for urine volume. In a recent systematic review, which 
analyzed the predictive ability of biomarkers regarding the 
necessity of RRT, there was a slight trend towards biomark-
ers normalized to creatinine performing better than non-nor-
malized. However, these differences were not statistically 
significant [43].

AKI workup (Step 3)

A baseline workup should follow, including bloodwork (sCr, 
BUN or urea, serum electrolytes etc.), urine dipstick analy-
sis, urine microscopy (urinary sediment), urinary electro-
lytes and renal/abdominal ultrasound.

A more specific diagnostic workup may follow, depend-
ing on the context, severity, duration and local availabil-
ity which may include the assessment of an autoimmune 
profile (among others: anti-nuclear antibody [ANA], anti-
neutrophil cytoplasmic antibody [ANCA], anti-glomerular 
basement membrane antibody [anti-GBM]), a renal biopsy 
and additional laboratory tests (e.g., in case of suspected 
rhabdomyolysis: serum creatinine kinase and myoglobin; in 
case of suspected cardio-renal syndrome: N-terminal pro-
brain natriuretic peptide [NT-proBNP], etc.) [34]. Revers-
ible (exogenous) causes for oliguria should be excluded. For 
example, when assessing a catheterized patient, catheter 
dysfunction should be excluded and bedside ultrasound can 
easily rule out postrenal or obstructive causes of oliguria. 
Ultrasound can also be helpful in assessing renal perfusion 
at the bedside through the Doppler-based renal resistive 
index (RI) [47].

Treatment of a patient with oliguria should primarily 
rely on the guidelines for AKI treatment [6, 39, 44, 48]. For 
patients at high-risk of AKI, nephrotoxic agents should be 
discontinued where possible, volume status and (renal) per-
fusion pressure should be maintained and monitored, pos-
sibly by utilizing invasive monitoring [39]. A more detailed 
overview of the diagnostic workup and therapeutic options 



860	 Journal of Nephrology (2018) 31:855–862

1 3

of AKI is outside of the focus of this paper and can be found 
elsewhere [34, 39].

Management and treatment of volume 
overload (Step 4)

If deteriorating renal function and subsequently diminish-
ing urine output are used as a trigger for treatment, includ-
ing fluid loading, the reduced urine output may, as a con-
sequence, contribute to fluid overload, which may in itself 
lead to worsening AKI where the oliguria does not respond 
to these measures. Interestingly, a retrospective analysis of 
the Fluid and Catheter Treatment Trial, found that when a 
fluid bolus was given for shock or oliguria (< 0.5 mL/kg/h), 
no significant changes in MAP, heart rate, CVP, pulmonary 
artery occlusion pressure or UO were observed 1–4 h after 
the bolus [15].Therefore, relying on UO as a trigger for fluid 
administration may lead to an overestimation of the achiev-
able effect. Especially in the setting of oliguria, one has to be 
aware, that inconsiderate fluid loading may lead to volume 
overload, which is associated with increased mortality [39, 
49, 50].

Possible signs of fluid overload may include peripheral 
edema [51] and an increase in the central venous pressure 
(CVP) as sonographically determined via the diameter of 
the vena cava inferior [51, 52]. If invasive monitoring (e.g., 
Pulse Contour Cardiac Output—PiCCO) is used, the global 
end-diastolic volume index (GEDI), extravascular lung water 
(EVLW) and stroke volume variation (SVV) may be also 
utilized to identify possible fluid overload. In patients that 
are diuretic-responsive, diuretics may be used to control 
fluid balance and to avoid volume overload [30]. Of note, a 
feasibility study in septic patients, applying a fluid restrictive 
regimen has shown a decreased rate of AKI [45].

If adequate volume control is not achievable with diuret-
ics, RRT should be considered [39, 44]. In fact, oliguria was 
the leading reason for commencement of RRT, both in the 
RENAL (approx. 60%) [53] and the AKIKI trial (38%) [54].

Conclusion

To date, oliguria remains an important biomarker for renal 
function as well as volume status. However, care must be 
taken to interpret diminished UO in a broader clinical con-
text, as different pathophysiological mechanisms may lead to 
oliguria. Our proposed 4-step approach to the management 
of an oliguric patient may aid in clinical decision making.
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