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Abstract
Purpose  Papillary thyroid carcinoma (PTC) is characterized by lymph-node metastasis (LNM), which affects recurrence 
and prognosis. This study analyzed PTC LNM by single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing 
(RNA-seq) to find diagnostic markers and therapeutic targets.
Methods  ScRNA-seq data were clustered and malignant cells were identified. Differentially expressed genes (DEGs) were 
identified in malignant cells of scRNA-seq and bulk RNA-seq, respectively. PTC LNM diagnostic model was constructed 
based on intersecting DEGs using glmnet package. Next, PTC samples from 66 patients were used to validate the two most 
significant genes in the diagnostic model, S100A2 and type 2 deiodinase (DIO2) by quantitative reverse transcription-
polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC). Further, the inhibitory effect of DIO2 on PTC 
cells was verified by cell biology behavior, western blot, cell cycle analysis, 5-ethynyl-2′-deoxyuridine (EdU) assay, and 
xenograft tumors.
Results  Heterogeneity of PTC LNM was demonstrated by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene 
Ontology (GO) analysis. A total of 19 differential genes were used to construct the diagnostic model. S100A2 and DIO2 
differ significantly at the RNA (p < 0.01) and protein level in LNM patient tissues (p < 0.001). And differed in PTC tissues 
with different pathologic typing (p < 0.001). Further, EdU (p < 0.001) and cell biology behavior revealed that PTC cells 
overexpressed DIO2 had reduced proliferative capacity. Cell cycle proteins were reduced and cells are more likely to be 
stuck in G2/M phase (p < 0.001).
Conclusions  This study explored the heterogeneity of PTC LNM using scRNA-seq. By combining with bulk RNA-seq data, 
diagnostic markers were explored and the model was established. Clinical diagnostic efficacy of S100A2 and DIO2 was 
validated and the treatment potential of DIO2 was discovered.
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RNA-seq	� RNA sequencing
DEGs	� Differentially expressed genes
DIO2	� Type 2 deiodinase
RT-qPCR	� Quantitative reverse transcription-polymer-

ase chain reaction
IHC	� Immunohistochemical
EdU	� 5-Ethynyl-2′-deoxyuridine
KEGG	� Kyoto encyclopedia of genes and genomes
GO	� Gene ontology
TC	� Thyroid carcinoma
PCA	� Principal component analysis
UMAP	� Uniform manifold approximation and 

projection
CNV	� Copy number variation
TFs	� Transcription factors
AUC​	� Under the curve
TIDE	� The tumor immune dysfunction and 

exclusion
AITD	� Autoimmune thyroid disease
ETE	� Extrathyroid extension
VI	� Vascular infiltration

Introduction

Thyroid carcinoma (TC) is a type of malignant cancer whose 
incidence has increased considerably in recent years, mainly 
due to improved diagnostic techniques and an increase in 
the frequency of routine medical checkups [1, 2]. The main 
pathological type of TC is PTC—considered inert—with a 
low mortality rate and a good prognosis [3]. However, LNM 
occurs in 40–90% of patients with PTC and affects local 
recurrence and prognosis, making LNM an important factor 
to consider when treating TC [4].

The development of RNA sequencing and microarray 
technology has allowed the analysis of DEGs to improve 
our understanding of PTC [5, 6]. Traditional bulk RNA-seq 
data provide the average expression levels from a diverse set 
of cells, which can be used to explore differences between 
different tissue types; however, these data cannot be used to 
analyze specific cell types [7]. ScRNA-seq allows the unbi-
ased genome-wide analysis of the transcriptomes of many 
individual cells, which can help to characterize the cellular 
heterogeneity within samples [8, 9]. Yet, bulk RNA-seq still 
has advantages of economy and practicality especially in 
daily clinical work. In this study, we analyzed functional het-
erogeneity and discovered diagnostic markers of PTC LNM 
by combining scRNA-seq and bulk RNA-seq data, which 
balanced between accuracy and feasibility.

S100A2 is an important member of the S100 protein fam-
ily and abnormal S100A2 expression has been reported to 
affect multiple cellular functions, including calcium homeo-
stasis, enzyme activity, and protein phosphorylation [10]. 

In addition, S100A2 has been associated with malignant 
progression in pancreatic, colorectal, lung, and gastric can-
cers [11–15]. DIO2 is a member of the iodothyronine deio-
dinase family [16]. Many studies have demonstrated that 
DIO2 plays an important role in advanced tumors including 
prostate cancer [17], squamous cell carcinoma tumor [18], 
and mesothelioma [19]. Recent studies have also shown 
that DIO2 is under expressed in almost all PTC cases [20]. 
Unlike other studies that explored differences between 
tumors and situ tissue, this study is focus on a single bio-
logical feature of tumors—LNM.

Methods

All experiments were repeated more than three 
times

Data acquisition

scRNA-seq data (GSE184362) were downloaded from the 
Gene Expression Omnibus (GEO; https://​www.​ncbi.​nlm.​nih.​
gov/​geo/​query/​acc.​cgi). The Cancer Genome Atlas (TCGA)-
thyroid carcinoma bulk RNA-seq and clinical data were 
downloaded from the Genomic Data Commons data portal 
(https://​portal.​gdc.​cancer.​gov/).

scRNA‑seq data preprocessing

The gene expression patterns of each cell were detected 
using the DropletUtils [21] R package. Barcodes that were 
not expressed by any cells were filtered out, and data were 
further filtered according to the number of unique molecu-
lar identifiers in each cell. Gene expression was thereafter 
determined using the Scater [22] package. Cells with a mito-
chondrial gene expression ratio > 10% and ribosomal gene 
expression ratio < 10% were filtered out. Finally, the expres-
sion matrix of each filtered sample was normalized using the 
NormalizeData function in Seurat [23].

Principal component analysis (PCA)

The top 2000 genes with the most obvious differences in 
expression between cells were screened using FindVari-
ableFeatures in Seurat to highlight biological signals in sin-
gle-cell datasets. Expression data were then scaled linearly 
using ScaleData in Seurat and PCA analysis was performed 
using the RunPCA function.

Cell clustering and annotation

Having selected the principal component with the largest 
standard deviation, cell clustering analysis was performed 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://portal.gdc.cancer.gov/
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using the FindNeighbors and FindClusters functions in 
Seurat. Uniform Manifold Approximation and Projection 
(UMAP) analysis was then performed using the RunUMAP 
package in Seurat.

Marker gene identification

DEGs between each cluster and all other cells were identi-
fied using the FindMarkers function in Seurat (log2FC ≥ 0.1, 
minimum expression ratio = 0.25, p ≤ 0.05). Marker genes 
(top 500 logFC values) were used to label cells and generate 
a cluster diagram [24].

Malignant cell identification

To identify malignant cells with abnormal gene expression 
according to the position of each gene on the chromosome, 
the inferCNV package was used with the following param-
eters: "denoise", default Hidden Markov Model settings, 
"cutoff" = 0.1. Using immune cells as a reference and thyro-
cytes as candidate cells, copy-number variation (CNV) was 
calculated to identify malignant and non-malignant thyroid 
cells. To reduce false-positive calls, a default Bayesian latent 
mixture model was used to determine the posterior prob-
ability of CNV changes in each cell, with a default threshold 
of 0.5.

CIBERSORTX and CIBERSORT analysis

An scRNA-seq data signature was constructed according 
to the expression levels in each cell type using the CIBER-
SORTX (https://​ciber​sortx.​stanf​ord.​edu/) online tool. The 
proportions of cell types in each sample were calculated 
using CIBERSORT [25]. Differences in the proportion of 
each cell type between groups were then calculated.

Differential expression analysis

The FindMarkers function based on wilcox.test in Seurat (for 
scRNA-seq) and the edgeR [26] package (for bulk RNA-seq) 
were used for differential expression analysis. To ensure the 
effect of the diagnostic model, we set the FC at 1.2 to better 
characterize the heterogeneity of the PTC LNM.: minimum 
expression ratio = 0.25, p < 0.05, and fold change > 1.2.

Gene enrichment analysis

Functional enrichment analysis of candidate genes was per-
formed using the GO [27] and KEGG pathway [28] data-
bases. Fisher's exact tests were used to identify which genes 
were most associated with specific functions. A smaller p 
value indicated more significant enrichment.

Cell–cell interaction network analysis

CellChat v1.1 [29] was used to infer cell-to-cell communi-
cation based on receptor–ligand gene expression values for 
each cell type. Intercellular receptor–ligand pairs were then 
obtained to determine relationship networks. Cell–cell com-
munication analysis was performed using the “CellchatDB.
human” ligand–receptor interaction database with default 
settings. The total number and intensity of interactions were 
compared by merging the CellChat objects for each group 
using the mergeCellChat function. Differences in the number 
or strength of interactions between different cell populations 
were visualized using the netVisualDiffInteraction function. 
Differentially expressed signaling pathways were identified 
using the rankNet function and the communication network 
was visualized using the plotGeneExpression function.

Transcription factor regulation analysis

Regulators in scRNA-seq data were identified using SCENIC 
[30] with human hg38-500bp_up_and_100bp_down_tss data. 
The regulatory activities of corresponding transcription fac-
tors (TFs) were inferred and used to construct a TF regula-
tory network. The GENIE3 package was used to deduce co-
expression modules between TFs and candidate target genes. 
Cis-regulatory motifs for each co-expression module were 
analyzed using the RcisTarget package to construct a gene 
regulatory network module containing TFs and target genes. 
Finally, regulator activity was analyzed using AUCell software 
and area under the curve (AUC) values were calculated for 
each gene regulatory network module to assess the activation 
of gene regulatory network modules in cells.

Diagnostic model construction

Using the binomial method in the glmnet package, a diag-
nostic model (lambda.min = 0.0252) was constructed based 
on TCGA–THCA bulk RNA-seq data. Model reliability was 
verified by receiver-operating characteristic analysis between 
model predictions and actual analysis using the pROC pack-
age. The risk score was calculated as follows:

where “expression” refers to gene expression levels and 
“coefficient” refers to the coefficient corresponding to each 
gene (Table 1).

The tumor immune dysfunction and exclusion (TIDE) score

According to gene expression levels, each sample was scored 
using the TIDE website (http://​tide.​dfci.​harva​rd.​edu/​login/) 

Risk = exp (expression 1 × coefficient 1 + expression 2 × coefficient 2

+expression 3 × coefficient 3 +⋯),

https://cibersortx.stanford.edu/
http://tide.dfci.harvard.edu/login/
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to predict the response to immune checkpoint blockade. Wil-
coxon tests were then used to compare TIDE scores between 
groups.

Immune infiltration analysis

Based on gene expression data, each sample was scored 
for immune infiltration using CIBERSORT. Correlations 
between the scores for 22 immune cell types were then cal-
culated and differences in immune scores were compared 
between groups.

Clinical samples

Tissue samples (n = 66) were collected from patients with 
PTC at the Zhejiang Provincial People’s Hospital, Hang-
zhou, Zhejiang Province, China, and stored at − 80 °C for 
subsequent experiments (Table 2). The study was approved 
by the Ethics Committee of The Zhejiang Provincial Peo-
ple’s Hospital (QT2022410). Written informed consent was 
obtained from all patients.

RT‑qPCR

Total RNA was obtained from cells and frozen samples 
using a TRIzol kit (Invitrogen, California, USA). RNA 
purity and concentration were determined using an Ultra-
violet spectrophotometer (Thermo Fisher Scientific, Mas-
sachusetts, USA) after 5 µL RNA samples had been diluted 

20-fold with RNase-free ultrapure water. RNA transcripts 
were then reverse transcribed into cDNA using a Prime 
Script RT Master Mix kit (Beyotime, Shanghai, China) and 
RT-qPCR analysis was performed using SYBR Premix Ex 
Taq™ II (Takara Bio, Tokyo, Japan) with GAPDH and U6 as 
endogenous controls. The following thermal cycling condi-
tions were used: 94 °C for 4 min, 95 °C for 1 min, 40 cycles, 
60 °C for 1 min, and 70 °C for 1 min. All experiments were 
repeated at least three times. The following primers were 
used: DIO2, forward 5′-TCC​TGG​CTC​TCT​ATG​ACT​CGG-
3′ and reverse 5′-TAC TGG​AGA​CAT​GCA​CCA​CAC​-3′; 
GAPDH, forward 5′-CTG​GGC​TAC​ACT​GAG​CAC​C-3′ and 
reverse 5′-AAG​TGG​TCG​TTG​AGG​GCA​ATG-3′; S100A2, 
forward 5′-GCG​ACA​AGT​TCA​AGC TGA​GTA​AG-3′ and 
reverse 5′-GAC​AGT​GAT​GAG​TGC​CAG​GAAA-3′. All 
values were normalized to GAPDH and the fold change was 
quantified using the 2 − ΔCt method.

Immunohistochemical analysis

After tissue sections had been deparaffinized and rehydrated, 
antigen retrieval was performed using 0.01 M citric acid 
buffer. The sections were then washed with phosphate buffer 
solution, blocked using normal serum, and incubated over-
night with anti-DIO2 (abcam, Massachusetts, USA) and 
anti-S100A2 (abcam, Massachusetts, USA) antibodies at 
4 °C, followed by secondary antibodies at 37 °C for 30 min. 
After staining with diaminobezidin solution, sections were 
observed under a microscope (Olympus, Tokyo, Japan).

Cell culture

BCPAP and IHH4 cells (PTC cell lines) obtained from the 
National Collection of Authenticated Cell Cultures (Beijing, 
China) were cultured in Roswell Park Memorial Institute 
(RPMI)-1640 medium (Thermo Fisher Scientific) containing 
10% fetal bovine serum (FBS; Gibco, California, USA) in a 
humidified 5% CO2 atmosphere at 37 °C.

Cell stable transfection

Cells were seeded in a 6-well plate at a density of 
1.0–1.5 × 105 cells per well in an antibiotic-free RPMI-
1640 medium. Virus (GeneChem, Shanghai, China) with 
puromycin resistance and two paired transfection reagents 
(Three wells each) were added in each well separately after 
24 h according to the manufacturer’s protocol. The medium 
was changed after 12–18 h and screened with puromycin for 
3 days. The wells with the best overexpression results were 
selected for incubation.

Table 1   Genes in the diagnostic 
model

Variable Coefficient

(Intercept) 5.110810415
DIO2 0.156115542
ID4 0.055988881
HSPA5 0.128243988
LINC01315 0.209007783
PAX8 0.212704648
PDE8B  − 0.217710385
SLC25A29  − 0.022502554
CLIC3  − 0.000196994
LPCAT2 0.349791278
S100A2  − 0.103768403
RPS4Y1  − 0.026629823
S100A5  − 0.040491598
ZFP36L1  − 0.138467204
CCDC80  − 0.001329735
YBX3  − 0.16833279
PTPRF 0.100690014
NPC2  − 0.21793595
DNAJC21  − 0.812103548
SNX1  − 0.270370509
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CCK‑8 assay

Cell viability was assessed using a cell counting kit-8 
(Jiancheng, Nanjing, China). Transfected cells were seeded 
into 96-well plates and incubated at 37 °C for 6, 12, 24, 48, 
and 72 h. Subsequently, 10 μL of CCK-8 solution was added 
and the cells allowed to incubate for 1 h. Absorbance was 
determined using a microplate reader (Bio-Rad, Hercules, 
California, USA) at 450 nm.

Transwell assay

Cell invasion and migration were examined using Transwell 
chambers (8 µm pore size; Corning, New York, USA) pre-
coated with and without Matrigel, respectively. Briefly, cell 
suspensions (1–2 × 105 cells/mL) were prepared using a 
serum-free culture RPMI-1640 medium and added to the 
upper chamber (200 µL), while 500 µL RPIM-1640 sup-
plemented with 10% FBS was added to the lower chamber. 
After incubation at 37 °C with 5% CO2 for 12 h to assess 
migration or for 24 h to assess invasion, the top surface of 
the membrane was wiped with a cotton swab. Cells on the 
bottom surface were fixed with 4% formaldehyde for 10 min, 
stained with 0.1% crystal violet, and imaged using a micro-
scope (Nikon, Tokyo, Japan).

Wound‑healing analysis

Transfected cells were seeded in a 12-well plate and cultured 
at 37 °C until they reached 85–90% confluence. A straight 
wound was made in the middle and 1/3 of the sides of the 
plate with the same force using a sterile 10 µL pipette tip, 
after which the medium was aspirated and replaced with 
serum-free RPMI-1640. Cell migration was observed under 
a microscope (Nikon, Tokyo, Japan) and imaged immedi-
ately (0 h) and after incubation at 37 °C for 12 h.

Colony formation assay

Transfected cells were seeded in 6-well plates and incubated 
at 37 °C with 5% CO2 for 1 week. The cells were then immo-
bilized with 4% paraformaldehyde fix solution, stained with 
crystal violet, and counted using ImageJ software, National 
Institutes of Health, USA.

Cell cycle analysis

The cell cycle was analyzed using the Cell Cycle 
Kit (Liankebio, China) following the manufacturer’s 

instructions. The PTC cell line (IHH4 and BCPAP) and its 
DIO2 overexpressed cells (2.5 × 105 or 2.0 × 105 cells/well) 
were seeded in 6-well plates. After 24 h of incubation at 37 
◦C, the cells were collected, washed with PBS, and stained 
in 1 mL DNA staining solution containing 10 µl permeabi-
lization solution, at room temperature, and in the dark for 
30 min. For analysis of the cell cycle, the lowest sampling 
speed was subjected to Navios flow cytometry (Beckman-
Coulter, USA). The results were analyzed using Flowjo.

Western blotting

After successful transfection, the cells were harvested and 
lysed on ice for 10 min using western and IP lysis buffer (# 
P0013, Beyotime Institute of Biotechnology, China) con-
taining PMSF. Total protein concentration was determined 
using a bicinchoninic acid protein assay kit (Thermo Fisher 
Scientifc, USA). The protein samples were resolved through 
SDS-PAGE precast Tris-Gly gels (4–20%, # P0524M, Beyo-
time Institute of Biotechnology, China), and then transferred 
onto PVDF membranes. The membranes were blocked with 
TBST with 1% Tween-20 containing 5% skim milk for 1 h. 
This was followed by incubation with corresponding pri-
mary antibodies at 4◦C overnight, and then with suitable 
secondary antibodies conjugated with HRP at the room 
temperature for 60 min. The membranes were analyzed by 
FDbioDura ECL Kit (#FD8020, Fdbio Science, China) and 
imaged with the ChemiDoc-MP imager (Bio-Rad, USA). 
Band density was quantified by ImageJ software.

5‑Ethynyl‑2‑deoxyuridine (EdU) incorporation assay

After transfection, cells were seeded in 96-well plate in trip-
licate. Then, the medium was replaced with fresh medium 
containing EdU (Riobio, Guangzhou, China). After cultur-
ing for 2 h, EdU detection was also performed according to 
the protocol using the kFluor555 Click-iT EdU Cell Pro-
liferation Kit (Biotech, Nanjing, China) according to the 
manufacturer’s instructions. Images were taken by a Leica 
DMi8 Microscope (Leica, Germany), and the EdU-positive 
cells were counted.

Xenograft tumors

Female BALB/c nude mice (age: 4–6 weeks) were purchased 
from Shanghai SLAC Laboratory Animal Co. Ltd. (Shang-
hai, China). IHH4 cells (1 × 106 cells) with stable overex-
pression of DIO2 and control IHH4 cells were injected sub-
cutaneously into the backs of the mice. The long diameter 
and short diameter of the tumors were assessed every 2 days. 
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The observation period lasted for 3 weeks. At the end of this 
in vivo study, the mice were sacrificed, and the tumors were 
removed and weighed. The animal study was approved by 
the Ethics Committee of The Zhejiang Provincial People’s 
Hospital and was conducted in accordance with the Guide 
for the Care and Use of Laboratory Animals.

Statistical analysis

All statistical analyses were performed using the R Sta-
tistical Environment v.4.0.1 (R Foundation for Statistical 

Fig. 1   The establishment of single-cell atlas for PTC LNM. a Top 
two PC gene contributions in scRNA-seq data. b PCA groupings or 
scRNA-seq data. c Expression heatmap of the top ten marker genes in 

various cells. d, e Cell grouping and type clustering through UMAP. 
g Cell proportion analysis in samples. h Cell proportion analysis in 
cell types. *p < 0.05

Fig. 2   Mechanism of LNM in PTC. a Volcano map of DEGs between 
groups in bulk RNA-seq data. b KEGG analysis of DEGs in bulk 
RNA-seq data and circle plot of the top ten enriched KEGG path-
ways corresponding to the first (maximum) 50 genes based on abso-
lute log2FC values. c–e GO analysis of BP, CC, and MF for DEGs in 
bulk RNA-seq data and circle plot of the top ten enriched GO–BP, 
GO–CC, and GO–MF pathways corresponding to the first (maxi-
mum) 50 genes based on absolute log2FC values. f Between-group 
differences in the proportion of each cell type in bulk RNA-seq data, 
***p < 0.001

◂
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Computing, Vienna, Austria) and GraphPad Prism v.8.01 
(GraphPad Software, California, USA). Student’s t tests were 
used to compare data between the test and control groups; 
p values < 0.05 were considered significant.

Results

Establishment of a single‑cell atlas for PTC

A total of 187,707 cells were collected from seven patients 
for the Primary group and eight metastatic lymph-node tis-
sues from seven patients for the Metastasis group. After 
quality control filtering, 185,006 cells were retained for PCA 
after linear scaling. We scaled the cells in two dimensions 
to better show the location of the cells (Fig. 1a, b). All cells 
were identified by the genes that characterize each types 
(Fig. 1c), and cell clustering was accomplished (Fig. 1d, e). 
Next, we determined the proportion of each cell type in each 
sample (Fig. 1f) and found no significant difference in the 
proportions of different cell types (Fig. 1g). Therefore, it is 
necessary to further explore the heterogeneity of PTC LNM.

Functional heterogeneity of malignant cells

Based on the scRNA-seq data, malignant cells in thyrocytes 
were identified. A total of 271 upregulated and 406 down-
regulated DEGs were identified between the Metastasis and 
Primary groups (Fig. 2a). KEGG enrichment analysis of these 
DEGs, as summarized using a circle plot, revealed that the 
DEGs were significantly enriched in the autoimmune thyroid 
disease (AITD) pathway and were downregulated (Fig. 2b). 
GO enrichment analysis showed that the most enriched bio-
logical process, cell component, and molecular function were 
SRP-dependent co-translational protein targeting to the mem-
brane, the cytosolic ribosome, and RNA binding, respectively 
(Fig. 2c–e). Cell–cell interaction network showed that malig-
nant cells in PTC LNM were related to all listed cells, indicat-
ing that LNM is a complex biological process (Fig. 2f). Then, 
we investigated the regulatory activity of TFs in malignant 
cells, finding that EGR1 and YY1 were the two most distinct 
TFs (Fig. 3g, h).

Functional differences between primary PTC 
and LNM

In addition to analyzing scRNA-seq data, we also divided bulk 
RNA-seq data into Metastasis (N1) and Primary (N0) groups 
for analysis. A total of 1779 upregulated DEGs and 2191 
downregulated DEGs were identified from the bulk RNA-
seq data (Fig. 3a). In KEGG pathway enrichment analysis, 
the DEGs were clearly enriched for cell adhesion molecules 
(Fig. 3b). GO enrichment analysis revealed that extracellular 

matrix organization and multicellular organism development 
were the most enriched biological processes (Fig. 3c), while 
the most enriched cellular component was the plasma mem-
brane, suggesting that changes in the plasma membrane play 
an important role in PTC LNM (Fig. 3d). Meanwhile, cal-
cium ion binding was the most enriched molecular function 
(Fig. 3e). Significant differences in the proportions of each 
cell type were identified between the Normal, Primary, and 
Metastasis groups (Fig. 3f).

Identification of clinical diagnostic markers 
and construction of the LNM prediction model

There were 154 DEGs showed difference between Metastasis 
and Primary in both scRNA-seq and bulk RNA-seq (Fig. 4a). 
After genes with strong correlation had been removed, S100A2, 
RPS4Y1, S100A5, ZFP36L1, CCDC80, YBX3, PTPRF, NPC2, 
DNAJC21, and SNX1 were screened as upregulated DEGs in 
the Metastasis group, while LPCAT2, CLIC3, SLC25A29, 
PDE8B, PAX8, LINC01315, HSPA5, ID4, and DIO2 were 
screened as downregulated genes (Fig. 4b–d). Of these 19 
genes, S100A2 was the most differentially upregulated gene 
and DIO2 was the most differentially downregulated gene. Half 
of all samples were then randomly selected as a training set to 
construct the diagnostic model and the other half were used as a 
validation set to verify its reliability. Validation showed that the 
AUC for the diagnostic model exceeded 0.7 (Fig. 4e). Although 
PTC LNM is affected by a lot of factors, our diagnostic model 
is still has a high accuracy. We then analyzed the clinical data 
of the patients grouped by the model. The results demonstrated 
that patients in the Metastasis group showed significant dif-
ferences in sex, tumor stage, and clinical stage compared to 
those in the Primary group (p = 2.9e−5, p = 7.9e−10, p = 3.8e−10; 
Fig. 4f–i). Interestingly, the Primary group had significantly 
higher TIDE scores (Fig. 4j). At the same time, immune infil-
tration analysis showed significant changes in the infiltration 
of various immune cell types, especially CD8+ cytotoxic cells 
(p < 0.001, Fig. 4k), which suggested that immune escape 
mechanism plays an important role in PTC LNM.

S100A2 and DIO2 are useful diagnostic markers 
in PTC LNM

Finally, we aimed to verify the effect of the two diagnostic 
markers genes with the highest amplification rate-S100A2 and 
DIO2-in the Metastasis group. Analysis of the clinicopathologi-
cal data for DIO2 and S100A2 in the TCGA database revealed 
significant differences in T stage, pathological type, clinical 
stage, and extrathyroid extension (ETE) between the two groups 
(p < 0.001; Fig. 5a–d). Therefore, we examined DIO2 and 
S100A2 RNA and protein expression in tissue samples from 66 
patients with PTC (Fig. S1). RT-qPCR analysis verified the dif-
ferences in both DIO2 and S100A2 expression between N0 and 
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N1 samples (p < 0.01), while there was no significant difference 
in N1a and N1b (Fig. S1g, h). In terms of ETE, clear differences 
were shown in DIO2 and S100A2 expression between PTC tis-
sues (p < 0.01). DIO2 differed in the presence or absence of 
vascular infiltration (VI), whereas S100A2 differed in clinical 
staging (p < 0.05; Fig. 5e–h). Meanwhile, IHC analysis showed 

that DIO2 expression was higher in samples with a follicular 
subtype than in those with a classical subtype and was lowest 
in the tall cell subtype (p < 0.001; Fig. 5i, j), whereas S100A2 
expression showed the opposite trends (p < 0.001; Fig. 5k, l). 
The above results demonstrate the role of S100A2 and DIO2 
in the clinical diagnosis of PTC.

Fig. 3   Heterogeneity of PTC LNM in malignant cells. a Volcano 
map of DEGs in malignant cell scRNA-seq data. b KEGG analysis 
of DEGs in scRNA-seq data and circle plot of the top ten enriched 
KEGG pathways corresponding to the first (maximum) 50 genes 
based on absolute log2FC values. c–e GO analysis of BP, CC, and MF 
for DEGs in scRNA-seq data and circle plot of the top ten enriched 

GO–BP, GO–CC, and GO–MF pathways corresponding to the first 
(maximum) 50 genes based on absolute log2FC values. f Cell–cell 
interaction network for malignant cell scRNA-seq data. g Top 50 TF 
activity differences between groups (absolute t value). h Expression 
and differences in TFs with an absolute t value > 25 between groups, 
***p < 0.001
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Roles of DIO2 in PTC LNM

Next, we investigated the relationship between DIO2 and PTC 
by overexpressing DIO2 in PTC cells (BCPAP and IHH4). 
BCPAP and IHH4 cells that overexpressed DIO2 had a weak 
ability to clone and proliferate compared to NC (BCPAP: 
p < 0.001 and IHH4: p < 0.01, Fig. 6a, b) in colony formation 
assays (BCPAP: p < 0.01; and IHH4: p < 0.001, Fig. 6c) in 
wound-healing assays. Consistent findings were also observed 
for cell migration and invasion in both cell lines (p < 0.001; 
Fig. 6d, e), suggesting that DIO2 may play an inhibitory role 
in PTC progression.

Further investigation of the mechanism of PTC inhibi-
tion made by DIO2. We found that overexpression of DIO2 
decreased the expression of cell cycle proteins (Cyclin D1, 
CDC2) and proliferation protein (Ki-67) in PTC cells (Fig. 6f). 
The reason may be that PTC cells are more blocked in G2/M 
phase (p < 0.001, Fig. 6g, h). Cell cycle block affected the pro-
liferation of PTC cells, and PTC cells overexpressed DIO2 in 
the EdU assay showed less fluorescence overlaps (p < 0.001, 
Fig. 6i). Further, we planted IHH4 overexpressed DIO2 in mice 
(Fig. 7a). The results showed that IHH4 grafted tumors over-
expressed DIO2 were significantly smaller than those in the 
control group (p < 0.05, Fig. 7b–e). IHC analysis of the xeno-
graft tumors showed that a large amount of overexpression of 
DIO2 was observed in the xenograft tumor cells. Under high 
magnification (80X), the stained area can be clearly seen to be 
located in the cytoplasm of the cell (p < 0.05; Fig. 7f).

Discussion

Although PTC is considered to have a good prognosis, LNM 
of PTC remains the most concerning challenge for doctors 
and patients. In this study, we aimed to analyze LNM hetero-
geneity in malignant PTC cells by combining scRNA-seq and 
bulk RNA-seq data. From the screened diagnostic markers, we 
selected the two genes with the largest amplification for further 
study—DIO2 and S100A2.

Unlike previous studies of S100A2 in PTC [31, 32], we 
found that S100A2 could have potential for the diagnosis of 
PTC LNM. Based on the previous literature, we hypothesize 

that S100A2 may affect LNM by suppressing immunity and 
regulating tumor glycolysis [11, 15]. In addition to being 
a diagnostic marker of PTC LNM, we found that S100A2 
may be related to the malignancy of PTC, since S100A2 
displays differential patterns of expression in different path-
ological types of PTC. Here, we found that DIO2 can be 
used as a diagnostic marker of LNM in PTC. Like S100A2, 
DIO2 is also associated with the malignant progression of 
PTC. Despite the clinical significance of these findings, we 
observed no significant differences in T staging or clini-
cal staging with S100A2 and DIO2 expression. Therefore, 
future studies should validate our findings using a larger 
sample size.

When we analyzed the enriched pathways using the com-
bined scRNA-seq and bulk RNA-seq data, we found that the 
AITD pathway intersected in both datasets. The relationship 
between AITD and PTC has been controversial, with some 
studies suggesting that AITD is a risk factor for PTC [33] 
and others suggesting that AITD is not directly related to 
PTC but is caused by an increase in TSH secretion due to 
AITD-induced hypothyroidism [34].

Since accurate LNM prediction in PTC is an important 
consideration when selecting treatments and determining 
patient prognosis, many studies have attempted to predict 
LNM from clinical data, imaging, and pathology [35–37]. 
However, these LNM diagnostic models have been based on 
tumor phenotypes, which can be affected by many factors. 
In comparison, the genome prediction model based on the 
origin of PTC LNM is more comprehensive and accurate. 
Moreover, unlike previous studies that only used bulk RNA-
seq data for modeling, this study combined scRNA-seq data 
with bulk RNA-seq data [38], which can remove non-PTC 
cell interference from bulk RNA-seq data while allowing 
the model to be used at the tissue level, thereby avoiding the 
huge workload and cost associated with scRNA-seq while 
maintaining predictive accuracy and clinical feasibility. 
Although the early prediction of LNM for PTC treatment 
is undoubtably important, our model showed no difference 
in overall survival or disease-free survival between patient 
groups (Fig. S1a–f), likely due to the excellent prognosis 
of patients after PTC treatment. Therefore, it is important 
to find a characteristic measure of PTC prior to treatment.

Due to the large difference demonstrated by DIO2 in 
this study, we further explored its function in PTC LNM. 
Lymph-node metastasis plays a unique role in the treat-
ment of PTC and dominates the selection of surgical 
scope. PTC cell proliferation was significantly inhib-
ited, and they stayed more in G2/M phase when DIO2 
was overexpressed. Its ability to migrate and invade is 
also affected. It is worth mentioning that the expression 
of DIO2 in anaplastic thyroid carcinoma has been found 
to promote the progression of tumors [39]; however, the 
authors acknowledge the different role of DIO2 in early 

Fig. 4   The selection of clinical diagnostic markers and the construction 
of PTC LNM prediction model. a Venn diagram of intersecting DEGs 
for scRNA-seq and bulk RNA-seq data. b Lasso regression screening 
for variable genes. c Cross validation. d Model tag gene (coefficient ≠ 0) 
expression cluster heatmap. e ROC for test, train, and all datasets. f–i 
Comparison of age, sex, clinical stage, and T stage between groups were 
divided by models. j Comparison of TIDE scores between groups 
were divided by models. k Difference in immune gene scores between 
groups, *p < 0.05, **p < 0.01, ***p < 0.001

◂
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Fig. 5   The verification of 
S100A2 and DIO2 using 
TCGA and tissue specimens. 
a Analysis of DIO2 expres-
sion in patients with different 
clinicopathological character-
istics in TCGA. b ROC curves 
for DIO2 expression in patients 
with different clinicopathologi-
cal characteristics in TCGA. c 
Analysis of S100A2 expression 
in patients with different clin-
icopathological characteristics 
in TCGA. d ROC curves for 
S100A2 expression in patients 
with different clinicopathologi-
cal characteristics in TCGA. e 
RT-qPCR analysis of DIO2 
expression in 66 PTC specimens 
from patients with different 
clinicopathological character-
istics. f ROC curves for DIO2 
expression in 66 PTC specimens 
from patients with different 
clinicopathological character-
istics. g RT-qPCR analysis of 
S100A2 expression in 66 PTC 
specimens from patients with 
different clinicopathological 
characteristics. h ROC curves 
for S100A2 expression in 66 
PTC specimens from patients 
with different clinicopathologi-
cal characteristics. i IHC sec-
tions showing DIO2 expression 
in different PTC tissue subtypes 
at 40 × and 80 ×, respectively. 
j IHC quantitative analysis 
of DIO2 in different PTC 
subtypes. k IHC sections 
showing S100A2 expression in 
different PTC tissue subtypes 
at 40 × and 80 ×, respectively. 
l IHC quantitative analysis 
of S100A2 in different PTC 
subtypes. Data represent the 
mean ± standard deviation (SD), 
nsp > 0.05, *p < 0.05, **p < 0.01, 
***p < 0.001
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Fig. 6   The biological validation 
of DIO2 in PTC cell lines. a 
Results of CCK-8 assay show-
ing the viability of PTC cells 
after transfection with overex-
pressed DIO2 or NC. b Results 
of colony formation assay of 
PTC cells after transfection with 
overexpressed DIO2 or NC. c 
Results of wound-healing assay 
of PTC cells after transfection 
with overexpressed DIO2 or 
NC. Results of Transwell assays 
of PTC cell migration (d) and 
invasion (e) after transfection 
with overexpressed DIO2 or 
NC. f Protein levels of DIO2, 
Ki-67, cyclin D1, and CDC2 
were measured by Western blot 
assays. g The proportion of cell 
population at each cell cycle 
phase relative to total phases. 
h Cell cycle phase distribution 
of DIO2 overexpression PTC 
cell line (IHH4 and BCPAP). 
i 5-Ethynyl-2-deoxyuridine 
incorporation assay of DIO2 
overexpression PTC cell line 
(IHH4 and BCPAP). Data repre-
sent the mean ± SD, **p < 0.01, 
***p < 0.001



1528	 Journal of Endocrinological Investigation (2024) 47:1513–1530

1 3

and advanced thyroid cancer. The excellent prognosis of 
PTC also suggests that PTC is still a relatively early cancer 
even when lymph-node metastasis occurs. Therefore, we 
can still consider DIO2 as a potential target for controlling 
PTC progression.

Conclusions

In this study, we explored the heterogeneity of LNM in 
PTC using scRNA-seq, thereby providing a reference for 
future research on LNM in PTC. By combining scRNA-
seq and bulk RNA-seq data, we further constructed a PTC 

Fig.7   Validation of DIO2 in  vivo experiments. a The schematic 
graph of xenograft studies. b Image of xenograft tumor mice. c Image 
of xenograft tumors. d Weight records of mice for 3 weeks in vivo. 

e Volume records of xenograft tumors (mm3). j IHC of xenograft 
tumors and their quantitative analysis at 20x, 40 ×, and 80 ×, respec-
tively. Data represent the mean ± SD, **p < 0.01, ***p < 0.001
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LNM diagnostic model and demonstrates its clinical appli-
cability. On this basis, the effectiveness of S100A2 and 
DIO2 as diagnostic markers were further demonstrated. 
Further we found that DIO2 could inhibit PTC prolifer-
ation migration and invasion by blocking the PTC cell 
cycle, which has the potential to be a therapeutic target. 
Despite these important findings, this study also has some 
limitations. First, although the scRNA-seq data used in 
this study covered patients with different pathological 
types of PTC, the sample size was still small. Second, as 
a preliminary study, there are still many aspects of this 
study that require further elucidation. Finally, the diag-
nostic model established in this study requires more data 
for further validation. Given the high incidence of PTC, 
more scRNA-seq data from PTC are needed in the future 
to yield more concrete conclusions.

In summary, this study explored the heterogeneity of 
the PTC LNM and constructed a feasible LNM diagnostic 
model by combining scRNA-seq and bulk RNA-seq. Fur-
ther, we validated the effectiveness of S100A2 and DIO2 
as diagnostic markers and explored the mechanism of PTC 
inhibition by DIO2.
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