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Abstract
Purpose Selective androgen (ostarine, OST) and estrogen (raloxifene, RAL) receptor modulators with improved tissue 
selectivity have been developed as alternatives to hormone replacement therapy. We investigated the combined effects of 
OST and RAL on muscle tissue in an estrogen-deficient rat model of postmenopausal conditions.
Methods Three-month-old Sprague Dawley rats were divided into groups: (1) untreated non-ovariectomized rats (Non-OVX), 
(2) untreated ovariectomized rats (OVX), (3) OVX rats treated with OST, (4) OVX rats treated with RAL, (5) OVX rats 
treated with OST and RAL. Both compounds were administered in the diet. The average dose received was 0.6 ± 0.1 mg for 
OST and 11.1 ± 1.2 mg for RAL per kg body weight/day. After thirteen weeks, rat activity, muscle weight, structure, gene 
expression, and serum markers were analyzed.
Results OST increased muscle weight, capillary ratio, insulin-like growth factor 1 (Igf-1) expression, serum phosphorus, 
uterine weight. RAL decreased muscle weight, capillary ratio, food intake, serum calcium and increased Igf-1 and Myostatin 
expression, serum follicle stimulating hormone (FSH). OST + RAL increased muscle nucleus ratio, uterine weight, serum 
phosphorus, FSH and luteinizing hormone and decreased body and muscle weight, serum calcium. Neither treatment changed 
muscle fiber size. OVX increased body and muscle weight, decreased uterine weight, serum calcium and magnesium.
Conclusion OST had beneficial effects on muscle in OVX rats. Side effects of OST on the uterus and serum electrolytes 
should be considered before using it for therapeutic purposes. RAL and RAL + OST had less effect on muscle and showed 
endocrinological side effects on pituitary–gonadal axis.

Keywords Ovariectomized rat model · Selective androgen receptor modulators (SARMs) · Selective estrogen receptor 
modulators (SERMs) · Muscle · Bone

Introduction

The aging of the world's population poses serious medi-
cal, social, and economic challenges. In postmenopausal 
women, hormonal changes such as estrogen decline con-
tribute to the development of sarcopenia and osteoporosis [1, 
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2]. Sarcopenia describes the coexistence of reduced muscle 
quality or quantity and physical limitations [3].

Direct hormone replacement therapy is essential in cer-
tain cases of hormone deficiency in men and women [4–6]. 
Nevertheless, severe side effects such as thromboembolism 
have prompted the development of selective androgen and 
estrogen receptor modulators (SARMs and SERMs, respec-
tively) with higher tissue selectivity [5, 7, 8].

The biochemical hypothesis for the superior bioavailabil-
ity and pharmacokinetic profile of SARMs compared to tes-
tosterone is the resisted aromatization of 5-α-reduction [9]. 
However, while SARMs are not yet approved [10], SERMs 
have been shown to be a safe therapeutic option for post-
menopausal symptoms with fewer side effects compared to 
estrogen [7].

The SARM ostarine (OST), also known as S-22, 
MK-2866, enobosarm or GTx-024, showed increased vas-
cularization and citrate synthase activity in skeletal muscle 
in a rat model of postmenopausal osteoporosis [11], and ben-
eficial effects on muscle in orchiectomized rats [12]. In addi-
tion, clinical studies have shown improved physical function 
and beneficial effects on body mass and muscle in elderly 
men and postmenopausal women, and reduced muscle wast-
ing in cancer patients [13–15].

Similarly, the SERM raloxifen (RAL) was found to 
increase lean body mass in postmenopausal women [16] 
and improve body composition in orchiectomized rats [12]. 
In mice of both sexes suffering from muscular dystrophy, 
skeletal muscle function and structure were improved by 
RAL [17]. More recently, the combination of OST and RAL 
showed equivalent effects on muscle in terms of weight gain 
in the levator ani muscle compared to OST alone in an orchi-
ectomized rat model, but reduced the androgenic potential 
of OST in the prostate [12].

Studies on the effects of combined OST and RAL treat-
ment on muscle structure and metabolism in the female 
organism are lacking. Therefore, the present study was 
conducted to investigate the effects of the combination of 
OST and RAL on skeletal muscle and metabolism in an 
established rat model of postmenopausal conditions and to 

compare it with OST and RAL treatments alone. The treat-
ments were used as a phrophylaxis against the detrimental 
changes under hormone deficiency. Potential side effects 
were analyzed.

Materials and methods

General procedures

The animal study protocol was approved by the local 
regional government (14/1396, Oldenburg, Germany) prior 
to the study. Seventy-five three-month-old Sprague Dawley 
rats (Fa. Janvier Labs, Saint-Berthevin, France) were used in 
the experiment. The experiment was conducted as depicted 
in Fig. 1. All rats were anesthetized with isoflurane, micro-
chips (1,25 × 7 mm, ISO11784/11785, Med Associates, 
Inc. Fairfax, Virginia, USA) were injected s.c. for further 
identification of the rats, and the rats were either bilater-
ally ovariectomized (OVX) or left non-ovariectomized to 
serve as intact controls (Non-OVX). Thereafter, rats were 
divided into five groups, each of 15 rats: Group 1, Non-
OVX; Group 2, OVX, and Groups 3 to 5, OVX rats treated 
with OST, RAL, or a combination of both (RAL + OST), 
with a dosage of 0.4 mg/kg BW for OST and 7 mg/kg BW 
for RAL for up to 13 weeks. The dosages were taken from 
the previous studies [11, 18]. Three to four rats were housed 
in one cage (Type Makrolon® IV, Techniplast Deutschland 
GmbH, Hohenpreißenberg, Germany). The rats had free 
access to demineralized water and soy-free pelleted food 
(ssniff Spezial Diät GmbH, Soest, Germany). In the lat-
ter, OST and RAL were supplied. OST was obtained from 
Shanghai Biochempartner Co., Ltd. (Shanghai, China), and 
RAL was obtained from Eli Lilly and Company (Evista®, 
Indianapolis, USA). Food intake and BW were weekly 
recorded. The average daily food intake of a rat was calcu-
lated by dividing the food consumed by the number of rats 
in a cage and it served for the calculation of the drug intake 
(OST, RAL, OST + RAL) [19]. The average received dose 

Fig. 1  Schematic flowchart of the experiment. Eight-month-old male 
rats were either ovariectomized (OVX) or left intact (Non-OVX). 
Immediately after surgery, OVX rats were either left untreated or 

treated with OST, RAL or OST + RAL. (N) Number of rats at the 
beginning of the experiment, (n) the number of rats analyzed at the 
end of the experiment
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was 0.6 ± 0.1 mg/kg/day BW for OST and 11.1 ± 1.2 mg/
kg/day for RAL.

At the end of the experiment, 13 weeks after OVX, an 
open field activity test was performed. Four animals at a 
time were placed in a cage with the bottom divided into 
6 squares using a black marker and filmed with a camera 
(Nikon D5600, Tokyo, Japan) for 5 min. The number of 
completely crossed lines (horizontal movement activity, 
transitions), the number of uprights (vertical movement 
activity, rearing), and the cleaning activity (grooming) were 
then counted on a computer [20]. Blood samples were then 
collected by heart puncture under deep isoflurane anesthe-
sia and stored at − 20 °C for further analysis. The uterus 
and three muscles were removed bilaterally: gastrocnemius 
(GM), longissimus (LM), and soleus (SM). GM and SM 
were weighed. All muscles were snap frozen in liquid nitro-
gen and stored at − 80 °C for either histological or mRNA 
expression analysis.

Histological analysis

A cryotome was used to cut cross-sections of 12-µm thick-
ness serially from the middle part of each frozen muscle 
(CM 1900; Leica Microsystems, Wetzler, Germany). Until 
staining, specimens were air dried and stored at − 20 °C. 
Unless otherwise indicated, all chemicals were obtained 
from Merck KGaA (Darmstadt, Germany).

Staining of muscle capillaries was performed using 
a periodic acid–Schiff (PAS) method [21]. Briefly, sec-
tion was fixed in ethanol/chloroform/glacial acid solution 
(16:3:1), then incubated in 0.3% α-amylase from porcine 
pancreas, (Sigma–Aldrich Laborchemikalien GmbH, Seelze, 
Germany), stained using Schiff’s reagent solution (Roth, 
Karlsruhe, Germany) and finally treated with a 10% potas-
sium sulfite solution. To avoid overstaining, Schiff’s reagent 
solution was applied under visual control (2–25 min).

For staining of muscle fibers, a modified staining method 
with adenosine-triphophatase (ATPase) was applied as 
described by Horák [22]: Sections were fixed in a solution 
of 1% paraformaldehyde solution (pH 6.6), 1%  CaCl2 and 
6% sucrose and then stained by an incubation in a reduced 
nicotinamide adenine dinucleotide diaphorase solution (pH 
7.4). At last, an acidic incubation (pH 4.2) and incubation in 
adenosine-5´-triphosphate solution (pH 9.4) were performed 
[22].

Using hematoxylin eosin (HE) staining, nuclei were 
analyzed [23]. After muscle sections have been fixed with 
acetone, Mayer’s hematoxylin solution was used to stain the 
nuclei, and eosin G solution to stain the muscle fibers.

Aquatex® (Merck) was used to mount sections for 
fiber type and capillary stainings, whereas Eukitt® (Kin-
dler GmbH, Freiburg, Germany) was taken for sections 
with nucleus staining. Muscle sections were analzed using 

a microscope (Eclipse E 600 microscope; Nikon, Tokyo, 
Japan), a digital camera (DS-Fi2 Digital Camera; Nikon 
Instruments Europe, Amsterdam, Netherlands) and a soft-
ware (NIS-Elements AR 4.0 imaging software; Nikon Instru-
ments Europe) at tenfold magnification. For the evaluation 
of muscle fibers, we used three randomly chosen fields of 1 
 mm2 within each ATPase-stained section. In these fields, 90 
slow-twitch oxidative and fast-twitch oxidative (fiber types 
I and IIa, respectively) STO + FTO and 90 fast-twitch gly-
colytic (FTG; fiber type IIb) fibers were skirted [24]. In the 
ML, the fiber distribution was determined, as in this muscle, 
fibers show a homogenous distribution pattern [25]. In con-
trast, the GM showed a relative heterogenic distribution of 
fiber types, whereas the SM mainly consists mostly of STO 
fibers [26, 27]. Hence, in the latter only STO fibers were 
measured. The percentage of STO + FTO and FTG fibers 
was determined within 1  mm2 field. The ratio of capillaries 
to fibers (capillary density) as well as the ratio of nuclei to 
fibers (nucleus density) were calculated in two randomly 
chosen fields of 0.5  mm2 each withih the cross section [28].

Serum analysis

For analyses of enzyme activities and electrolyte concen-
trations an automated chemistry analyzer Architect c16000 
(Abbott, Wiesbaden, Germany) and commercially available 
kits (Abbott) were used at the Department of Clinical Chem-
istry, University of Goettingen according to the manufactur-
er’s instructions (Abbott). Activity of creatine kinase (CK), 
and concentration of calcium (Ca), magnesium (Mg), and 
phosphorus (P) in serum were determined. The following 
methods were applied: Ca and Mg: quantification by arse-
nazi III dye was used (7D61-20 and 7D70-30, Abbott); P: 
ammonium molybdate method (7D71-30, Abbott); CK: reac-
tivator method with N-acetyl-L-cysteine (7D63-30, Abbott) 
[11]. Enzyme Immunoassay kit for rats (Cloud-Clone Corp., 
Katy, Texas, USA) was used to determine follicle stimulat-
ing hormone (FSH) and luteinizing hormone (LH) levels.

Gene expression analysis

GM samples (100 mg; n = 5/group) were homogenized in 
750 µl TRIzol (Thermo Fischer Scientific, WA, USA) using 
4 mm tungsten carbide beads (Cat. No. 69997 Qiagen, Ger-
many) with the aid of the Tissuelyzer LT system (Qiagen, 
Germany). Thereafter, the samples were incubated for 5 min 
at room temperature and further RNA extraction was pro-
cessed according to the manufacturer’s protocol (Trizol, 
Thermo Fischer Scientific) using chloroform and isopro-
panol treatments and ethanol washings. Finally, the RNA 
pellet was dissolved in 20 µL  H2O, measured by DeNovix 
DS-11 FX + System (DeNovix, NC, USA) and stored at 
− 80 °C for further analysis.
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Reverse transcription was performed with 1000 ng of 
total RNA using an iScript cDNA synthesis kit (Biorad, 
CA, USA). Quantitative real-time Polymerase chain reac-
tion (PCR) was performed on the CFX96 Real-time PCR 
Detection System (Biorad, CA, USA) using a SYBR Green 
(Biorad, CA, USA) detection marker. Relative expressions 
of beta-2-microglobulin (B2M), androgen receptor (Ar), 
estrogen receptor alpha (Er alpha), Myostatin, insulin-like 
growth factor 1 (Igf-1), and vascular endothelial growth 
factor B (Vegf-B, [29]) were measured in triplicate and 
effects were calculated using the  2−ΔΔCT method [30]. 
Ready-to-use primers for B2M, Ar, Er-alpha, Igf-1 and 
Myostatin were obtained from Qiagen (QuantiTect Primer 
Assays, Qiagen, Hilden, Germany). Primers for Vegf-B 
were used with the following sequences: Forward GCC 
AGA CAG GGT TGC CAT AC, Reverse GGA GTG GGA 
TGG ATG ATG TCAG. B2M was taken as a reference gene. 
We failed to measure the mRNA expression of Er beta, 
confirming its low and nearly undetectable expression in 
rodent muscle [31].

Statistical analysis

Statistical analyses were performed using GraphPad Prism 
ver. 8.2.1 (GraphPad Software, San Diego, CA, USA). One-
way analysis of variance (ANOVA) was applied. Differences 
between groups were analyzed using Tukey's post-hoc test 
(p < 0.05). Data are presented as mean values and standard 
deviations. The relationship between body weight and mus-
cle parameters was assessed by correlation analysis.

Results

Food intake, body weight, drug intake and activity 
test

Mean food intake was significantly different between the 
treatment groups (Table 1). The OVX and OST groups had 
significantly higher food intakes than the Non-OVX and 
RAL groups. Weekly food intake analysis showed higher 

Table 1  Food intake, weights, nucleus ratio, serum analysis, and activity test in Non-OVX or OVX rats treated either with ostarine (OST), ralox-
ifen (RAL) or combination (OST + RAL)

SD Standard deviation, STO + FTO slow-twitch oxidative and fast-twitch oxidative fibers, FTG fast-twitch glycolytic fibers, GM gastrocnemius 
muscle, LM longissimus muscle, SM soleus muscle
b Different from OVX, cFrom OST, dFrom RAL,eFrom OST + RAL (Tukey test, p < 0.05)

Groups Non-OVX OVX OST RAL OST + RAL ANOVA
p-value

Sample Size 13 15 15 15 15

Parameters Mean SD Mean SD Mean SD Mean SD Mean SD

Mean food intake (g/day/rat) 20.7bc 2.6 24.6d 4.5 26.1d 2.8 19.2 3.3 22.3 3.8  < 0.001
Weights
 Body weight (beginning of trial) [g] 271.5 12.8 276.7 11.9 273.0 11.3 271.6 11.6 269.7 8.0 0.518
 Body weight (end of trial) [g] 341.5bc 17.4 451.5cde 30.5 495.1de 41.0 329.6 14.0 355.9 17.3  < 0.001
 Uterus weight [g] 0.75bd 0.19 0.22ce 0.07 0.62d 0.09 0.25e 0.05 0.66 0.16  < 0.001
 GM weight [g] 2.17bc 0.18 2.56cde 0.27 2.84de 0.18 2.07 0.21 2.23 0.18  < 0.001
 SM weight [g] 0.18c 0.02 0.19cd 0.03 0.22de 0.03 0.16 0.02 0.17 0.02  < 0.001

Nucleus ratio
 GM 0.85e 0.24 0.95 0.20 1.07 0.37 0.94 0.21 1.13 0.34 0.008
 LM 1.11 0.27 1.40 0.33 1.36 0.39 1.23 0.32 1.34 0.39 0.057
 SM 1.21 0.43 1.06 0.28 1.04 0.25 1.19 0.37 0.94 0.25 0.068

Serum analysis
 Ca (mmol/l) 2.6bcde 0.1 2.5e 0.1 2.4 0.1 2.4 0.1 2.4 0.1  < 0.001
 Mg (mmol/l) 0.9bcde 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1  < 0.001
 P (mmol/l) 1.6cde 0.2 1.7ce 0.2 2.0e 0.2 1.9e 0.2 2.3 0.2  < 0.001
 CK (U/l) 799 264 825 460 540 248 1004 463 724 528 0.126
 FSH (ng/ml) 16.41de 3.041 20.13 2.952 20.32 2.849 23.34 5.037 25.24 4.379  < 0.001
 LH (pg/ml) 272.7e 44.49 358.3 169.7 369.1 70.17 335.2 110.6 457 104.1 0.041

Activity test
 Transition 54.1 8.2 62.6 9.4 54.5 9.2 60.9 10.6 50.6 8.2 0.093
 Rearing 21.1 5.1 23.6 4.2 21.6 4.2 25.3 5.7 19.1 3.1 0.118
 Grooming 3.4 1.5 4.5 1.6 3.1 1.4 2.6 1.7 2.8 1.6 0.140
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food intake in the OVX and OST groups compared to all 
other groups for up to 8 weeks (Fig. 2). At week 10, higher 
food intake was particularly observed in the OST group 
compared to the other groups and in the OST + RAL group 
compared to the RAL group. Thereafter, it did not differ 
from that of the OST + RAL group, and at the end of the 
study, it differed only from that of the RAL group (Fig. 2).

The mean BW of the rats was highest in the OST group 
and higher in the OVX group than in the Non-OVX, RAL, 
and OST + RAL groups (Table 1). Similarly, BW was higher 
in the OVX and OST groups compared to all other groups 
throughout the experiment (Fig. 2). In addition, the BW of 
the RAL groups was significantly lower than that of the 
OST + RAL group at weeks 5, 8, 9, 10, and 11.

The mean OST intake was 0.52 ± 0.03 mg/kg BW for the 
OST group and 0.58 ± 0.07 mg/kg BW for the OST + RAL 
group (Fig. 2). The mean RAL intake was 10.62 ± 1.06 mg/
kg BW for the OST group and 11.52 ± 1.41 mg/kg BW for 
the OST + RAL group. RAL intake was significantly higher 
in the OST + RAL group than in the RAL group during 
weeks 10 and 11 (Fig. 2).

None of the parameters recorded during the activity test 
(transitions, rearing and grooming) differed between groups 
(Table 1).

Uterus and muscle weights

Uterine weight was significantly lower in the OVX and RAL 
groups compared with the Non-OVX, OST, and OST + RAL 
groups (Table 1).

Regarding muscle weight, GM and SM weights were 
significantly higher in the OST group compared to all other 
groups. The OVX group had a significantly higher SM 
weight compared to the RAL group and a higher GM weight 
compared to the Non-OVX, RAL, and OST + RAL groups 
(Table 1). Correlation analysis of muscle weight and BW 
showed a significant relationship between these variables in 
GM and SM (Table 3).

Muscle structure analysis

In the GM, the diameter of STO + FTO fibers of the RAL 
group was significantly larger than that of the Non-OVX 
group. The diameter of FTG fibers was significantly larger in 
the OVX group and the OST group than in the OST + RAL 
group, and the OST group had a significantly larger diameter 
than the RAL group. The areas of all fibers did not differ 
between the treatment groups (Table 2). The size of FTG 
fibers correlated significantly with BW in the GM (Table 3).

In the LM, the areas and diameters of STO + FTO fibers 
were significantly larger in the OVX group than in the RAL 
and OST + RAL groups, whereas those of FTG fibers did not 
differ between groups (Table 2). All fiber types examined 

correlated positively with the BW of the rats (Table 3). The 
ratio of STO + FTO fibers to FTG did not differ significantly 
between the groups in the LM (Table 2).

In the SM, the area of STO fibers was significantly larger 
in the OVX group than in the RAL group (Table 2). There 
was no correlation between fiber size and BW of the rats 
(Table 3).

Regarding the capillary ratio, the Non-OVX group had 
a significantly lower ratio than all other groups in the GM 
(Fig. 3). In the LM, the OVX group and the OST group had a 
significantly higher ratio compared to the OST + RAL group. 
In addition, the OST group had a significantly higher ratio 
compared to the Non-OVX and RAL groups (Fig. 3). In the 
SM, a significantly higher ratio was observed in the OST 
group compared to the Non-OVX, OVX, and OST + RAL 
groups (Fig. 3). In the GM and LM, the capillary ratio was 
significantly correlated with BW (Table 3).

The analysis of the nucleus ratio (nuclei per muscle fiber) 
was significantly higher in the OST + RAL group than in 
the Non-OVX group in the GM. There were no significant 
differenes in the LM or SM (Table 1).

Correlations between nucleus ratio and BW were not sig-
nificant for GM and SM, but reached a significant level for 
LM (Table 3).

Serum analysis

Ca and Mg levels were significantly higher in the Non-
OVX group compared to all other groups. In addition, the 
OVX group had a significantly higher Ca level than the 
OST + RAL group (Table 1). The P level of the OST + RAL 
group was the highest among the other treatment groups. 
It was significantly lower in the Non-OVX group than in 
the OST and RAL groups, and lower in the OVX group 
than in the OST group (Table 1). There were no significant 
differences in CK activity (Table 1). In hormonal analysis, 
significantly higher FSH levels were observed in the RAL 
and OST + RAL groups compared to the Non-OVX group. 
LH levels were also significantly higher in the OST + RAL 
group than in the Non-OVX group (Table 1).

Gene expression analysis

Ar gene expression was significantly higher in the RAL 
group compared to the Non-OVX, OVX and OST + RAL 
groups (Fig. 4). No significant differences were found in 
the Er alpha expression. Vegf-B gene expression was sig-
nificantly higher in the Non-OVX, and OVX groups than in 
the OST + RAL group. Igf-1 expression was higher in the 
OST, RAL, and OST + RAL groups than in the Non-OVX 
group. Igf-1 gene was expressed expression was significantly 
higher in the OST and RAL groups than in the OVX group. 
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Fig. 2  Food intake, body 
weight, and the intake of 
OST and RAL. The food 
intake, the body weight, and 
the drug intake during the 
experiment. Significant differ-
ences between the groups (a 
Non-OVX, b OVX; c OST; d 
RAL; e OST + RAL) are shown 
(p < 0.05, Tukey test)
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Myostatin expression was significantly higher in the RAL 
group than in the Non-OVX, OVX, and OST groups (Fig. 4).

Discussion

In this study, we analyzed the effects of the SARM ostarine 
and the SERM raloxifen on muscle structure and metabolism 
in ovariectomized rats as a model of postmenopausal mus-
culoskeletal system deterioration. We found that OST treat-
ment exerted beneficial effects on muscle tissue, whereas 
RAL or combined OST + RAL treatments had less effect 
on muscle.

After OVX, rats showed increased BW as a common 
response to estrogen deprivation, which is consistent with 
previous studies [11, 32–35] and could be explained by an 
increased food intake and other metabolic changes in rats 
observed after OVX [36]. While OST + RAL treatment did 
not alter BW in the OVX rats, RAL administration resulted 
in a decrease in food intake and BW, possibly similar to the 
mechanisms of estrogens in blunting the increase in BW 

[36]. OST administration did not change BW throughout 
the experiment; however, during the last four weeks of 
the experiment, OST rats showed increased food intake. It 
is possible that changes in BW and food intake are time 
dependent. This would be consistent with the results of 
Kearbey, Gao [37], who found increased BW in OVX rats 
after 120 days of SARM S-4 administration, while body fat 
was reduced and lean mass was increased. Overall, the rats 
in the present study had a higher food intake than in our 
previous study [11], which resulted in a higher uptake of the 
test compounds. However, the doses were comparable to the 
other rodent studies [38, 39].

The activity of the rats was not affected by any of the 
treatments. Previous studies have reported a decrease in 
physical activity in OVX rats that promotes weight gain 
[40, 41], whereas estrogen replacement therapy has been 
associated with a return to normal physical activity and 
body weight [40]. The limitations of the physical activ-
ity assessment test used in this study are its short duration 
and application time at the end of the experiment. We did 
not perform more comprehensive tests because analysis of 

Table 2  Muscle fiber analyses 
in Non-OVX or OVX rats 
treated either with ostarine 
(OST), raloxifen (RAL) or 
combination (OST + RAL)

SD Standard deviation, STO + FTO slow-twitch oxidative and fast-twitch oxidative fibers, FTG fast-twitch 
glycolytic fibers, GM gastrocnemius muscle, LM longissimus muscle, SM soleus muscle
d Different from RAL,eFrom OST + RAL (Tukey test, p < 0.05)

Groups Non-OVX OVX OST RAL OST + RAL ANOVA
p-value

Sample size 13 15 15 15 15

Parameters Mean SD Mean SD Mean SD Mean SD Mean SD

GM
STO + FTO
 Area (µm2) 1597 452 1970 244 1938 303 1922 440 1849 315 0.159
 Diameter (µm) 44d 6 50 3 49 4 51 7 48 4 0.044

FTG
 Area (µm2) 3964 900 4829 1193 4987 1059 3667 671 3576 902 0.108
 Diameter (µm) 70 8 77e 9 78de 8 68 6 67 8 0.004

LM
STO + FTO
 Area (µm2) 1669 294 1900de 435 1704 253 1479 258 1498 309 0.011
 Diameter (µm) 46 4 50de 7 46 4 43 4 43 4 0.008

FTG
 Area (µm2) 4738 810 5920 1323 6187 1400 5218 1202 5413 1297 0.055
 Diameter (µm) 77 7 88 11 88 11 80 9 82 10 0.060

SM
STO
 Area (µm2) 4079 593 4214d 470 4097 322 3439 414 3716 924 0.026
 Diameter (µm) 72 5 73 4 72 3 66 4 68 8 0.224

Percentage of 
fibers in LM 
(%)

 STO + FTO 50 7 52 8 49 7 54 6 48 4 0.181
 FTG 50 7 48 8 51 7 46 6 52 4 0.181
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physical activity and behavior were not the primary objec-
tives of the study.

OST treatment alone and in combination resulted in 
increased uterine weight, which has been previously 
observed and considered as a negative side effect [11, 34, 
42]. One reason for this uterotrophic effect may be that dif-
ferent scaffolds interact with the N-/C-terminal domains of 

the androgen receptor, leading to reduced tissue selectivity 
[43]. In addition, OST was shown to increase the number of 
Ki67-positive cells in the mouse uterine stroma and epithe-
lial cell proliferation [39]. We did not observe any effects 
of RAL on uterine weight, which could be seen in line with 
its more estrogen-antagonistic potential on the uterus [44].

OST treatment resulted in muscle weight gain in the GM 
and MS, highlighting the anabolic effect of SARM. A meta-
bolic explanation for the ostarine-induced muscle weight 
gain in rats could be the stimulation of muscle cell differ-
entiation by increasing the expression of myogenin, myo-
blast determination protein 1, and myosin heavy chain [45]. 
Dalton, Barnette [14] showed an increase in lean body mass 
and a decrease in total fat mass in postmenopausal women 
after OST treatment, supporting our findings. In contrast 
to OST, RAL treatment alone or in combination with OST 
maintained muscle weight at the level of intact Non-OVX 
rats, thereby reducing the effect of OVX. The changes in 
muscle weight could be due to the differences in BW of these 
groups, since the effect was not seen in data expressed rela-
tive to BW (data not shown) and a high positive correlation 
was found between muscle and body weight. Indeed, SERMs 
have been shown to improve muscle function and structure 
in mice with muscular dystrophy, possibly due to reduced 
fibrosis, oxidative stress, and mitochondria-mediated cell 
death [17, 46]. Shen [47] observed reduced BW in OVX rats 
treated with RAL and postulated regulation of the Wnt sign-
aling pathway and a subsequent inhibition of adipogenesis.

OST administration did not affect muscle fiber size. The 
RAL group or RAL + OST group partially showed decreased 
muscle fiber sizes (e.g. STO + FTO in LM). A similar effect 
of RAL treatment alone or in combination was observed in 
previous experiments in male rats [12]. A possible explana-
tion could be a decrease in BW under RAL treatment, as 

Table 3  Correlations between body weight (BW) and muscle param-
eters

STO + FTO slow-twitch oxidative and fast-twitch oxidative fibers, 
FTG fast-twitch glycolytic fibers, GM gastrocnemius muscle, LM lon-
gissimus muscle, SM soleus muscle, R2: Coefficient of determination, 
p: two-tailed P-value

Correlations between BW and … Pearson r R2 p

GM Weight 0.83 0.68  < 0.001
STO + FTO diameter 0.15 0.021 0.330
STO + FTO area 0.22 0.047 0.145
FTG diameter 0.49 0.24  < 0.001
FTG area 0.49 0.24  < 0.001
Capillary ratio 0.33 0.11 0.031
Nucleus ratio 0.12 0.014 0.414

LM STO + FTO diameter 0.34 0.11 0.020
STO + FTO area 0.29 0.084 0.048
FTG diameter 0.36 0.13 0.011
FTG area 0.33 0.11 0.021
Capillary ratio 0.50 0.25  < 0.001
Nucleus ratio 0.30 0.089 0.046

SM Weight 0.66 0.43  < 0.001
STO + FTO diameter 0.28 0.077 0.060
STO + FTO area 0.26 0.067 0.077
Capillary ratio 0.27 0.076 0.075
Nucleus ratio -0.20 0.042 0.184

Fig. 3  Capillary ratio. The cap-
illary ratio in the GM, LM and 
SM is shown. b Capillary ratio 
is significantly different from 
the OVX group, c from the OST 
group, d from the OST group, 
and e from the OST + RAL 
group (p < 0.05, Tukey test)
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muscle weight and muscle fiber size correlate with BW in 
rats in the present and previous study [48].

Consistent with previous findings in OVX rats [11], OST 
administration in the present study showed beneficial effects 
on capillary ratio in the LM and SM. Thus, we report an 
increased capillary ratio after OST administration in female 
OVX rats, which may indicate that female muscles are 
more sensitive to OST than male muscles studied by Roch, 
Wolgast [12]. Better vascularization due to increased capil-
lary ratio influences the recovery of muscle contractility and 
may subsequently improve muscle function [49]. In con-
trast to OST, RAL treatment and the combined treatment of 
RAL and OST resulted in a decreased capillary ratio in the 
LM. The expression of Vegf-B, which influences muscle 
vascularization [50] in our study, was least expressed in the 
combined treatment. Capillary ratio was correlated with BW 
and correspondingly with muscle weight, which may explain 
the lower blood supply in these treatment groups. In other 
studies, when RAL or estrogen was used as a therapeutic 
treatment 8 weeks after OVX, no changes in capillary ratio 
in skeletal muscles were reported [51, 52].

In regard to the nucleus ratio, it was increased only in 
the GM by the combined treatment compared to the Non-
OVX group. An increase in the number of satellite cells and 
myonuclei is associated with testosterone-induced muscle 
fiber hypertrophy [53]. In our study, neither OST nor RAL 
was shown to affect the amount of myonuclei, although in 
general all OVX groups had a slightly non-significant higher 
ratio of myonuclei in muscle than Non-OVX rats.

Gene expression analysis showed increased Ar gene 
expression in the GM in the RAL group compared to the 
OVX controls. In contrast, decreased Ar expression has been 
reported in orchiectomized males after RAL administra-
tion [12]. Sex differences may contribute to the differential 

expression of Ar in muscle. Igf-1 gene expression was 
increased in the RAL and RAL + OST groups. Igf-1 acti-
vates the calcium-dependent calcineurin signaling pathway 
in skeletal muscle, thereby promoting muscle growth [54]. 
Thus, a similar effect of the combination treatment on Igf-1 
expression as previously reported [12] was confirmed. Tsai, 
McCormick [55] observed that reduced estrogen levels after 
OVX in rats resulted in higher Igf-1 expression, possibly 
indicating its role in mediating the effects of estrogen dep-
rivation. Furthermore, they showed that Igf-1 protein level 
decreased and Myostatin protein level increased after estro-
gen replacement [55]. In our study, Myostatin expression 
was also increased after treatment of OVX rats with RAL, 
whereas OST and OST + RAL treatments did not change its 
expression. In male orchiectomized rats, OST administration 
resulted in a decreased Myostatin expression, whereas RAL 
treatment did not affect Myostatin expression [12]. Myosta-
tin controls muscle growth by inhibiting muscle differentia-
tion and growth [56, 57], which may explain the inhibition 
of muscle weight gain after ovariectomy in the RAL and 
OST + RAL groups.

Serum analysis showed that Ca and Mg levels were 
lower in all OVX groups than in the healthy Non-OVX 
group, with the combined treatment reducing Ca levels 
to a greater extent. In contrast, P levels were generally 
higher after OVX and increased significantly after OST 
and OST + RAL treatments. One explanation could be an 
effect of ovariectomy on the thyroid and the hypothalamic-
pituitary-thyroid axis [58]. While the changes in serum 
after OVX have been reported previously [34, 59], the 
combination treatment failed to restore P and Ca levels 
as it was observed in male orchiectomized rats [12]. Sha-
hida [60] found low Ca levels in osteoporotic patients, 
which may be due to the decrease in estrogen levels during 

Fig. 4  Expression of genes. 
Gene expression in the GM 
is shown. c Gene expression 
is significantly different from 
the OST group, d from the 
OST group, and e from the 
OST + RAL group (p < 0.05, 
Tukey test)
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menopause [61]. Electrolyte imbalance should be avoided 
to prevent serious complications [62] and this side effect 
of combined treatment should be considered. None of the 
treatments showed an effect on CK levels, indicating a lack 
of muscle damage [63].

Serum FSH and LH levels were generally higher in all 
OVX rats compared to the Non-OVX rats, reaching the high-
est levels after the combination treatment. Both hormones, 
FSH and LH are elevated after the menopause in women and 
OVX rats due to the decreased estrogen and inhibin levels 
[64]. Estrogen and RAL decrease LH levels by suppress-
ing gonadotropin-releasing hormone (GnRH) release [65], 
whereas FSH levels may not be decreased [66]. Androgenic 
steroid hormones and SARMs also have the potential to sup-
press of LH and FSH levels [67] and it is unclear why the 
combination of RAL and OST caused an increase in the 
levels of these hormones.

The study has several limitations. We examined metabo-
lism, structure and gene expression and did not include a 
functional examination of the muscles. For clinical applica-
tion, the effects of substances on muscle function should be 
addressed. In addition, the effects of anabolic substances on 
muscle metabolism and size may be influenced by concomi-
tant exercise [68, 69], which was not assessed in the present 
study. Furthermore, the Non-OVX rats did not experience 
surgical stress and postoperative pain, and therefore the 
sham-operated group would have been a more appropriate 
control group for this study.

Summarizing, OST administration resulted in favorable 
effects on muscle weight and capillary ratio, emphasizing 
the anabolic effect of SARMs, while RAL or combination 
therapy failed to do so. Neither treatment showed ana-
bolic effects on muscle fiber size. The combination treat-
ment increased the nucleus ratio in the GM compared to 
the Non-OVX group. OST administration did not change 
BW, whereas RAL administration reduced food intake and 
BW, consistent with the literature. In contrast to RAL, OST 
administration and the combination treatment increased 
uterine weight and had altered serum electrolyte concentra-
tion, suggesting possible side effects due to the limited tis-
sue selectivity. Gene expression analysis revealed beneficial 
effects on muscle growth as indicated by increased Igf-1 
expression after OST and RAL administration. However, 
RAL treatment also increased Myostatin expression, which 
likely slowed muscle growth and prevented the increase in 
muscle weight observed after OVX.

In conclusion, the effect of OST on muscle was favorable 
and superior to the effect of RAL alone or combined treat-
ment in estrogen-deficient rats. However, side effects of OST 
on uterus and serum electrolytes should be considered before 
using it for therapeutic purposes. RAL and RAL + OST had 
less effect on muscle and showed some endocrinological 
side effects on pituitary–gonadal axis.
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