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Abstract
Osteoporosis is a metabolic bone disorder which increases fragility fracture risk. Elderly individuals, especially postmenopau-
sal women, are particularly susceptible to osteoporosis. Although rare, osteoporosis in children and young adults is becom-
ing increasingly evident, highlighting the need for timely diagnosis, management and follow-up. Early-onset osteoporosis 
is defined as the presence of a low BMD (Z-score of ≤ −2.0 in individuals aged < 20 years; T-score of ≤ −2.5 in those aged 
between 20 to 50 years) accompanied by a clinically significant fracture history, or the presence of low-energy vertebral 
compression fractures even in the absence of osteoporosis. Affected children and young adults should undergo a thorough 
diagnostic workup, including collection of clinical history, radiography, biochemical investigation and possibly bone biopsy. 
Once secondary factors and comorbidities are excluded, genetic testing should be considered to determine the possibility 
of an underlying monogenic cause. Defects in genes related to type I collagen biosynthesis are the commonest contribu-
tors of primary osteoporosis, followed by loss-of-function variants in genes encoding key regulatory proteins of canonical 
WNT signalling (specifically LRP5 and WNT1), the actin-binding plastin-3 protein (encoded by PLS3) resulting in X-linked 
osteoporosis, and the more recent sphingomyelin synthase 2 (encoded by SGMS2) which is critical for signal transduction 
affecting sphingomyelin metabolism. Despite these discoveries, genetic causes and underlying mechanisms in early-onset 
osteoporosis remain largely unknown, and if no causal gene is identified, early-onset osteoporosis is deemed idiopathic. This 
calls for further research to unravel the molecular mechanisms driving early-onset osteoporosis that consequently will aid 
in patient management and individualised targeted therapy.
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Introduction

Osteoporosis is a progressive, multifactorial systemic skel-
etal disease characterised by low bone mass, microarchitec-
tural deterioration of bone tissue and reduced bone strength 

that culminates in increased fracture risk [1, 2]. Fractures 
of the hip and vertebrae are the most common, debilitat-
ing and costly and occasionally can lead to death in 20% of 
affected individuals within the first year of fracture [3–6]. 
Although osteoporosis is considered a disease of the elderly, 
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affecting particularly postmenopausal women, increased 
clinical attention is being given to low bone mass disorders 
in children and young adults —whether primary or second-
ary in nature especially with the advent of improved or new 
diagnostic techniques [7, 8].

Bone is a physiologically dynamic organ exhibiting 
exceptional properties, ranging from mechanical to meta-
bolic and endocrine functions. It is a complex living tissue 
encompassing a variety of different cells (osteoblasts, osteo-
cytes, bone lining cells and osteoclasts) within a mineral-
ised matrix, all of which contribute towards maintaining a 
healthy bone status [9]. Mechanically, the skeleton supports 
the body and protects the vital organs. Metabolically, this 
endocrine organ is primarily a major source of minerals, 
growth factors, hormones and fatty acids. Bone is composed 
of an inorganic portion (50–70%) consisting of hydroxyapa-
tite  (Ca10(PO4)6(OH)2), an organic matrix (20–40%) being 
chiefly made up of type I collagen, water (5–10%) and 
impurities [9, 10]. The degree of mineralisation influences 
mechanical resistance and rigidity of bones, enabling them 
to withstand compression forces and loading, whereas the 
collagenous matrix allows for elasticity and movement. At 
the microarchitectural level, bone consists of cortical (mak-
ing up approximately 80% of bone) or trabecular bone differ-
ing in structural organisation, function and site distribution. 
Cortical bone is made up of densely packed collagen fibrils 
forming concentric bone lamellae parallel to and around cen-
tral Haversian canals through which blood and lymphatic 
vessels, nerves and connective tissue flow. Trabecular bone 
is composed of irregularly organised rod and plate-like net-
works of trabeculae forming 3D lattices arranged along the 
lines of stress. Despite constituting 20% of the skeleton, tra-
becular bone harbours a higher surface area relative to corti-
cal bone and undergoes more active remodelling making it 
more susceptible to pathogenesis [11, 12].

The precise and proper balance between bone formation 
and resorption is imperative in the shaping and development 
of bones, maintaining the integrity of the skeleton and in 
systemic mineral homeostasis. Bone modelling is promi-
nent in childhood and helps to define bone structure, shap-
ing, expansion and movement through space in response 
to the combined effect of mechanical loading, hormonal 
control and genetic factors affecting osteoblast and osteo-
clast function [13, 14]. Conversely, remodelling is a self-
regeneration process involving the coordinated action or 
‘coupling’, between osteoblastic bone formation and osteo-
clast-mediated bone resorption, which must be timely and 
quantitatively balanced by paracrine and endocrine factors 
and immune cells. Remodelling takes place in stages starting 
by osteoclast activation and resorption of existing damaged 
bone, reversal whereby osteoblasts are recruited to the bone 
surface and bone formation by osteoblasts that lay down 
osteoid which becomes mineralised forming mature bone 

[11, 13]. The coupling between resorption and formation is 
balanced and relatively stable during peak adult mass. How-
ever, it decreases over time with ageing increasing the risk 
of low bone mass and fracture susceptibility [11, 13, 15].

In this review, we describe the recent definition of early-
onset osteoporosis and its aetiology, the clinical diagnostic 
evaluation including genetic testing methods to confirm the 
presence of an underlying monogenic cause and treatment 
options for affected individuals.

Definition of early‑onset osteoporosis

Bone mineral density (BMD) measurement by dual-energy 
X-ray absorptiometry (DXA) can be used to diagnose osteo-
porosis in postmenopausal women and men aged > 50 years. 
The World Health Organization defines osteoporosis in these 
populations as a BMD at the spine, hip or forearm of 2.5 
or more standard deviations below the young adult mean 
(T-score ≤ -2.5) [16–18]. Additionally, in all cases of unu-
sual fracture, pathologies such as osteomalacia (e.g. due to 
severe vitamin D deficiency, hypophosphataemia), malig-
nancy or fibrous dysplasia should be ruled out [7, 17–21]. 
Subsequently, any fracture of low-to-moderate energy 
trauma (aside from a fracture of the digits, skull or face) 
that occurs from a standing height or less can be considered 
a low-trauma or fragility fracture [17, 22]. Such individuals 
may have decreased bone strength and may be considered to 
have osteoporosis, irrespective of BMD.

However, the diagnostic guidelines of osteoporosis 
in children and young adults are different (Table 1). The 
International Society for Clinical Densitometry (ISCD) rec-
ommends the use of BMD Z-scores in these populations 
(compared with age-matched norms) [23, 24]. In premeno-
pausal women and men aged < 50 years, a Z-score ≤ − 2.0 
is interpreted as below the expected range for age and a 
Z-score > − 2.0 as within the expected range for age [25, 26]. 
In this age group, osteoporosis diagnosis should not be based 
only on low BMD, but also on a history of low-trauma frac-
ture or a secondary cause of osteoporosis. In children, the 
values should be properly adjusted for short stature and/or 
delayed or advanced timing of puberty [23]. In the absence 
of vertebral compression fractures, the diagnosis of osteopo-
rosis is indicated by the presence of both a clinically signifi-
cant fracture history and BMD Z-score ≤ − 2.0. A clinically 
significant fracture history is one or more of the following: 
(1) two or more long bone fractures up to age of 10 years, 
(2) three or more long bone fractures up to age of 19 years 
[23, 24]. Additionally, in this age group, one or more ver-
tebral compression fractures is indicative of osteoporosis, 
in the absence of local disease or high-energy trauma, even 
if the BMD Z-score is not subnormal. The International 
Osteoporosis Foundation (IOF) defines low bone mass as a 



287Journal of Endocrinological Investigation (2024) 47:285–298 

1 3

Z-score of ≤ − 2.0 in subjects aged < 20 years and in those 
aged > 20 years with delayed puberty [27]. The IOF suggests 
the use of a T-score < − 2.5 to define osteoporosis in subjects 
aged 20–50 years in association with a low-trauma fracture 
history or a secondary cause of osteoporosis.

Aetiology of early‑onset osteoporosis: 
identifying the underlying cause

Low bone mass may be related to either inadequate peak 
bone mass acquisition and/or ongoing bone loss. BMD 
depends primarily upon achievement of peak bone mass 
which is defined as the maximum BMD achieved by age 

40 years [28, 29]. Importantly, 95–100% of peak bone 
mass is acquired by the late teen years [30–33] making 
this a crucial period for the proper formation of a robust 
musculoskeletal system.

Bone loss and/or fragility fractures in children and 
young adults can be attributed to a secondary cause which 
needs to be carefully looked for. If no such cause is iden-
tified, bone fragility may then be regarded primary and 
potentially related to rare gene variants [34]. If there is 
still no apparent aetiology, bone loss and/or fractures are 
considered idiopathic (Fig. 1).

Table 1  Definition of 
osteoporosis in children and 
young adults

BMD bone mineral density

International society for clinical densitometry (ISCD)
Children
 ≥ 1 vertebral compression fractures in the absence of local disease or high-energy trauma, or
    Clinically significant fracture history and BMD Z-score ≤ − 2.0 with
   ≥ 2 long bone fractures up to age 10 years and/or
   ≥ 3 long bone fractures up to age 19 years
Premenopausal women and men aged < 50 years
 BMD Z-score ≤  − 2.0 and low-trauma fracture or secondary cause of osteoporosis
International Osteoporosis Foundation (IOF)
Young adults aged 20–50 years
 T-score ≤ − 2.5 and low-trauma fracture or secondary cause of osteoporosis

Fig. 1  Flowchart showing the 
diagnostic workup of a growing 
child or young adult with sus-
pected early-onset osteoporosis. 
DXA dual-energy X-ray absorp-
tiometry, VFA vertebral fracture 
assessment, QCT quantitative 
computed tomography, HTS 
High-throughput sequencing, 
WES whole-exome sequencing, 
WGS whole-genome sequenc-
ing. Figure created using 
BioRender (https:// biore nder. 
com)

https://biorender.com
https://biorender.com
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Secondary causes

Many secondary risk factors are similar to those for 
postmenopausal osteoporosis and osteoporosis in men. 
Table 2 includes secondary causes of osteoporosis in chil-
dren and young adults and some of the more common 
conditions are described below.

Chronic inflammatory diseases

The aetiology of low BMD and fragility fractures in 
chronic inflammatory diseases, such as rheumatic dis-
eases, lung diseases, inflammatory bowel disease, liver 
and kidney diseases, and skin diseases includes effects 
of the disease itself, systemic inflammation, glucocorti-
coids use, low body weight, malabsorption, low physical 
activity, delayed puberty and/or secondary amenorrhoea 
[17, 34, 35].

Glucocorticoid use

The negative effects of the glucocorticoids on bone include 
increased apoptosis of osteoblasts and osteocytes, decreased 
apoptosis of osteoclasts, negative effects on muscle func-
tion, decreased calcium absorption in the gut and decreased 
calcium re-absorption in the kidney [17]. The American 
College of Rheumatology advises to assess clinical frac-
ture risk in all children and young adults within 6 months 
of starting glucocorticoids and to perform DXA in adults 
aged < 40 years when there is a history of osteoporotic 
fracture or other risk factors for fracture [36, 37]. In adults 
aged > 40 years, FRAX should be used with glucocorticoid 
dose correction and BMD should be tested within 6 months 
of starting glucocorticoids.

Oestrogen deficiency

Examples of premenopausal oestrogen deficiency include 
Hypogonadotropic hypogonadism due to low body weight, 

Table 2  Secondary causes of 
low bone mass/fractures in 
children and young adults

ACTH adrenocorticotropic hormone, GH growth hormone, GnRH gonadotropin-releasing hormone, HIV 
human immunodeficiency virus, SSRI selective serotonin reuptake inhibitor

Endocrine diseases Medications
Cushing’s syndrome (ACTH, non-ACTH dependent) Anticonvulsants
Diabetes mellitus Aromatase inhibitors
GH deficiency Chemotherapy
Hypercalciuria Depot medroxyprogesterone acetate
Hyperparathyroidism Excess levothyroxine
Hyperprolactinaemia Glucocorticoids
Hyperthyroidism GnRH agonists
Hypogonadism (hypogonadotropic, hypergonadotropic) Heparin
Hypophosphatasia Immunosuppressants
Hypophosphataemia Proton pump inhibitors
Vitamin D and/or calcium deficiency SSRI

Thiazolidinediones
Haematologic diseases Metabolic diseases
Bone marrow transplantation Gaucher’s disease
Haemophilia Glycogen storage disease
Hereditary haemochromatosis Homocystinuria
Leukaemia Mucopolysaccharidoses
Lymphoma Malnutrition/malabsorption
Mastocytosis Anorexia nervosa
Multiple myeloma Celiac disease
Thalassemia major Gastrointestinal surgery
Chronic inflammatory diseases Other
Inflammatory bowel disease Alcoholism
Liver diseases Cystic fibrosis
Lung diseases Duchene muscular dystrophy
Kidney diseases Excessive exercise
Rheumatic diseases HIV
Skin diseases Pregnancy and lactation
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anorexia nervosa, excessive exercise, hyperprolactinaemia 
and hypopituitarism and Hypergonadotropic hypogonadism 
(premature ovarian insufficiency) due to chromosomal 
abnormalities (e.g. Turner syndrome, fragile X syndrome), 
chemotherapy, radiation and autoimmune diseases [38, 39].

Pregnancy and lactation

Normal pregnancy can be associated with bone loss of 
approximately 3–5% at the spine and hip [40–42], significant 
decline only at the trochanter [41], or stable BMD [43]. Lac-
tation has more consistent effects and is associated with bone 
loss of 3–10% at the spine and hip seen over 3–6 months 
[44, 45]. Bone loss is related to duration of lactation and 
amenorrhoea and is not prevented by calcium supplemen-
tation [46]. Parathyroid hormone-related protein (PTHrP), 
which is secreted by the mammary gland and controls cal-
cium mobilisation from bone [47, 48], as well as oestrogen 
deficiency, may be involved in bone loss. Although there is 
a loss of bone mass in pregnancy and lactation, physiologi-
cally there is a partial recovery. Recovery from lactation-
associated bone loss may continue for 18 months or longer 
[49, 50]. It has been found that parity and lactation have no 
adverse associations with clinical fragility or radiographic 
vertebral fractures, or the rate of BMD decline over 10 years 
[51].

Pregnancy and lactation-associated osteoporosis (PLO) 
is a rare condition in which women present with fractures, 
often vertebral, in the third trimester of pregnancy or in the 
early postpartum period [52, 53]. In most women, no known 
cause of osteoporosis is found [54]. Evaluation for secondary 
causes of osteoporosis should be undertaken. Skeletal fra-
gility in PLO may result from abnormal pregnancy-related 
bone changes. In some women, an underlying genetic predis-
position may be identified, suggesting a pre-existing mono-
genetic form of osteoporosis with an exacerbation due to 
pregnancy [55]. Abnormal osteoblast function or other bone 
formation defects may contribute to the pathophysiology of 

PLO [56]. Some patients will improve spontaneously, while 
others will need treatment with antiresorptive or anabolic 
treatment [39]. There is an increased risk of fracture recur-
rence (overall and within the context of another pregnancy); 
24% of patients with PLO followed for 6 years had subse-
quent fractures, most were vertebral fractures and number of 
fractures at diagnosis predicted subsequent risk [57].

Genetic causes of osteoporosis

Osteogenesis imperfecta and other monogenic 
bone fragility disorders

Genetic factors play an important role in osteoporosis and 
determine up to 80% of BMD [2, 58]. Several contribut-
ing genes have been identified in genome-wide association 
studies (GWAS) and the risk is thought to depend on sev-
eral gene variants, each with modest effect sizes [59–62]. In 
monogenic forms, osteoporosis is caused by a single vari-
ant in a gene that has a major role in the skeleton [63]. The 
most recent nosology of genetic skeletal disorders lists alto-
gether 55 genetic and clinical entities with skeletal fragility 
[64]. Osteogenesis imperfecta (OI) is the most common of 
these monogenic disorders with skeletal fragility; it is usu-
ally caused by mutations in the genes regulating extracel-
lular matrix, especially type I collagen [65–70]. Apart from 
extracellular matrix defects, other mechanisms may also 
lead to skeletal fragility. These include impaired osteoblast 
and osteoclast function, defective matrix mineralisation and 
defects in calcium and phosphate homeostasis.

Only a small number of genetic entities presenting with 
early-onset osteoporosis without the classical features of 
OI or syndromic features have been recognised [64]. These 
genetic forms are summarised in Table 3. The WNT sig-
nalling pathway plays a major role in skeletal homeostasis 
[71]. Biallelic mutations in the WNT receptor, LRP5, lead 
to severe childhood-onset osteoporosis and blindness, while 

Table 3  Genes linked to early-onset osteoporosis

AR autosomal recessive, AD autosomal dominant, XL X-linked, LoF loss of function

Gene OMIM Inheritance Mutation Protein Function

LRP5 259770
166710

AR, AD LoF Low-density lipoprotein-related receptor 5 WNT signalling

WNT1 615220 AR, AD LoF Wingless-type MMTV integration site family, 
member 1

WNT signalling

PLS3 300910 XL LoF Plastin 3 Formation of 
F-actin bundles

SGMS2 126650 AD LoF Sphingomyelin synthase 2 Mineralisation
ARHGAP25 610587 AD LoF Rho GTPase-activating protein 25 Bone cell function 

and bone metabo-
lism
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heterozygous loss-of-function variants lead to milder forms 
of osteoporosis, often presenting later in childhood or in 
adulthood [72]. It has become apparent that WNT1 is the 
key ligand for the canonical WNT signalling pathway in 
bone [73, 74]. Similar to LRP5, biallelic and monoallelic 
WNT1 variants lead to different degrees of skeletal fragility. 
Children with biallelic WNT1 variants present with severe 
skeletal fragility mimicking OI type III, while heterozygous 
WNT1 variants lead to an osteoporosis phenotype that mani-
fests often only later in childhood or in adulthood [75–79].

In 2013, mutations in PLS3 were identified as a cause for 
osteoporosis [80]. Due to the gene’s X-chromosomal loca-
tion, PLS3 mutations affect males more and earlier than 
females, but mutation-positive females may also develop 
symptomatic osteoporosis already in childhood or later in 
adulthood [81, 82]. Regarding the nature of reported vari-
ants, the studies have identified both missense and nonsense 
variants but also partial or total deletions of the gene, as 
well as a partial duplication of the gene in individuals with 
early-onset osteoporosis [83]. The gene codes for Plastin3, 
an actin-binding and actin-bundling protein involved in 
cytoskeleton remodelling [80]. The function of PLS3 in bone 
is still unknown. Plastin3 may be involved in the process of 
mechanosensing by osteocytes [84]. Recent findings indicate 
that PLS3 may also play a role in bone mineralisation [85].

Several other novel forms of monogenic osteoporosis 
have been recently described, for example those caused by 
variants in SGMS2 and ARHGAP25 [86, 87]. Individuals 
with a heterozygous mutation in SGMS2, encoding sphin-
gomyelin synthase 2 (SMS2), had since childhood multiple 
fractures and often calvarial hyperostotic lesions [87]. Bone 
biopsies showed low bone volume, impaired matrix miner-
alisation and abnormal bone lamellarity with areas of 'woven 
bone' and a significantly disturbed osteocyte canalicular net-
work [88]. Several subjects displayed in addition to osteo-
porosis, neurological symptoms, e.g. transient facial nerve 
palsy, suggesting that these extra-skeletal manifestations 
may be a distinctive feature of SGMS2-related osteoporosis 
[87]. The recurrent SGMS2 p.Arg50* stop-gain variant was 
present in four unrelated families and has since then been 
reported in several additional cases [89, 90]. In two families, 
a missense mutation in the same gene led to a much more 
severe disorder with skeletal dysplasia, significant calvarial 
hyperostosis, severe short stature and skeletal fragility since 
early infancy [87].

Despite these discoveries, genetic causes and underly-
ing mechanisms in early-onset osteoporosis remain largely 
unknown. The spectrum of genetic and cellular pathology is 
complex [34] and hence patient management also requires 
individualised treatment strategies. To optimise manage-
ment, the characteristic skeletal and extra-skeletal pathol-
ogy and the disease course in each genetic form need to be 
elucidated.

Idiopathic osteoporosis

Children and young adults experiencing repetitive fragility 
fractures in the presence of a low BMD are primarily inves-
tigated for an underlying secondary cause or a monogenic 
defect in known or novel genes. Only when such causes 
are appropriately ruled out should idiopathic osteoporosis 
be considered. Indeed, some of the previously thought idi-
opathic cases turned out to be monogenic in nature when 
more extensive genetic testing became available, particularly 
during the high-throughput sequencing (HTS) era [91, 92].

Idiopathic osteoporosis is likely to be a heterogeneous 
disorder given the fact that bone remodelling and bone for-
mation rate can be high, normal, or low [93]. In fact, several 
studies exploring the potential genetic causes for idiopathic 
osteoporosis have shown a variable monogenic aetiology 
[94, 95]. It is likely that parallel to increasing genetic knowl-
edge, improved genetic tools and more active screening for a 
genetic aetiology, the proportion of truly “idiopathic” osteo-
porosis cases will decline.

The following clinical features of idiopathic osteoporosis 
have been described [96–98] whereby males and females are 
equally affected, a family history of osteoporosis is common, 
the age at diagnosis is approximately 35 years, fractures are 
usually multiple occurring over 5–10 years and involve sites 
rich in cancellous bone, such as the vertebrae, and the hip is 
affected in approximately 10% of affected individuals.

Evaluation of early‑onset osteoporosis

Medical history, physical examination 
and biochemical testing

Evaluation of low bone mass in children and young adults 
(Fig. 1) begins with obtaining medical history (e.g. personal 
and family history, fracture history, medications, chronic dis-
eases, lifestyle factors) and performing physical examination 
(e.g. anthropometry, joint mobility, scoliosis, limb deformi-
ties, functional tests) and laboratory testing with the goal of 
searching for potential secondary causes [99]. A secondary 
cause of osteoporosis can be found in a substantial propor-
tion of subjects [97]. Those with a fragility fracture require 
evaluation for secondary causes even in the absence of low 
BMD. Subjects who have suspicious findings on history and 
physical examination, and/or abnormalities on the basic lab-
oratory testing, require additional laboratory tests (Table 4).

Serum or urinary bone turnover markers (BTM) may pro-
vide useful information. If markers of resorption are elevated 
above the premenopausal range, excessive bone resorption is 
likely. However, the range of normal is wide, making inter-
pretation difficult [100]. Bone resorption markers must be 
interpreted according to the patient’s age. Young adults are 
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characterised by active bone remodelling and physiologic 
increases in BTMs [101, 102]. Additionally, elevated BTMs 
are observed after a recent fracture. Importantly, BTMs are 
more helpful in adults in monitoring disease course and 
treatment response.

Genetic testing: the key to unresolved cases

Genetic studies have provided valuable information on bone 
biology, pathophysiological processes governing disease 
development and progression, and the genetic architecture 
of bone mass disorders. Monogenic disorders, such as early-
onset osteoporosis, are more likely to arise from rare, highly 
penetrant genetic alterations inherited in an autosomal (dom-
inant or recessive) or X-linked manner that ultimately result 
in aberrant protein function [63]. The classical approach to 
identify candidate gene variants in affected singletons or 
multiplex families with an apparent monogenic bone mass 
phenotype is by Sanger sequencing which is still consid-
ered the gold standard of clinical diagnostic testing. Single 
nucleotide substitutions (missense, nonsense and splicing) 
and small insertions or deletions (creating frameshift vari-
ations) in known genes (e.g. LRP5, PLS3, WNT1, SGMS2) 
are clearly identified in this yet time-consuming and costly 

hypothesis-driven method. HTS in the form of targeted gene 
panels, whole-exome sequencing (WES) and whole-genome 
sequencing (WGS) has been instrumental in gene and vari-
ant identification of monogenic osteoporosis, improving on 
throughput, turnaround time and costs [63]. Yet, it is impor-
tant to keep in mind that the gene panels used in clinical 
practice are often limited and may not be up to date, consid-
ering the rapidly expanding spectrum of monogenic osteo-
porosis. The current Nosology of Genetic Skeletal Disorders 
includes tens of genes and conditions that may be relevant 
[64]. With increasing access to reasonably priced exome 
analyses and even WGS, there is probably going to be a shift 
from gene panels to other methods, particularly long-read 
sequencing which is better adapted at identifying structural 
variants [103]. Indeed, gene defects may involve deletions 
or duplications that can be easily missed when using diag-
nostic gene panels and short-read sequencing. Several cases 
of copy number variation (CNV)-related osteoporosis have 
been reportedly linked to, for example, type I collagen genes 
and PLS3 [85, 104–106].

Bone imaging

DXA is the preferred method for assessing bone mineral 
content (BMC) and areal BMD in children [23, 24]. The 
posterior–anterior spine and total body less head (TBLH) are 
the preferred sites for BMC and areal BMD measurements 
in most paediatric subjects. Other sites (e.g. proximal femur, 
lateral distal femur, distal radius) may be useful depending 
on each individualised case. A scan in children and young 
adults is usually indicated after two or more fragility frac-
tures, after a fracture at an unusual site (such as the spine 
or hip), or in the presence of a chronic illness or medica-
tion predisposing to osteoporosis [27, 39]. If a follow-up 
DXA scan is indicated, the minimum interval between 
scans is 6–12 months. DXA uses very low radiation and is 
also fast and fully automated [99]. However, DXA is a 2D 
examination and it does not provide information on bone 
microarchitecture or differentiate between trabecular and 
cortical compartments. Additionally, DXA BMD can be 
falsely increased by collapsed vertebrae or mineral deposits 
at sites. Importantly, interpretation of DXA images in chil-
dren requires adjustment not only for age and sex, but also 
for body or bone size, and skeletal maturity (bone age or 
pubertal status).

DXA vertebral fracture assessment (VFA) of the thoracic 
and lumbar spine may be used as a substitute for spine radi-
ography in the identification of symptomatic and asymp-
tomatic vertebral fractures in paediatric patients [23, 24]. 
Then, the Genant semi-quantitative method should be used. 
Important advantages of the VFA are the lower radiation 
exposure compared to plain radiographs, and the combi-
nation of BMD and VFA information through performing 

Table 4  Laboratory testing in serum or urine for searching of second-
ary causes in children and young adults

ACTH adrenocorticotropic hormone, ALP alkaline phosphatase, ALT 
alanine transaminase, AST aspartate transaminase, CTX C-terminal 
telopeptide, DGP deamidated gliadin peptide, DST dexamethasone 
suppression test, E2 oestradiol, ESR erythrocyte sedimentation rate, 
FSH follicle-stimulating hormone, fT3 free T3, fT4 free T4, HbA1c 
glycosylated haemoglobin, 25-OH Vitamin D 25-hydroxy vitamin 
D, IGF1 insulin-like growth factor 1, LH luteinising hormone, PINP 
procollagen type I N-terminal propeptide, PTH parathyroid hormone, 
SHBG sex hormone-binding globulin, TSH thyroid-stimulating hor-
mone, tTG tissue transglutaminase, UFC 24 h urinary free cortisol

Basic laboratory testing
 Blood cell count
 Calcium, albumin, phosphate, ALP (total and bone specific)
 25-OH Vitamin D, PTH
 Creatinine
 ESR
 TSH, fT4, fT3
 24 h urine calcium and creatinine (in children spot urine)
Additional laboratory testing
 Bone turnover markers (e.g. PINP, CTX)
 Fasting glucose, HbA1c
 IGF1
 Iron, ferritin, AST, ALT, tTG-IgA antibodies, anti-DGP- IgG anti-

bodies
 LH, FSH, E2
 LH, FSH, testosterone, SHBG
 Morning cortisol, ACTH, midnight cortisol, UFC, DST
 Prolactin
 Protein immunoelectrophoresis in serum/urine
 Tryptase
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the same examination. Quantitative computed tomography 
(QCT), pQCT (peripheral QCT) and HR-pQCT (high reso-
lution QCT) are research techniques used to characterise 
bone deficits in children. They can be used clinically in these 
populations where appropriate reference data and expertise 
are available.

The power of bone biopsies

Bone biopsies could hold the key to diagnosing unclear and 
potentially complicated cases of young individuals present-
ing with early-onset osteoporosis. Information on the rate of 
bone resorption and remodelling, degree of mineralisation 
(hypo- vs hypermineralisation) defects, bone structure and 
material properties, and chronic comorbidities (e.g. presence 
of multiple myeloma) can be unveiled that consequently 
will aid in differential diagnosis and patient management, 
especially treatment. Labelling of the bone with a double 
or quadruple tetracycline that binds to the mineralised bone 
surface is recommended to calculate the rate of bone forma-
tion and turnover [107], and in so doing characterise differ-
ent low bone mass causes (e.g. low-turnover osteoporosis 
versus osteomalacia). Anterior iliac crest is the preferred 
sampling site thanks to its accessibility, which circumvents 
the need for surgery [108]. Yet, routine use of this invasive 
procedure remains low in the clinical setting [34].

Other tools can be used to further analyse the sampled 
bone tissue providing data on the mineralised bone volume 
and extracellular matrix, bone properties and mechanical 
strength and osteocytes lacunae. Such tools include quan-
titative backscatter electron imaging (qEBI), small-angle 
X-ray scattering, vibrational spectroscopy, nanoindenta-
tion and X-ray tomography, reviewed in detail elsewhere 
[34]. Histomorphometry using Masson–Goldner trichrome 
staining enables tissue and morphological identification and 
helps quantify osteoid and mineralised bone. The presence 
of defective collagen fibrils, altered cross-linking or thinner 
fibrils can also be observed in the same stained tissue sec-
tions and may help distinguish different pathologies, includ-
ing OI types [109–111].

Treatment options for early‑onset 
osteoporosis

The low prevalence of children and young adults with 
early-onset osteoporosis has made it difficult to undertake 
large-scale clinical trials, particularly to investigate the 
effect of pharmacological intervention on fracture preven-
tion. For this reason, there are currently no evidence-based 
guidelines for the treatment of affected individuals with 
early-onset osteoporosis. Instead, preventive measures and 

individualised treatment approaches are generally recom-
mended (Fig. 2), as discussed below.

Proper supplementation of calcium and vitamin D should 
be given, especially in case of deficiency or insufficiency 
following laboratory investigations [17, 112, 113]. Lifestyle 
changes are advised in the form of increased physical activ-
ity, reduced alcohol intake, no smoking and sufficient protein 
intake, which have indeed resulted in improved BMD status 
in young affected individuals [114, 115]. Treatment of the 
underlying comorbidity is a must which will also have ben-
eficial effects on bone health, for example, gluten-free diet 
in coeliac disease, treatment of amenorrhoea with oestrogen 
replacement therapy, treatment of inflammatory bowel dis-
ease and rheumatoid arthritis with anti-TNF alpha antibod-
ies, etc. [39]. When treatment of the chronic disease is not 
feasible or repetitive fractures are sustained, antiresorptive 
or osteoanabolic therapy is considered. Increase in BMD 
following bisphosphonate treatment has been reported in 
young individuals with secondary osteoporosis [27], includ-
ing patients with anorexia nervosa treated with risedronate 
[116], women with ovarian failure after allogeneic stem cell 
transplant treated with risedronate and zoledronic acid [117], 
individuals with cystic fibrosis treated with alendronate 
[118] or zoledronate [119], as well as Crohn’s disease [120] 
and ß-thalassaemia major [121], amongst others. However, 
bone pharmaceuticals in other risk groups might not be 
favourable (e.g. pregnancy and women of childbearing age) 
due to potential adverse effects. In summary, although most 
studies have demonstrated an improvement in BMD, studies 
that focus on decreased fractures as the primary outcome are 
yet to be conducted.

Treatments of monogenic forms of early-onset osteoporo-
sis have also been investigated, but not extensively. Teripara-
tide treatment showed increased bone turnover in individu-
als with missense variants in LRP5, LRP6 and WNT1 [122, 
123], and splicing variants in PLS3 [123]. Improvement 
in BMD Z-scores with reshaping of compressed vertebrae 

Fig. 2  Proposed prevention strategies and targeted treatment options 
for children and young adults with early-onset osteoporosis
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was also observed in zoledronate-treated individuals har-
bouring a large fragment deletion variant in PLS3 [106]. 
Positive outcomes were seen in patients with deleterious 
SGMS2 variants following bisphosphonate therapy, includ-
ing improvement in back pain and quality of life, and frac-
ture prevention [87]. However, the same cannot be said for 
individuals with WNT1 and LRP5 variants who exhibited no 
effect after bisphosphonate treatment [77, 124]. In conclu-
sion, more large-scale and long-term studies are required to 
properly evaluate the effects of different antiresorptive and 
osteoanabolic treatment, including anti-sclerostin therapy 
and possible combinatory treatment modalities not just on 
BMD, but even fracture risk.

Concluding remarks

Early-onset osteoporosis, although rare, remains a signifi-
cant disorder with considerable morbidity that presents 
with diagnostic challenges. If no genetic causal variants 
are identified following high-throughput DNA sequencing, 
then transcriptomics, metabolomics and proteomics should 
be considered enabling a multi-omics approach that can be 
coupled with machine learning tools. Identification of the 
underlying cause can inform about inheritance patterns, 
treatment options and patient monitoring, all of which are 
also beneficial to other potentially susceptible relatives. The 
need for collaborations between clinical, basic and transla-
tional researchers through international scientific consortia 
(e.g. GEFOS: http:// www. gefos. org and GENOMOS: http:// 
www. genom os. eu), COST Actions (e.g. GEMSTONE COST 
Action, CA18139: https:// cost- gemst one. eu), European 
Reference Networks (e.g. European Network for Rare Bone 
Conditions, ERN BOND: https:// ernbo nd. eu), rare bone dis-
order registries (e.g. Osteogenesis Imperfecta: https:// oif. 
org/ oireg istry), as well as patient organisations has become 
more evident to overcome diagnostic obstacles and provide 
timely care to patients.

The canonical WNT signalling pathway is presently 
regarded as a key regulator of bone metabolism. Its role in 
bone was discovered by studying monogenic diseases with 
low and high bone mass. These genetic and molecular dis-
coveries led to the development of a new anabolic osteoporo-
sis medication, sclerostin antibody [125]. Similarly, genetic 
and molecular discoveries in other rare genetic bone mass 
disorders such as pycnodysostosis (cathepsin K antibody), 
juvenile Paget’s disease (RANKL antibody), hypophospha-
taemic rickets (burosumab) and hypophosphatasia (asfotase 
alfa) have been of key importance in drug development 
[126–129].

It is likely that significant scientific advancements can 
still be made by studying patients and families with early-
onset osteoporosis, leading to renewal of our understanding 
of bone metabolism and pathogenesis of skeletal fragility. 

In the long-term, research discoveries are likely to enable 
the development of new modes of osteoporosis therapy and 
provide new tools for improved diagnostics and follow-up 
of affected individuals.
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