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Abstract
Background Adaptive thermogenesis represents the main mechanism through which the body generates heat in response 
to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermo-
genesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A 
decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide 
health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. 
In the last decades, the discovery of a trans-differentiation mechanism (“browning”) within white adipose tissue depots, 
leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this 
process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose 
tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption 
for obesity treatment.
Purpose This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharma-
cological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like 
peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.

Keywords Adaptive thermogenesis · Brown adipose tissue · GLP-1R agonists · Incretins · Dual GLP-1/GIP receptor 
agonists · GLP-1/GCG receptor dual agonists · GLP-1/GIP/glucagon receptor triple agonists

Introduction

Obesity is characterized by a disproportion between caloric 
intake and energy expenditure (EE) and is frequently asso-
ciated with high glucose and lipid serum levels [1], as well 
as by several comorbidities, such as cardiovascular, meta-
bolic, pancreatic, respiratory, oncologic, and sexual diseases 
[2–5]. In this scenario, the dysfunction of adipose tissue is 
often accompanied by reduced fat burning due to the lack 
of activation and reduced amount of brown adipose tissue 
(BAT) [6]. Indeed, genetic deletion of BAT in vivo results 

in obesity [7], whereas the stimulation of brown adipocyte 
differentiation was found to be associated with lower body 
weight and improved glucose and lipid metabolism [8, 9]. 
When thermogenesis occurs in BAT, the enhanced EE is 
mainly fuelled by glucose and fatty acids [10, 11]; therefore, 
increased BAT activation can significantly improve insulin 
sensitivity and the lipid profile [11].

The anatomical distribution of BAT in humans has been 
identified in all ages and in multiple locations, including 
the cervical, supraclavicular, axillary, abdominal subcuta-
neous, and paravertebral regions [12–14]. Several studies 
have highlighted that two distinct types of thermogenic 
adipocytes exist in mammals: a pre-existing type estab-
lished during development (the classical brown adipo-
cytes) and an inducible type (the beige or ‘brite’ adipo-
cytes) [15]. The inducible form of thermogenesis, which 
occurs following exposure to various environmental stim-
uli such as cold, exercise, or activation of β-adrenoceptors, 
is marked by the appearance of a cluster of adipocytes 
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within the white adipose tissue (WAT) expressing uncou-
pling protein 1 (UCP1), a process referred to as ‘brown-
ing’ or ‘beigeing’ of WAT [16]. In contrast to brown adi-
pocytes, beige adipocytes emerge postnatally from WAT, 
even though the origin of these cells is less well under-
stood. In this regard, Min et al. have demonstrated that 
human beige adipocytes can originate from capillaries in 
subcutaneous WAT and are responsible for the thermo-
genic capacity of the white depot when exposed to specific 
environmental stimuli [17].

Considering this evidence, it has been recently hypoth-
esized that long-term activation of BAT could help to 
treat obesity and restore a healthy metabolic balance [18]. 
Therefore, new pharmacological approaches able to con-
vert energy-storing WAT into energy-consuming brown 
fat may be a potentially effective and harmless solution to 
obesity, especially in subjects who do not possess appreci-
able levels of existing BAT.

Currently, most weight-reducing drugs promote the 
reduction of calorie intake by inducing satiety and full-
ness (i.e. naltrexone/bupropion) [19] or reducing nutrient 
absorption (i.e. orlistat) [20]. Nevertheless, these mole-
cules have not shown a significant effect on EE as shown 
in human studies [21–24]. Indeed, the negative energy 
balance associated with these approaches does not always 
warrant to achieve a good weight management in the long 
term. The decreased EE and reduced adaptive thermogen-
esis induced by reduced calorie intake represent counter-
regulatory mechanisms favouring the fat-loss resistance in 
obese individuals under these therapies [25]. In addition, 
reduced adherence to therapy could also lead to weight-
loss resistance and weight regain [26]. Therefore, preserv-
ing thermogenesis and avoiding the physiological reduc-
tion in EE could minimize the risk of weight regain in 
the long term and reinforce the anti-obesity effect. For 
this reason, discovering new molecules with thermogenic 
properties that could drive browning and BAT activation 
has great potential for obesity management.

Several data showed that BAT activity is subjected to 
both central and hormonal regulation. Central regulation is 
effected by the central nervous system (CNS) through effer-
ent sympathetic nerves and is responsive to various stimuli, 
such as cold temperature [27, 28]. Hormonal regulation 
depends on the endocrine and paracrine action of different 
thermogenic signalling molecules, including glucagon and 
incretins [11, 29–31]. This review focuses on the physiologi-
cal and pharmacological modulation of adaptive thermo-
genesis, summarizing the current knowledge on a new class 
of drugs with broad efficacy in obesity and diabetes. We 
provide an overview of the thermogenic effects of incretin 
hormones and their analogues with the aim to explore the 
main mechanisms whose activation can prove useful in the 
context of obesity treatment.

Brown adipose tissue and adaptive 
thermogenesis

The last decade has brought about increasing interest in 
the study of BAT, a specialized tissue that mediates energy 
dissipation by producing heat and maintains body tem-
perature by burning glucose and fatty acids in a process 
designated as ‘adaptive thermogenesis’ or ‘non-shivering 
thermogenesis’. Because lipids and glucose represent the 
key fuel for BAT thermogenesis, it is not surprising that 
thermogenic BAT activity plays an important role in the 
regulation of overall energy metabolism and could thus be 
important for the management of obesity [6]. BAT activ-
ity may increase the rate of glucose uptake under insulin 
stimulation in humans [32, 33]; however, the functions of 
BAT are limited in the presence of obesity [6, 12, 34–38] 
and diabetes [6], which may worsen the related metabolic 
abnormalities. Furthermore, the metabolic derangements 
associated with obesity (e.g. insulin resistance, adiposity) 
were restored when BAT was transplanted from metaboli-
cally healthy mice to obese mice [39]. Therefore, pro-
moting BAT recruitment and activity has attracted much 
attention in recent years due to its promising therapeutic 
potential.

Brown adipocytes originate from the mesodermic com-
partment during embryonic development. These cells dif-
fer from white adipocytes, particularly due to the presence 
of multilocular vesicles that denote their cellular identity 
[7]. Brown adipocyte differentiation involves the same 
transcriptional cascade that is activated for white adipo-
cytes’ commitment, which mainly involves peroxisome 
proliferator-activated receptor γ (PPARγ) and CCAAT 
enhancer-binding proteins (CEBPs) [40]. PPARγ is indis-
pensable for the development of all types of adipocytes. 
CEBPα functions to maintain PPARγ expression, and both 
cooperatively regulate gene transcription to promote and 
maintain the differentiated state of adipocytes that can 
process lipids and glucose and respond to insulin. The 
absence of CEBPα in mice prevents the development of 
WAT, but not BAT depots, indicating that lack of CEBPα 
can be compensated, probably by CEBPβ, during BAT 
development [41]. Furthermore, specific gene-regulatory 
networks govern the growth of BAT; the factors involved 
include PR domain-containing protein 16 (PRDM16) 
[42] and peroxisome proliferator-activated receptor 
γ-coactivator-1α (PGC1α) [43]. PRDM16, but not PGC1α, 
specifically confers brown fat cell identity. PRDM16 binds 
to and coregulates CEBPβ, PPARγ, PPARα, and PGC1α to 
promote brown fat-specific gene induction. PGC1α, which 
also coactivates PPARγ and PPARα, is involved in regulat-
ing mitochondrial biogenesis, oxidative metabolism, and 
thermogenesis.
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Table 1  Effects of thermogenic drugs in different experimental systems

Thermogenic drugs Species In vivo/ex vivo In vitro Whole-body

β3-AR agonist
CL316243 Mouse ↑ UCP1 mRNA/protein in WAT 

[75]
↑ PKA/p38 MAPK signalling in 

brown adipocytes [65]
↑ Pgc1α mRNA in brown adipo-

cytes [67]

↓ Body weight [74]
↑ EE [76]

Mirabegron Human ↑ ATGL and UCP1 protein in 
WAT [71]

↑ Beigeing of WAT [83]

– ↑ Insulin sensitivity [11]
↑ HDL serum levels [11]
↑ EE [11]
↓ Glucose levels [83]
↑ BAT glucose uptake [11]
↑ BAT volume [11]

Rb1 Mouse – ↑ AMPK/SIRT1 signalling in 
3T3-L1 [71]

↑ UCP1 protein in 3T3-L1 [71]

–

ESI-09 Mouse ↑ HSL phosphorylation in WAT 
[78]

↑ β3-AR expression in WAT [78]

– ↑ EE [78]
↓ Body weight [78]
↑ β3-adrenergic responsiveness [78]

TR agonists
Triiodothyronine Human – ↑ UCP1 mRNA, ↑ mitochon-

drial biogenesis in multipotent 
adipose-derived stem cells [94]

–

Mouse – ↑ Mitochondrial autophagy, 
activity, and turnover in primary 
brown adipocytes [95]

–

Levothyroxine Human ↑ Glucose uptake in the BAT 
[105]

↑ EE, ↑ cold-induced thermogen-
esis [104, 105]

Liothyronine Human – – ↑ Skin temperature [107]
GC-1 Mouse ↑ Ucp1 mRNA in BAT and WAT 

[96, 102]
↑ UCP1 mRNA and protein in 

white adipocytes [96, 97]
↓ TG serum levels [95]
↑EE, ↓fat mass, ↓ cholesterol [97, 

100, 101]
↑ Multilocular lipid droplet, ↑ 

UCP1, ↑ mitochondrial DNA 
content in WAT [97]

↑ Proton-coupled amino acid 
transporter 2, ↑ Pgc1α, ↑ 
Prdm16 mRNA in mouse preadi-
pocytes [98]

↑ Glucose tolerance, ↑ insulin sen-
sitivity, ↑ body temperature [97]

↓ Body weight [102]

GC-24 Mouse ↑ PGC1α and UCP1 protein in 
BAT [103]

↑ Pgc1β, ↑Pparα, ↑Pparδ, ↑Cpt1, 
↑Ucp1 mRNA in brown adipo-
cytes [99]

↓ Body weight, ↑ EE [99]

FXR agonists
INT-767 Rabbit ↓ Visceral adipose tissue [114]

↑ Mitochondrial and brown fat-
specific markers [114]

↑ UCP1 protein, ↑ mitochondrial 
biogenesis and function in vis-
ceral preadipocytes [114]

↓ Cholesterol, ↓ hepatic steatosis 
[114]

BAR502 Mouse ↑ WAT beigeing/browning [115]
↑ UCP1 protein in WAT [115]

↑ Beigeing in 3T3-L1 preadipo-
cytes [115]

↑ Insulin sensitivity [115]

Farnesol Mouse ↑ AMPKα phosphorylation in 
BAT [117]

↑ UCP1 protein in 3T3-L1 preadi-
pocytes [116]

–

Human – ↑ UCP1 protein in human mesen-
chymal stem cells [116]

–

Fexeramine Mouse ↑ PGC1α and PGC1β protein in 
BAT [118]

↑ fatty oxidation, mitochondrial 
biogenesis in BAT [118]

– ↑EE, ↑ body temperature [118]

GW4064 Mouse ↑ lipid droplet size in BAT [120] – –
CDCA Mouse ↑ Ucp1 and Pgc1α mRNA in BAT 

[110]
↑ lipid oxidation in WAT [121]

– ↓ Food intake [121]

Human ↑ BAT activity [126] – ↑EE [126]
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Table 1  (continued)

Thermogenic drugs Species In vivo/ex vivo In vitro Whole-body

OCA Mouse ↑ BAT activity [123] – ↓ Body weight, ↓ hepatic steatosis 
[123]

GLP-1R agonists
Exendin 4 Mouse ↑ UCP1 protein in BAT [149] ↑ PGC1α protein in 3T3-L1 [158]

↑ UCP1 protein in 3T3-L1 [158]
↑ SIRT1 signalling in 3T3-L1 

[158]

↓ TG serum levels [149]
↑ BAT glucose uptake [169]

Human – – ↑ EE [30]
↓ Body weight [30]

Liraglutide Mouse ↑ UCP1 protein in WAT [30]
↑ AMPK/SIRT1/PGC1α signal-

ling in WAT [153]
↑ LCAD protein in WAT [155]
↓ ACC2 protein in WAT [155]
↑ sGCβ and PKG1 protein/mRNA 

in WAT [160]

↑ PI3K/AKT/mTOR signalling in 
C3H10T1/2 cells [143]

↑ EE [145]
↓ Body weight [30, 152]
↓ Food intake [30]
↑ Fatty acid oxidation [155]

Human – – ↑ EE [30]
↓ body weight [30]
↑ BAT glucose uptake [169]
–

Semaglutide Mouse ↑ UCP1 protein in WAT [165] – ↓ Body weight [175]
Human – –

GLP-1R/GIPR dual agonists
Tirzepatide Mouse ↑ Ucp1 mRNA in BAT [191] – ↓ Body weight [189]

↑ EE [189]
↑ BCKAs and BCAAs oxidation in 

BAT [191]
Human – – ↓ Body weight [195]

NNC0090-2746 Mouse – – ↓ Body weight [188]
↑ EE [188]
↓ Body weight [192]

Human – – ↑ EE [192]
GLP-1R/GCGR dual agonists
Aib2 C24 lactam 40 k Mouse ↑ phosphorylation of HSL in WAT 

[215]
– ↓ Body weight [215]

↑ EE [215]
↑ Lipolysis [215]

DualAG Mouse – – ↓ Food intake [217]
↓ Glucose levels [217]
↓ Body weight [217]

Oxyntomodulin Human – – ↓ Food intake [221]
↓ Body weight [221]
↑ EE [221]

Cotadutide Mouse ↑ Ucp1, Pgc1α, and β3-AR mRNA 
in BAT [219]

– ↓ Glucose levels [217]
↓ Food intake [217]

Primates – – ↑ EE [218]
↓ Body weight [218]

Mazdutide Human – – ↓ Body weight [224]
GLP-1R/GIPR/GCGR receptor triple agonists
MAR423 Mouse – – ↓ Body weight [226]

↑ EE [226]
HM15211 Mouse – – ↓ Body weight [47]

↑ EE [47]
LY3437943 Mouse – – ↓ Body weight [227]

↑ EE [227]
Human – – ↓ Body weight [230]
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Physiological and pharmacological 
modulation of adaptive thermogenesis

Several studies have investigated the effects of different 
ligands with thermogenic potential in stimulating BAT 
activation [44–49]. CNS represents the main transducer of 
thermogenic responses, whose signals, including adrener-
gic stimuli and catecholamine [50], fuel sympathetic nerve 
activity (SNA) in BAT depots under control of specific envi-
ronmental conditions (e.g. cold) [27, 28]. Other hormones, 
such as incretins and glucagon (secreted by gut and pancre-
atic α-cells, respectively) [51–54] appear to sustain BAT 
activity [29, 30, 55]. Table 1 summarizes current knowledge 
derived from in vitro, in vivo, and human studies regarding 
the emerging therapeutic effects of β3-adrenergic receptor 
agonists, incretin hormones, glucagon, their related pharma-
cological mimetics, and GLP-1-based multi-agonists, as new 
treatment options for enhancing thermogenesis and combat 
obesity.

β3‑Adrenergic receptor agonists

In the last decade, β3-adrenergic receptor (AR) agonists have 
emerged as novel pharmacological approaches to counteract 
obesity and metabolic diseases. ARs are members of the 
family of G-coupled receptors [56, 57] whose activation is 
induced by catecholamines [50]. The AR family is composed 
of three subclasses: α1-ARs, α2-ARs, and β-ARs [58]. Cur-
rently, three β-AR subtypes (β1-AR, β2-AR, and β3-AR) 
have been identified and are encoded by different genes. 
β3-ARs were identified in several tissues (heart, blood ves-
sels, gallbladder, gastrointestinal tract) and their expression 
was found to be typically higher in brown depots [59, 60], 
where non-shivering thermogenesis occurs in response to 
sympathetic nerve stimulation [27, 28].

β3-ARs are known to exert metabolic effects by enhanc-
ing the rate of lipolysis [61] and release of long-chain 
non-esterified fatty acids (LCFAs) [62, 63] via a Gs-cyclic 
adenosine monophosphate (cAMP)-protein kinase A (PKA)-
dependent pathway (Fig. 1) [64], whose activation also 
triggers a thermogenic response via upregulation of UCP1 
[65]. In this scenario, the activity of the thermogenic pro-
tein UCP1, which increases the conductance of the inner 

mitochondrial membrane to make mitochondria of BAT 
generate heat rather than ATP, is allowed by an LCFA-
dependent mechanism [66]. Furthermore, LCFAs derived 
from β3-AR-dependent lipolysis act as an energy source to 
fuel thermogenesis in brown adipocytes [10, 67]. Consider-
ing the metabolic actions of the β3-AR–cAMP/PKA axis, 
researchers have investigated the anti-obesity potential of 
synthetic ligands that activate these receptors. Several ago-
nists of β3-ARs have been developed, whose effects have 
been evaluated principally in vivo and in vitro, and to a 
lesser extent in human studies.

In vitro studies

CL316243 was the first adrenergic stimulator whose thermo-
genic and metabolic activity appears to occur by the activa-
tion of PKA–p38 mitogen-activated protein kinase (MAPK) 
pathway, as observed in mouse brown adipocytes (Fig. 1) 
[65]. In vitro studies have also clarified the underlying 
molecular mechanisms mediating the thermogenic response 
to CL316243, highlighting that this compound caused an 
increased mRNA expression of PGC1α [67], a gene involved 
in cold-induced thermogenesis and browning [68]. PGC1α 
requires deacetylation by sirtuin-1 (SIRT1) (Fig. 1) [69], an 
NAD-dependent protein deacetylase, which acts as a meta-
bolic sensor since its deacetylating activity depends on the 
intracellular  NAD+/NADH ratio according to intracellular 
energetics [70]. The role of β3-adrenergic signalling in regu-
lating thermogenic process was also established in 3T3-L1 
adipocytes, in which the incubation with ginsenoside Rb1 
(Rb1), a saponin derived from Panax ginseng, was shown 
to act as a β3-AR activator [71]. Rb1 upregulated SIRT1 
together with the activation of downstream browning effec-
tors, such as AMP-activated protein kinase α (AMPKα), 
liver kinase B1, and acetyl-CoA carboxylase (ACC), and 
increased the rate of lipolysis [71]. Moreover, Rb1 is also 
known to exert metabolic functions including suppression of 
triglyceride (TG) accumulation in vitro [72] via activation 
of AMPK [73], a key factor promoting energy production. 
These studies suggest that Rb1 can decrease lipid accumula-
tion by inducing the lipolysis–thermogenesis cascade [i.e. 
AMPKα, adipose triglyceride lipase (ATGL), and UCP1] 
within WAT depots, confirming its therapeutic potential for 

↑, increase; ↓, decrease; – not available
Acetyl-CoA carboxylase 2 (ACC2), adrenoceptor beta 3 (β3-AR), AMP-activated protein kinase (AMPK), adipose triglyceride lipase (ATGL), 
brown adipose tissue (BAT), carnitine palmitoyl transferase 1 (CPT1), chenodeoxycholic acid (CDCA), energy expenditure (EE), farnesoid 
X receptor (FXR), gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide-1 receptor (GLP-1R), glucagon G-coupled recep-
tor (GCGR), high-density lipoprotein (HDL), hormone-sensitive lipase (HSL), long-chain acyl-CoA dehydrogenase (LCAD), obeticholic 
acid (OCA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), proliferator-activated receptor gamma coactiva-
tor 1-beta (PGC1β), protein kinase A (PKA), p38α mitogen-activated protein kinase (p38 MAPK), soluble guanylyl cyclase β (sGCβ), protein 
kinase G 1 (PKG1), sirtuin protein 1 (SIRT1), thyroid receptor (TR), uncoupling protein 1 (UCP1), white adipose tissue (WAT)

Table 1  (continued)
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counteracting obesity [71]. Overall, these results confirm 
the key role of PGC1α/SIRT1 signalling in regulating the 
activity of brown adipose cells induced by the stimulation 
of β3-AR.

In vivo animal models studies

The thermogenic effect of the CL316243 compound was also 
confirmed by in vivo studies. When infused in obese mice, 
this molecule increased EE and reduced body weight in 
association with increased UCP1-dependent thermogenesis 
in WAT [74, 75]. Notably, CL316243 requires mitochondrial 
fatty acid oxidation, since obese mice developed a resistance 
to CL316243-induced thermogenesis when carnitine palmi-
toyl transferase 2 (CPT2) was genetically abrogated [74]. 
Furthermore, the efficacy of CL316243 in promoting the 
activation of brown fat, EE, and weight loss was higher in 
mice housed at 30 °C compared with mice housed at 22 °C, 
suggesting that drug efficiency could be also affected by 

environmental temperature [76]. The efficacy of CL316243 
appears also to be reduced in the presence of obesity-asso-
ciated low-grade inflammation [77, 78], as obese mice with 
adipose tissue dysfunction and increased proinflammatory 
cytokines showed impaired β3-AR sensitivity to CL316243, 
leading to catecholamine resistance and reduced EE [91]. 
Desensitization of β3-AR occurs through a complex path-
way involving exchange protein directly activated by cAMP 
(EPAC) and Ras-related protein 2 A (RAP2A) [78]. Under 
physiological conditions, β3-AR expression is regulated by 
CEBPα, which is a transcriptional factor also involved in 
the differentiation of new adipose cells as previously dis-
cussed [41, 79]. However, in the presence of a proinflam-
matory milieu, particularly of TNF-α, the EPAC/RAP2A 
signalling pathway can be activated leading to a cascade of 
transcriptional events which in turn suppress β3-AR mRNA 
expression through proteasomal degradation of CEBPα in 
WAT [78, 79]. Beyond promoting the resistance to adrener-
gic stimuli, EPAC is also known to foster resistance to leptin 

Fig. 1  Signalling pathways activated by drugs potentially affecting 
BAT activity and function: AMP-activated protein kinase (AMPK), 
adrenoceptor beta 3 (β3-AR), branched-chain amino acids (BCAA), 
branched-chain keto acids (BCKA), farnesoid X receptor (FXR), 
gastric inhibitory polypeptide receptor (GIPR), glucagon-like pep-
tide 1 receptor (GLP-1R), Glucagon G-coupled receptor (GCGR), 
sirtuin-1 (SIRT1), peripheral nervous system (PNS), peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), 

phosphatidylinositol-3 kinase (PI3K), PR domain-containing protein 
16 (PRDM16), protein kinase A (PKA), protein kinase B (AKT), 
p38α mitogen-activated protein kinase (p38 MAPK), ginsenoside 
Rb1 (Rb1), sympathetic nervous system (SNP), exchange protein 
directly activated by cAMP (EPAC), EPAC specific inhibitor (ESI-
09), CCAAT enhancer-binding protein α (CEBPα), tricarboxylic acid 
(TCA) cycle, tumour necrosis factor receptor (TNFR), tumour necro-
sis factor α (TNF-α), thyroid receptor (TR)
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[80], an adipocyte-derived hormone recently identified as a 
novel thermolipokine and whose altered signalling may con-
tribute to metabolic dysfunction [81]. Indeed, administration 
of the EPAC inhibitor ESI-09 in obese mice restored β3-AR 
expression in WAT, increased EE, and promoted weight loss, 
thus suggesting that a functional β3-AR signalling is crucial 
for the maintenance of EE balance. Notably, these benefits 
were also accompanied with an increased responsiveness 
to CL316243, together with the activation of hormone-sen-
sitive lipase (HSL) in WAT, a known target of adrenergic 
signalling [78].

Human studies

Mirabegron was the first highly selective β3-AR agonist 
approved as a therapy against overactive bladder [82]. 
Beyond this therapeutic indication, recent findings have 
highlighted a metabolic benefit of this drug, even though 
few studies have investigated its effects on weight control. O’ 
Mara et al. observed that when administered daily in young 
healthy women, mirabegron acutely increased the metabolic 
activity of BAT, as revealed by the raise of [18F]-2-fluoro-d-
2-deoxy-d-glucose uptake, together with the amelioration of 
EE [11]. The metabolic benefits of mirabegron also extended 
after 4 weeks of therapy, showing an increase of the amount 
of BAT in association with the amelioration of lipid pro-
file, insulin sensitivity, and insulin secretion [11]. Note-
worthy, these outcomes were more evident in subjects with 
low amount of BAT at baseline, even though the beneficial 
responses were not accompanied by changes in body weight 
and composition [11]. Similarly, Finlin et al. demonstrated 
that a cohort of older individuals with obesity and insulin 
resistance treated with mirabegron (50 mg/day for 12 weeks) 
displayed amelioration of multiple measures of glucose 
metabolism (i.e. reduced HbA1c levels, increased insulin 
sensitivity, improved β-cell function) without a significant 
body weight loss [83]. The same authors also illustrated that 
these metabolic effects were achieved by the restoration of 
healthy adipose tissue together with enhanced activation of 
the beigeing process in subcutaneous WAT depots, an event 
probably driven by resident macrophages [83].

Considering that the amount of BAT has been generally 
found to be inversely correlated with BMI [6], stimulation 
of BAT activation and differentiation with mirabegron may 
have promising effects in the amelioration of energy bal-
ance of obese patients. However, the absence of significant 
weight-lowering effects observed in obese patients makes 
this compound less attractive at present. Furthermore, 
longer-term studies are needed, especially in patients with 
higher BMI at baseline. Further studies should also elucidate 
the role of potential catecholamine resistance in the long 
term in the therapeutic response to mirabegron [78].

Thyroid receptor agonists

During the past few decades, growing interest has been 
directed towards a possible therapeutic use of thyroid hor-
mones (THs) and their mimetics in several dysmetabolic 
conditions (i.e. dyslipidaemia, liver diseases) and weight 
management as well, leading to the development of new 
promising compounds [84, 85]. The effects of THs on meta-
bolic homeostasis were long observed clinically in patients 
suffering from hyperthyroidism, showing important reduc-
tions in body weight, cholesterol levels and, in certain cases, 
BAT activation [86]. However, the excess of THs is asso-
ciated with symptoms and signs resulting from increased 
adrenergic stimulation which may lead to complications, 
such as tachycardia, atrial fibrillation, osteoporosis, mus-
cle weakness, and anxiety, in the long term [87]. THs were 
formerly thought to promote their effects on energy homeo-
stasis by directly acting on peripheral tissues, such as BAT 
and WAT, muscle, heart, and liver [88]. However, several 
data indicate that THs modulate thermoregulatory control 
during shivering and non-shivering cold adaptation and food 
intake, EE, and body weight by acting, to a large extent, at 
the central level [88, 89]. Indeed, previous findings revealed 
that central administration of triiodothyronine (T3) in rats 
resulted in increased EE by stimulating BAT thermogenesis 
and WAT browning via AMPK-dependent mechanism and 
upregulation of UCP1 [89] (Figs. 1 and 2). The thermogenic 
actions of central administration of T3 on BAT and WAT 
are brought about by suppressing AMPK activity in the 
ventromedial nucleus of the hypothalamus (VMH). Indeed, 
genetic ablation of AMPK in the VMH mimics the effects 
of T3 in the VMH by enhancing BAT thermogenesis and 
WAT browning [89]. Moreover, the critical role of UCP1 
in mediating T3-induced increase in EE has been shown by 
several studies in which pharmacological or genetic dele-
tion of UCP1 completely blunted the thermogenic action of 
central T3 [89].

THs activate the specific intracellular receptors (TRs) 
able to act as transcriptional factors by interacting with 
coactivators, corepressors, and thyroid response elements 
on DNA sequences. Two isoforms of TRs have been identi-
fied: TRα, mainly located in heart, bone, and brain, and TRβ, 
principally expressed in tissues with endocrine and meta-
bolic control such as liver and pituitary gland. Notably, both 
receptors are also implicated in the regulation of thermo-
genic response, as demonstrated by several animal models 
where a single or combined knockout of TRα/TRβ resulted 
in increased diet-induced body weight, impaired glucose tol-
erance, thermogenesis deficiency and impaired cold adap-
tation, and reduced the expression of UCP1 in BAT [90, 
91]. However, recent findings showed that TRβ is the major 
isoform mediating T3 actions on multiple metabolic path-
ways in WAT, including glucose uptake and consumption, de 
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novo lipogenesis, and both UCP1-dependent and -independ-
ent thermogenesis [92].

Considering the role of the THs/TRβ system in regulating 
lipid metabolism, several molecules have been developed 
with high selectivity for the TRβ isoform including sobe-
tirome (GC-1) and eprotirome (KB2115), which displayed 
potentially interesting effects on lipids, even though these 
analogues have shown some unwanted side effects that pre-
vented achievement of the therapeutic market [93]. However, 
these compounds and other novel analogues (i.e. GC-24) 
have shown to ameliorate EE and to trigger thermogenic 
responses when investigated both in vitro and in vivo.

In vitro studies

The first evidence of the thermogenic property of THs 
derive from in vitro studies where human multipotent adi-
pose-derived stem cells treated with T3 for 3 days engaged 
browning differentiation as shown by the increase of UCP1 
mRNA expression levels, mitochondrial biogenesis, and 
oxygen consumption rate [94]. Subsequently, Yau et al. 

demonstrated that T3-induced thermogenesis occurs via 
the stimulation of mitochondrial autophagy, activity, and 
turnover in both a BAT cell line and primary murine brown 
adipocytes [95]. In view of the thermogenic property of 
TH, different thyromimetics have been designed with the 
aim of developing new strategies to induce a BAT-like sig-
nature in vitro and for their possible use for the treatment 
of obesity and its associated metabolic disorders includ-
ing dyslipidaemia and non-alcoholic fatty liver disease. 
Ribeiro et al. observed that brown adipocytes isolated 
from hypothyroid mice treated with the TRβ1-selective 
thyromimetic, GC-1, showed an increased expression of 
UCP1, but less activation of adrenergic pathways when 
compared to brown adipocytes isolated from T3-treated 
mice, indicating that the stimulation of UCP1 and aug-
mentation of adrenergic responsiveness are mediated by 
different TR isoforms in the same cells [96]. These effects 
were better elucidated by Lin and colleagues demonstrat-
ing that GC-1 robustly induced UCP1 mRNA and protein 
levels in mouse white adipocytes in a PKA-independent 
manner when compared to norepinephrine, thus indicating 

Fig. 2  Thermogenic factors may influence BAT activity by inducing SIRT1/PGC1α and PKA/p38 MAPK pathways, thus enhancing EE and pro-
moting weight loss
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that GC-1-related WAT browning occurs regardless of 
β-AR activation [97]. The thermogenic power of GC-1 was 
next confirmed in both bone marrow-derived macrophages 
and mouse preadipocytes where a significant upregulation 
of BAT markers (i.e. proton-coupled amino acid trans-
porter 2, PGC1α, PRDM16) after GC-1 administration 
was observed in an equipotent manner as with T3 stimu-
lation [98]. Similar results have been found in adipocytes 
from murine BAT that showed increased mRNA expression 
of key thermogenic mediators (i.e. Pgc1β, Pparα, Pparδ, 
Cpt1, Ucp1, etc.) after chronic treatment with GC-24, a 
TRβ-selective agonist [99].

In vivo animal model studies

The metabolic benefits of TRs agonists were established 
in animal models of hypothyroidism and hypercholesterol-
aemia in which the administration of GC-1 resulted in the 
amelioration of lipid profile and induction of UCP1 mRNA 
expression in BAT, while only minimally mediating syn-
ergism between TH and the sympathetic nervous system 
[96]. Similarly, experiments performed in rodents and pri-
mates revealed that both GC-1 and KB-141, another TH 
analog, favoured the improvement of EE in association with 
a decrease in fat mass and cholesterol plasma levels [100, 
101]. Considering the implication of these molecules in lipid 
metabolism, more recent preclinical studies examined the 
anti-obesity and anti-diabetic efficacy of the selective ago-
nist GC-1. GC-1 elicited a remarkable morphological change 
of subcutaneous WAT in terms of activation of the BAT-
like programme of adaptive thermogenesis (i.e. increase of 
multilocular lipid droplet, UCP1, and mitochondrial DNA 
content) together with fat loss, metabolic improvement, and 
recovery of cold tolerance when administered in genetically 
obese mice [97]. Nevertheless, the browning property of 
GC-1 appeared to be independent of BAT activity, since this 
molecule maintained the thermogenic ability in the setting 
of UCP1 deficiency [97]. The browning of WAT mediated 
by GC-1 has not been observed by other TR agonists, as 
reported after KB2115 administration that caused a slight 
increase in metabolic rate in obese mice without changes 
in body temperature [97]. Notably, the effects of GC-1 
appear to change according to the concentrations used. In 
fact, obese mice treated with low doses of GC-1 maintained 
impaired glycaemic control, while higher dose ameliorated 
glucose tolerance and insulin sensitivity in association with 
increased body temperature, thus suggesting that the induc-
tion of thermogenesis may play a role in mediating these 
beneficial metabolic effects [97]. The same molecule has 
also produced favourable results in rat models of type 2 dia-
betes (T2D) and obesity when administered by a nanochan-
nel membrane device, providing a dramatic body weight 

reduction, normalization of cholesterol and glucose levels 
together with sustained expression of UCP1 in WAT [102].

Thereafter, a second generation of TRβ-selective mole-
cules with 40-fold higher affinity compared to TRα has been 
characterized, GC-24, whose administration for 45 days 
(8.5 ng/g body weight per day) protected from diet-induced 
obesity and metabolic alterations via increased resting met-
abolic response in BAT and upregulation of thermogenic 
markers (i.e. PGC1α, UCP1) [103]. One year later, Castillo 
et al. reported that the same GC-24-based therapy (17 ng/g 
body weight per day) for 36 days accelerated EE by about 
15% and limited body weight gain by about 50% in lean 
mice, effects that were attenuated when this molecule was 
administered in obese mice [99]. Taken together, these data 
give support to the awareness that TRβ agonists could even-
tually become good candidates in the therapeutic arsenal 
of obesity treatment by mediating the activation of several 
metabolic responses including thermogenic and browning 
processes.

Human studies

Although both in  vivo and in  vitro data elucidated the 
role of THs and their mimetics in regulating BAT activ-
ity and browning, few human studies have investigated the 
effects of TH replacement therapy in this setting. Of note, 
the thermogenic property of THs was well described in 
human observational studies regarding hypothyroidism, an 
endocrine disorder associated with increased cold sensitiv-
ity and reduced weight loss following calorie restriction. 
In this condition, the recovery of euthyroidism through 
TH replacement therapy (i.e. levothyroxine) was noted to 
significantly increase cold-induced thermogenesis together 
with enhanced EE [104, 105]. Similarly, patients with thy-
roid carcinoma under levothyroxine-based therapy in the 
post-surgery period showed an enhanced glucose uptake in 
the BAT during cold exposure [105]. Nevertheless, severe 
cold intolerance may occur in some hypothyroid patients on 
levothyroxine therapy with residual symptoms [106]. For 
this reason, a recent study investigated whether this limita-
tion may be overcome by liothyronine. Indeed, hypothyroid 
female patients treated with liothyronine showed a reduction 
of the drop in skin temperature during cold stimulation in 
both supraclavicular and sternal areas and increased body 
temperature, thus suggesting that despite restoring the euthy-
roid condition, levothyroxine therapy exhibited abnormal 
dermal heat loss and attenuated BAT activation as a sign of 
deficient T3 receptor action [107].

Farnesoid X receptor agonists

Farnesoid X receptor (FXR) is a bile acid-activated nuclear 
receptor, mainly expressed in the liver and intestine playing 
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a major role in regulating bile acids and lipid metabolism. 
Different clinical trials have reported the effectiveness of 
FXR modulators in chronic liver diseases and dysmetabolic 
conditions (i.e. obesity, metabolic syndrome, lipodystrophy, 
etc.) [108]. Recent findings have also described that FXR 
may exert actions in extrahepatic tissues such as the kid-
ney, adrenal glands, vascular walls, and adipose tissues. The 
metabolic role of FXR was better clarified in mice in which 
whole-body genetic abrogation of this receptor induced 
glucose and insulin intolerance, together with impaired adi-
pogenesis in WAT and severe cold intolerance [109–111]. 
Conversely, when FXR knockout mice were exposed to 
energy overload, a protection from diet-induced obesity and 
attenuated adipose tissue expansion were observed [112]. 
In addition to these contrasting results, the direct activity 
of FXR on BAT function remains ambiguous, even though 
Yang et al. have recently demonstrated that the expression 
of this receptor markedly decreased upon cold exposure in 
murine BAT [113]. The same authors also highlighted that 
the adipose tissue-specific overexpression of FXR induced 
a pronounced whitening of BAT and downregulation of 
mitochondrial functions, thus suggesting that FXR could 
modulate thermogenesis in a tissue-specific manner [113]. 
Considering the emerging role of FXR in controlling whole-
body energy homeostasis, adipogenesis, and BAT function, 
many attempts have been made to develop new pharmaco-
logical compounds targeting FXR.

In vitro studies

Among the plethora of FXR ligands developed, INT-767, 
a semisynthetic bile acid derivative able to activate both 
FXR and takeda G protein-coupled receptor 5 (TGR5), has 
been shown to activate different metabolic pathways in vitro. 
Indeed, rabbit visceral preadipocytes isolated and treated 
with INT-767 for 10 days showed increased mitochondrial 
biogenesis and function as well as increased UCP1 protein 
expression and oxygen consumption via a cAMP/PKA-
dependent pathway (Figs. 1 and 2) [114]. These results are 
consistent with the recent observation that BAR502, another 
dual FXR/TGR5 agonist, promoted in vitro trans-differen-
tiation of murine 3T3-L1 preadipocytes into a beige pheno-
type by increasing intracellular cAMP [115]. Corroborating 
results were also obtained by farnesol, a natural 15-carbon 
organic compound found in many essential oils, whose activ-
ity increased UCP1 protein levels in both 3T3-L1 adipocytes 
and human mesenchymal stem cells [116], and ultimately 
was found to induce thermogenesis via activation of AMPK 
[117].

In vivo animal models studies

Fexaramine was the first gut-restricted FXR agonist with 
numerous metabolic benefits including WAT browning. In 
fact, fexaramine-based therapy limited diet-induced weight 
gain together with enhanced EE and body temperature 
when administered in obese mice [118]. Furthermore, this 
molecule has been shown to increase energy utilization by 
BAT and to upregulate the expression of several BAT activa-
tors (i.e. PGC1α, PGC-1β), as well as of their target genes 
involved in thermogenesis, mitochondrial biogenesis and 
fatty acid oxidation [118]. The same therapy reduced vis-
ceral fat depots, enhanced lipolytic rates and promoted WAT 
browning in obese mice as compared to untreated controls 
[118]. Conversely, the chronic administration of a synthetic 
FXR agonist (GW4064) accentuated body weight gain and 
glucose intolerance in high-fat diet (HFD)-induced obese 
mice in association with a decreased bile acid biosynthesis 
and EE. In addition, worsening of the changes in liver and 
adipose tissue was observed after GW4064 administration 
[119]. GW4064 appears also to control energy homeosta-
sis by stimulating thermogenesis through the activation of 
FXR in brain areas as observed in a mouse model. After 
intracerebroventricular infusion of GW4064, mice showed 
important histological remodelling of BAT (i.e. increase of 
lipid droplet size), which occurred via the control of hypo-
thalamic sympathetic tone [120]. However, these responses 
were absent in mice with FXR deficiency indicating target 
selectivity of the compound [120].

The modulation of FXR activity was also investigated 
by using natural thermogenic nutrients such as bile acids. 
Diet supplementation with chenodeoxycholic acid (CDCA) 
or the bile acid-binding resin colestimide, which favours 
bile acids synthesis, in mice showed an anti-obesity effi-
cacy associated with the increase of UCP1 and PGC1α 
mRNA expression levels in BAT depots [110], reduced 
food intake and increased lipid oxidation in WAT [121]. 
Similarly, farnesol, an isoprenoid present in essential oils, 
has been shown to ameliorate obesity and diabetes [122], 
and ultimately was found to burn fuel energy by trigger-
ing thermogenic responses in HFD-induced obese mice 
[117]. Notably, farnesol also induced thermogenic factors 
via AMPKα phosphorylation in BAT under cold accli-
mation (Fig. 1). In this setting, mice also showed weight 
loss and reduced BAT and WAT depots as compared to 
untreated mice [117]. Further, in vivo studies have also 
observed that obeticholic acid (OCA), a bile acid analogue 
originally developed for treating liver fatty diseases, exerts 
a browning effect on WAT. When administered in hyper-
phagic mice, OCA ameliorated body weight and hepatic 
steatosis by activating endogenous BAT, but without alter-
ing fatty acid oxidation [123].
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Based on thermogenic control of bile acids, recent stud-
ies have investigated the effects of bile acid mimetics in 
the regulation of BAT function. For instance, a semisyn-
thetic bile acid derivative INT-767, a dual FXR/TGR5, 
was found to protect against metabolic disorders and to 
activate thermogenic pathways in vivo. Indeed, HFD rab-
bits treated with INT-767 showed a reduction of visceral 
adipose tissue accumulation, hypercholesterolaemia and 
non-alcoholic steatohepatitis combined with the upregu-
lation of mitochondrial and BAT-specific markers [114]. 
In agreement with these results, exposure of obese mice 
to BAR502, a steroidal dual agonist for FXR and TGR5, 
resulted in a profound restoration of insulin sensitivity and 
reshaped the WAT morphology together with the transition 
towards a beige/brown phenotype as indicated by marked 
increase of UCP1 protein expression [115].

Human studies

Nowadays, few studies have investigated the potential role 
of FXR–bile acids axis in regulating EE and browning in 
humans. For instance, modifications of circulating bile acids 
have been shown to correlate with changes in energy and 
substrate metabolism upon bariatric surgery [124, 125]. 
Considering the role of bile acids in the control of BAT func-
tion, Broeders and colleagues investigated the effects of oral 
supplementation of CDCA in healthy females and observed 
an increase of BAT activity under both thermoneutral condi-
tions and mild cold exposure, which was accompanied by 
a significant increase in EE (∼5–6%) in the basal, resting 
state [126]. Other candidates able to target FXR have been 
examined in clinical trials (i.e. OCA, WAY-362450), show-
ing positive results in the management of cholestatic liver 
diseases and metabolic syndrome [127], but the effects on 
thermogenesis and browning processes are still unexplored.

Glucagon‑like peptide 1 receptor agonists

Glucagon-like peptide 1 (GLP-1) is an incretin produced 
by enteroendocrine L-cells in response to nutrient ingestion 
that has multiple pleiotropic effects, including the stimula-
tion of insulin release from pancreatic β-cells, inhibition of 
glucagon secretion [51, 52, 128], regulation of food intake 
by promoting satiety and fullness [129], delay of gastric 
emptying [130], and control of energy balance [131]. GLP-1 
release from the ileum depends on the composition and size 
of meals and can be impaired in both obesity and T2D [132, 
133]. The insulin-secretagogue effects of GLP-1 are medi-
ated by GLP-1 receptors (GLP-1R), which belong to the 
class B family of 7-transmembrane-spanning, heterotrim-
eric G protein-coupled receptors expressed in several tis-
sues, including the pancreatic islet, kidney, heart, stomach, 

intestine, muscle, and central and peripheral nervous sys-
tems [134–138]. However, data from a recent single-cell 
RNA sequencing analysis investigating the whole-body 
distribution of GLP-1R have revealed no expression of such 
receptors in both human and mouse WAT [139, 140]. GLP-1 
has a short half-life due to its rapid degradation induced by 
dipeptidyl peptidase 4 (DPP4), leading to the generation of 
largely inactive forms (GLP-19–36 amide or GLP-19–37) 
[136, 141]. Therefore, several structurally optimized GLP-1 
analogues with improved bioavailability and sustained 
action have been developed for clinical use. Among these, 
liraglutide and exendin-4 have been investigated specifically 
for their effect on EE.

In vitro studies

Exenatide, one of the first GLP-1 receptor agonists (GLP-
1RA) developed, was identified as exendin-4 in the salivary 
glands of the Gila monster (Heloderma suspectum) and 
shares 53% amino acid sequence homology with native 
human GLP-1 [136]. Conversely, liraglutide is a long-acting 
GLP-1RA that shares 97% sequence identity with human 
GLP-1 [142]. Although exenatide and liraglutide differ in 
terms of amino acid sequence homology with native GLP-1, 
both compounds showed similar thermogenic capabilities 
in vitro. The molecular machinery mediating the browning 
effects of GLP-1RA is complex and appears to include not 
only effectors of the AMPK pathway, but also protein sig-
nalling typically involved in cell growth control, such as the 
phosphoinositide 3-kinase (PI3K)/AKT/mammalian target 
of rapamycin (mTOR) pathway, whose activation by lira-
glutide was found to promote the accumulation of multi-
locular lipid droplets and mitochondrial biogenesis in brown 
adipocytes in vitro (Fig. 1) [143]. Similar results have also 
been reported for exendin-4, which increased the expres-
sion of PGC1α and UCP1 via activation of SIRT1 when 
added to 3T3-L1 adipocytes cultures [144]. These results 
highlight that SIRT1 is a key bioenergetic regulator shared 
by both β3-AR- and GLP-1R-mediated thermogenic signal-
ling pathways.

In vivo animal models studies

The peripheral and central effects of GLP-1 were elucidated 
in vivo by using GLP-1R-deficient models and long-acting 
GLP-1RA. Firstly, Heppner et al. demonstrated that GLP-
1R-knockout mice fed an HFD exhibited a blunted response 
to liraglutide in terms of reduced EE and weight loss when 
exposed to both noradrenaline and cold temperature [145]. 
These results indicate the potential involvement of endoge-
nous GLP-1R signalling in the maintenance of both adaptive 
thermogenesis and body weight. EE modification appears 
to require the activation of GLP-1R signalling in certain 
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brain areas [146]. The GLP-1R is highly expressed in the 
hypothalamus, particularly in anorexigenic pro-opiomelano-
cortin (POMC) neurons within the arcuate nucleus (ARN) 
and in other areas closely associated with BAT activity (i.e. 
dorsomedial hypothalamus (DMH) and medial preoptic 
area (MPOA)) [147]. Indeed, rats with GLP-1R knock-
down within DMH develop an obesogenic phenotype due 
to reduced EE and BAT thermogenesis, with a concomi-
tant increase in hepatic steatosis, insulin resistance, and 
body weight [148]. Central infusion of exendin-4 in mice 
induced an increase of sympathetic activity targeting BAT, 
with increased UCP1 protein expression, and improved TG 
clearance by robustly increasing TG uptake by brown adi-
pocytes, while this disappeared in the presence of obesity 
[149]. The amelioration of lipid turnover under pharmaco-
logical stimulation of central GLP-1R occurred through a 
shift in energy metabolism from carbohydrates to fatty acids 
as the prevalent energy source [149], which confirmed previ-
ous data showing that chronic exposure to GLP-1 increased 
the rate of fatty acid oxidation by BAT [150]. Interestingly, 
in vivo investigations have described a new hypothalamic 
pathway that, when activated by liraglutide, was found to 
trigger BAT thermogenesis, and browning of WAT in an 
AMPK-dependent manner, regardless of nutrient intake [30].

Both peripheral and central administration of GLP‐1RA 
stimulated neuronal activity at several hypothalamic sites, 
resulting in activation of satiety factors and EE in diet-
induced obese (DIO) mice [150, 151]. A single intracer-
ebroventricular administration of liraglutide reduced food 
intake and body weight and increased BAT thermogenesis 
and UCP1 protein expression in WAT [30, 152]. Similarly, 
mice challenged with a high-fat and high-sugar diet that 
were exposed peripherally to liraglutide, beyond changes 
in eating behaviour, displayed a significant increase in 
BAT activation and brown fat markers in skeletal muscle 
and activation of adaptive thermogenesis in WAT via the 
AMPK–SIRT1–PGC1α pathway (Fig. 1) [153]. Consistent 
with these findings, selective in vivo ablation of GLP-1R 
in the neuronal circuits of both DMH and VMH nuclei 
blunted the effect of liraglutide on body weight, in addition 
to reducing the thermogenic and browning action mediated 
by liraglutide and exendin-4 [30, 148, 154]; these observa-
tions suggest that energy dissipation might contribute to 
weight loss in response to these agents.

Despite an increasing body of evidence on the ability of 
incretin mimetics to elicit BAT responses through both direct 
and indirect mechanisms, to date few studies have explored 
the molecular machinery of adipocyte browning induced 
by GLP-1RA. Recently, liraglutide was shown to partici-
pate in mitochondrial fat oxidation by modulating two key 
enzymes downstream of AMPK signalling (i.e. long-chain 
acyl-CoA dehydrogenase [LCAD] and acetyl-CoA carboxy-
lase-2 [ACC2]), reducing fat accumulation in association 

with suppression of adipogenesis, particularly in visceral 
fat regions of HFD diabetic mice [155]. These events were 
achieved through induction of UCP1 and PRDM16, key 
mediators of browning, together with activation of the dea-
cetylase SIRT1 [155], whose involvement in browning was 
noted [156–159]. Furthermore, when GLP-1R were chroni-
cally activated by liraglutide in mice, an increase in the 
number of mitochondria was observed in both subcutaneous 
and visceral depots in association with the formation of new 
beige adipocytes through the activation of soluble guanylyl 
cyclase (sGC) and protein kinase G 1 (PKG1) [160], which 
appeared to be novel mediators of the browning process in 
WAT depots [161, 162].

Considering the thermogenic role of both GLP-1RA and 
β3‐AR agonist, several studies have investigated the effects 
of combined administration of both compounds on EE and 
adipose tissue biology. Rats treated by both liraglutide and 
the β3‐AR agonist CL316243 showed reduced feeding, 
enhanced thermogenesis in both epididymal WAT and BAT, 
and decreased weight gain [163]. The extent of signalling 
activation by both receptors appeared to change in a tissue-
dependent manner: rats exhibited a higher phosphorylation 
rate of PKA in the liver together with enhanced expres-
sion of PPARα and PPARγ, and improved lipid trafficking 
and resting EE after combined therapy [163]; in contrast, 
PKA was activated to a lesser extent in BAT and WAT in 
association with an increase of thermogenic factors (e.g. 
cytochrome c oxidase subunit 4 isoform 1) and decrease of 
lipogenic mediators (i.e. PPARα, PPARγ) (Fig. 1) [163]. In 
this model, the combined therapy shifted the energy balance 
towards oxidative processes, enhancing peripheral pathways 
promoting fat mass reduction, liver fat content reduction, 
and an overall improved metabolic profile [163]. On the 
basis of these preclinical findings, a combined therapy with 
GLP-1RA and β3-AR agonists could have potential on meta-
bolic outcomes, even though its efficacy in human obesity 
is warranted.

More recently, new GLP-1RAs, such as semaglutide or 
supaglutide, have been developed showing similar or even 
greater benefits in terms of weight loss, induction of EE and 
browning of WAT in mice models of obesity, thus further 
corroborating previous evidence regarding the thermogenic 
role of GLP-1R activation [164, 165]. Taken together, these 
results suggest that, at least in experimental animal mod-
els, the body weight-lowering effect of GLP-1RA, particu-
larly of liraglutide, may occur by increasing EE through a 
thermogenic mechanism, independent of changes in caloric 
intake. However, clinical data have not always supported 
these promising experimental findings, as GLP-1RA-based 
therapy was found to lower energy intake without affecting 
EE or adaptive thermogenesis in humans [44].
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Human studies

Although it was found that body weight reduction induced 
by GLP-1RA may occur at least partially through increased 
thermogenesis and EE in experimental animals, conflicting 
results have been obtained so far in humans. It was reported 
that long-term exposure to exenatide or liraglutide in indi-
viduals with obesity and T2D resulted in a reduction in 
BMI and fat mass and an increase in EE [30]. Nevertheless, 
these findings are in contrast with previous results show-
ing that the anti-obesity efficacy of short-term therapy with 
GLP-1RA was not accompanied by an improvement in EE 
[166–168]. Indeed, evidence of the thermogenic effect of 
GLP-1RAs in humans was provided by performing a tomog-
raphy scanning of healthy volunteers treated with exendin-4 
for 12 weeks, showing an increase in BAT glucose uptake 
[169]. Although effects on EE could not be detected after 
12  weeks, they were reported in another study in T2D 
patients when exendin-4-based therapy was extended at one 
year [30]. Similar effects were also observed after adminis-
tration of liraglutide [30, 169], a drug currently used for both 
T2D and obesity management [170, 171]. Although liraglu-
tide shows an improved bioavailability as compared to native 
GLP-1, it requires daily injections, thus potentially reduc-
ing therapy adherence [142]. The longer acting analogue 
semaglutide, with once-weekly administration and greater 
weight-loss efficacy as compared to liraglutide [172], may 
provide greater clinical benefit. Semaglutide shows similar 
thermogenic capabilities in experimental animals [165] and 
appears to be the most effective in reducing weight among 
the various GLP-1RA, with a mean weight loss of 15.8% 
after 68 weeks of treatment in obese and overweight patients 
[173]. However, the potential thermogenic effects of sema-
glutide have not been yet elucidated in humans. A clini-
cal trial to clarify the role of BAT activation in mediating 
the weight loss induced by semaglutide in obese patients is 
being carried out, with results expected to be available in 
2023 [174].

GLP‑1R/glucose‑dependent insulinotropic 
polypeptide receptor dual agonists

Glucose-dependent insulinotropic polypeptide (GIP) is 
another insulinotropic protein secreted by enteroendocrine 
K cells of the small intestine acute ingestion of dietary nutri-
ents [175]. Evidence from in vivo studies reported conflict-
ing results regarding GIP release in T2D, with some studies 
showing enhanced [176] or unchanged secretion [133, 134]. 
The release of GIP is also modified under cold acclima-
tation, as observed in rats in which chronic cold exposure 
significantly augmented circulating levels of GIP in associa-
tion with an increase in BAT mass [177]. GIP acts through 
the activation of G protein-coupled receptor (GIPR), whose 

expression has also been observed in extra-pancreatic tis-
sues, including the hypothalamus and adipose tissue, sug-
gesting that it controls systemic metabolism beyond insulin 
secretion [178]. The distribution of GIPR at the adipose tis-
sue level was already established, particularly in preadipo-
cytes [179], in which GIPR expression levels are enhanced 
after adipocyte commitment [180]. However, the expression 
of GIPR in both mouse and human WAT remains question-
able, since analysis of single-nucleus RNA sequencing has 
recently found GIPR to be predominantly localized in non-
adipocyte cells with prevalent expression in pericytes and 
mesothelial cells [139, 140], suggesting that the effects of 
GIP on adipocytes could be exerted through indirect mecha-
nisms. Notably, GIPR expression levels in adipose tissue 
were found to be negatively correlated with adiposity and 
positively associated with insulin sensitivity [181]. In par-
ticular, a defective GIP/GIPR signalling has been observed 
in the subcutaneous WAT of individuals with obesity and 
insulin resistance [181]. In accordance, we demonstrated 
that the excess of saturated fatty acids makes pancreatic β 
cells dysfunctional in terms of insulin release by reducing 
protein expression of GLP-1R and GIPR by 50% and 30%, 
respectively [182], thus suggesting that lipotoxicity could 
impair the incretin cascades also in other cell types.

The role of GIPR signalling in the regulation of both sys-
temic and adipose tissue metabolism is not fully elucidated, 
since transgenic animal models produced conflicting results. 
Mantelmacher et al. demonstrated that genetic interruption 
of the GIP/GIPR axis in myeloid cells favoured weight gain 
and metabolic abnormalities concomitantly with impaired 
EE, adipocyte hypertrophy, and reduced expression of ther-
mogenic proteins such as PGC1α and UCP1 [183]. The latter 
data suggest that increased infiltration of immune cells in 
adipose tissue could affect the adaptive thermogenesis of 
BAT through a GIP-dependent mechanism. More recently, 
new findings suggest that the stimulation of GIPR could 
promote BAT function and thermogenesis, as well as the 
beigeing process, in human WAT precursors, in associa-
tion with the amelioration of lipid metabolism [184]. These 
responses appear to require PKA activation [184], which is 
also involved in β3-adrenergic-mediated thermogenesis, as 
previously discussed [65]. Considering the favourable meta-
bolic effects of both GLP-1 and GIP, combined therapies 
with both these incretins have been investigated to improve 
the efficacy of obesity treatments.

In vivo animal models studies

Multi-receptor pharmacology is at the forefront of next-
generation therapies for the treatment of metabolic dis-
eases. Indeed, the synergic effect of GLP-1 and GIP has 
already been investigated in vivo with the intra-cerebroven-
tricular co-administration of both incretin hormones that 
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significantly decreased body weight by reducing food intake 
through the central activation of anorexigenic POMC neu-
rons located in the ARN of the hypothalamus [185]. Never-
theless, this weight-lowering effect was lost when either pep-
tide was infused alone, suggesting that simultaneous central 
activation of GLP-1R and GIPR is essential for regulating 
energy balance [185]. It is already known that the ARN plays 
a critical role in metabolic regulation through a direct excita-
tory glutamatergic projection to the paraventricular nucleus 
(PVN) of the hypothalamus [186], which in turn modulates 
BAT activation and thermogenesis through sympathetic 
activity [187]. Considering the promising results obtained 
with combined infusion of GLP-1 and GIP peptides, uni-
molecular GLP-1/GIP receptor dual agonists were recently 
developed to promote different beneficial effects with admin-
istration of a single drug. Among these, NNC0090-2746 
and tirzepatide showed improved efficacy in terms of EE, 
insulin sensitivity and weight loss, as compared to single 
GLP-1R agonism in a model of diet-induced obesity [188, 
189]. Currently, it is not fully clear whether these beneficial 
effects are promoted by GLP-1R, GIPR or by simultane-
ous and possibly unbalanced activation of these receptors. 
Despite losing equivalent body weight, obese mice treated 
with tirzepatide showed a greater amelioration of systemic 
insulin sensitivity when compared to obese mice treated with 
GLP-1R monoagonist (semaglutide), an effect mediated by 
enhanced glucose disposal in both WAT and BAT [190]. 
The weight-independent insulin sensitization induced by 
tirzepatide appeared to be due to the engagement of GIPR. 
Indeed, similarly to long-acting GIPR agonist (LAGIPRA), 
tirzepatide favoured similar protection from obesity and 
insulin resistance, together with increased catabolism of 
glucose, lipids, and branched-chain amino acids (BCAA) 
in BAT. However, both compounds differed in differential 
regulation of > 1000 genes within BAT [190]. Thereafter, in 
a murine model of diet-induced obesity using stable-isotope 
tracers, it has been recently shown that tirzepatide stimulates 
catabolism of BCAAs/keto (BCKAs) acids in BAT, result-
ing in enhanced release of several intermediates of tricar-
boxylic acid (TCA) cycle (α-ketoglutarate, fumarate, and 
malate) and multiple amino acids (i.e. glutamate, alanine, 
etc.) principally involved in cold-induced thermogenesis 
[191]. Altogether, these data define, for the first time, the 
critical role of GIPR activation in mediating the metabolic 
outcomes of tirzepatide regardless of its weight-lowering 
action, highlighting an effect that involves the activation of 
a thermogenic-like amino acid signature in BAT.

Human studies

The clinical relevance of both NNC0090-2746 and tirze-
patide was also investigated in clinical studies. While no 
significant improvement between NNC0090-2746 and 

liraglutide in terms of reduction of hyperglycaemia and 
weight loss was observed in patients with T2D [192], tirze-
patide showed greater benefits on both these endpoints com-
pared to semaglutide [193], thus becoming the most effective 
anti-obesity drug currently available [194]. In recent clini-
cal trials, weekly administration of tirzepatide (15 mg) for 
72 weeks has shown substantial and sustained reductions in 
body weight (> 25%) in 36.2% of obese patients recruited 
[195], and remarkable glycaemic benefits when compared to 
insulin degludec in patients with T2D [196]; similar results 
were achieved previously only by bariatric surgery, the first 
strategy with high remission rate of both obesity and T2D, 
but with several post-intervention complications [197].

Differences between these dual agonists could be 
explained by considering their affinity for the GLP-1R and 
GIPR. NNC0090-2746 equally binds both GLP-1R and 
GIPR, whereas tirzepatide acts as an unbalanced agonist 
showing higher potency for GIPR rather than for GLP-1R 
[192, 198]. The partial agonism of tirzepatide could be 
linked to its ability, when compared to native GLP-1, to 
induce less β-arrestin recruitment, a key signalling protein 
mediating GLP-1R internalization, thus resulting in higher 
cell-surface GLP-1R levels and enhanced beta-cellular 
responses in terms of insulin secretion [198]. These find-
ings could potentially explain the superior efficacy of tirze-
patide versus other balanced GLP-1R/GIPR dual agonists, 
even though it is not known whether this mechanism also 
affects the thermogenic capabilities of tirzepatide in humans. 
Although EE was not evaluated in the latest clinical trials, 
a study measuring food intake and calorie consumption in 
overweight patients using tirzepatide is currently ongoing 
[199]. In accordance with data obtained by studies in rodents 
[190, 191], Pirro et al. observed that tirzepatide reduced cir-
culating BCAA in patients with T2D, and this effect was 
strongly associated with biomarkers indicative of enhanced 
insulin sensitivity [200]. Based on these preliminary results, 
additional investigation will be needed to establish whether 
the effects of GLP-1R/GIPR dual agonism on weight, glu-
cose and lipid control are also a consequence of their ability 
to increase EE.

GLP‑1R/glucagon receptor dual agonists

Glucagon is a well-known peptide secreted by pancreatic 
α-cells that can correct hypoglycaemia by increasing hepatic 
glucose production [54]. Glucagon also exhibits pleiotropic 
properties, such as regulation of feeding behaviour (i.e. 
satiety and fullness) [201], lipid homeostasis [202], insulin 
secretion, and EE [203]. Glucagon acts mainly through a 
G-coupled receptor (GCGR) whose expression was found 
in hepatocytes, where this hormone displays principal 
functions in terms of stimulation of both gluconeogenesis 
and glycogenolysis [204]. GCGR was also identified in 
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peripheral tissues (i.e. kidney, heart, spleen, thymus, stom-
ach, duodenum, brain) [205] and its transcript has recently 
been reported in adipose tissue, particularly in mature adi-
pocytes from both WAT and BAT samples [206]. GCGR 
distribution and activity in adipose tissue was established 
several years ago demonstrating the presence of high-affinity 
glucagon-binding sites in the soluble membranes of human 
fat cells [138]; in this setting, glucagon exhibited direct lipo-
lytic action in a concentration range of  10–6–10–8 M [207] 
through a cAMP-dependent mechanism [208].

An effect of glucagon on thermogenesis was described 
several decades ago [209, 210], showing a decrease in body 
weight with an additional increase of EE following subcu-
taneous injection of glucagon in obese rats [211]. These 
effects seem to involve a BAT-dependent mechanism, since 
increases in temperature [212], blood flow, and cold-induced 
BAT mass [55] were observed following glucagon-based 
therapy. However, consistent data have indicated that gluca-
gon could also affect heat production and BAT metabolism 
through indirect mechanisms. Relevant to this concept, a 
recent study in humans reported that individuals with active 
BAT (measured by FGD-PET) responded to glucagon infu-
sion with higher rates of EE (230 kcal/day), similarly to cold 
activation but without any changes in BAT activity [213]. Of 
note, the role of glucagon in the regulation of thermogenesis 
has been better clarified in mice with genetic deletion of 
GCGR, in which a blunted cold-induced activation of adap-
tive thermogenesis and browning together with the reduction 
of PKA substrates phosphorylation in WAT was observed 
[31]. Based on these considerations, glucagon could be a 
potential molecule to counteract obesity through the activa-
tion of EE and BAT, even though the well-known hypergly-
caemic excursions associated with this hormone [214] make 
it potentially harmful if used as a monotherapy for obese 
subjects with impaired glucose regulation. Therefore, com-
bined therapies with hypoglycaemic agents, such as incretin 
mimetics, have been further explored.

In vivo animal models studies

The co-agonist ‘Aib2 C24 lactam 40k’, a chimeric peptide 
with higher selectivity for the GLP-1R and lower agonism 
for GCGR, was recently obtained through the chemical 
insertion of GLP-1 amino acid residues into the protein 
backbone of glucagon [215]. This peptide harbours mod-
ifications that allow it to maximize stability and efficacy 
in terms of resistance to cleavage by DPP4 and increased 
half-life, with a retained greater affinity for GCGR [215]. 
The enhanced efficacy of this new glucagon/GLP-1 chi-
meric peptide was assessed in DIO mice, in which weekly 
subcutaneous injections of this peptide for 1 month led to 
decreased body weight already in low doses mainly due 
to a loss of fat mass as compared to GLP-1-based therapy 

alone [215]. In the same study,  O2 consumption and  CO2 
production were measured through indirect calorimetry and 
revealed an increased EE in mice treated by the dual agonist, 
suggesting that a metabolic shift towards heat production 
could contribute to the pronounced weight-lowering effect 
[215]. The mice did not exhibit changes in physical activ-
ity or food intake when on dual agonist therapy compared 
with untreated littermates, suggesting that the increased EE 
occurred mainly through increased basal metabolism and 
thermogenesis [215]. Interestingly, the dual agonist-induced 
fat loss was observed in visceral depots in which adipocytes 
acquired a small phenotype in association with increased 
phosphorylation of HSL suggesting that enhanced lipolysis 
could have a role in fat reduction [215]. The key compo-
nent that primarily triggers fat burn is the glucagon-related 
sequence within the dual agonist peptide, since this hormone 
is known to enhance lipolysis, as reported by previous stud-
ies in which glucagon administration in human adipocytes 
induced a dose-dependent increase in lipolysis rates [138, 
207, 216].

The synergistic contributions of combined GLP-1R 
and GCGR activation were also evaluated in GLP-1R-null 
mice maintained on an HFD, in which the dual agonist led 
to reduced body weight and adiposity due to an anorexic 
effect while hyperglycaemia was retained; this highlights 
that a GLP-1 fraction inside the chimeric compound is 
needed to protect against glucagon-induced hyperglycae-
mia [215]. Similarly, previous results have highlighted that 
therapy based on long-acting GLP-1R/GCGR dual agonist, 
named DualAG, exerted cumulative effects on food intake 
in rodents, thus reverting the obesity condition together with 
an amelioration of glucose tolerance [217]; however, these 
effects were ablated when both GLP-1R and GCGR were 
genetically eliminated [217]. Similar findings were observed 
after treatment with cotadutide, another dual agonist of both 
GLP-1R and GCGR, whose administration increased EE in 
DIO mice, with greater weight loss and a similar glucose-
lowering effect compared with liraglutide [218]. The weight-
lowering effects of cotadutide was also replicated in non-
human primates, indicating that this drug maintains similar 
benefits in different species [218]. Furthermore, cotadutide 
produced body weight loss, amelioration of glucose toler-
ance, reduced liver fat content, and increased mRNA expres-
sion of the brown thermogenic genes Ucp1, Pgc1α, and β3-
AR in an obese mouse model with leptin deficiency [219]. 
These beneficial responses were not sustained with single-
agonist administration, suggesting that a specific mechanism 
involved in BAT activation was induced only when both 
GLP-1R and GCGR signalling were chronically activated 
[219]. Considering these results in preclinical models, the 
simultaneous activation of GLP-1R and GCGR could be a 
promising strategy to improve both adiposity and lipid pro-
file without a worsening of glucose levels. In this regard, 
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when GLP-1R signalling was abrogated, hyperglycaemic 
excursions were observed, indicating that GLP-1R activation 
is essential in offsetting glucagon-induced hyperglycaemia.

Human studies

The synergic effects of GLP-1 and glucagon were also 
explored in studies in human healthy volunteers in which 
combined infusion of low doses of both hormones increased 
EE to a greater extent than what was achieved with either 
peptide infused alone [220]. Based on these findings, devel-
opment of unimolecular dual GLP-1R/GCGR agonists has 
been carried out to obtain new and improved anti-obesity 
drugs. The first of this new class of anti-diabetic agents 
tested in humans was oxyntomodulin, a 37-amino acid hor-
mone secreted by the fundic cells of the colon [221]. When 
administered to obese subjects, this peptide successfully 
reduced calorie intake and increased EE, resulting in nega-
tive energy balance and significant weight loss [221]. These 
promising results encouraged the development of more 
suitable synthetic dual agonists, such as cotadutide and the 
more recent mazdutide, which successfully reduced body 
weight in exploratory analysis of obese and T2D patients 
[222, 223]. Noteworthy, the degree of body weight reduction 
with matzutide was similar to what was observed with tirze-
patide (approximately 10% of body weight) after 12 weeks 
of treatment in patients with T2D and obesity, even though 
these data are referred to different study populations [195, 
223]. Additional studies with a prolonged treatment period 
will establish whether this dual GLP-1R/GCGR agonist 
could reach the results obtained by tirzepatide [224]. Despite 
in vivo studies showed increased thermogenesis and BAT 
activity when dual GLP-1R/GCGR agonists were adminis-
tered, currently no data regarding these outcomes are avail-
able in humans.

GLP‑1R/GIPR/GCGR triple agonists

In vivo animal models studies

The therapeutic spectrum of T2D and obesity therapy has 
recently been enriched by hybrid peptides acting as triple 
GLP-1R/GIPR/GCGR agonists that target both incretin 
and glucagon signalling to synergistically elicit favour-
able metabolic effects [225, 226]. The metabolic benefits 
of these triple agonists were found to be higher than mono 
and dual therapy [225, 226]. When obese mice were exposed 
to a triple GLP-1R/GIPR/GCGR agonist, a greater body 
weight loss was observed as compared with mice treated 
with GLP-1R/GCGR or GIPR/GCGR co-agonist or GLP-
1RA monotherapy [226]. Furthermore, triple agonist treat-
ment enhanced EE, likely through glucagon-mediated 

thermogenic effects [226]. It is reasonable to hypothesize 
that at least part of the signalling activity involved in these 
metabolic enhancements is derived from adipose tissue, as 
cAMP production was shown to be significantly stimulated 
in 3T3-L1-differentiated adipocytes exposed to the triple 
agonist [226]. Further experiments were conducted in mice 
with deletion of GLP-1R, GIPR, and GCGR to explore the 
synergistic involvement of these receptors in the metabolic 
responses. A blunted weight-lowering effect, particularly in 
obese GLP-1R- and GCGR-null mice, was observed, as these 
receptors were no longer able to signal for enhanced anorec-
tic actions [226]. However, when GIPR was genetically abro-
gated, glucagon-dependent hyperglycaemic excursions were 
enhanced during triple agonist therapy, highlighting that 
GIPR signalling functions for the maintenance of glucose 
balance [226]. These findings suggest that synergic activa-
tion of GIPR, GLP-1R, and GCGR could clinically ame-
liorate body weight by potentiating thermogenic responses 
that do not occur when only a single receptor is activated. 
The triagonists MAR423, HM15211 and LY3437943 were 
recently developed and are being assessed in early clinical 
and preclinical trials. Animal studies confirmed the weight-
lowering efficacy, increased energy consumption, and lipid 
profile improvement in models of obesity and metabolic 
abnormalities, highlighting that these novel compounds 
could have thermogenic potential [47, 48, 225–227]. Particu-
larly, recent studies showed that HM15136 promoted WAT 
browning in obese mice by increasing mRNA expression of 
Pgc1α and Ucp1, leading to enhanced EE [228].

Human studies

To date, the clinical relevance of triple GLP-1R/GIPR/
GCGR agonists has not been fully established. The 
HM15211 compound is being tested in phase 1 clinical trials 
for obesity and non-alcoholic steatohepatitis treatment [229], 
while the clinical efficacy of MAR423 has not yet been stud-
ied. Currently, LY3437943 is the triple agonist in the most 
advanced stage of clinical assessment, showing promising 
results in a recent phase 1b trial with robust reductions in 
glucose and weight to a similar extent as tirzepatide and 
mazdutide [230]. However, key of thermogenic responses 
such as EE have not yet been assessed. No consistent data 
regarding the browning or BAT activation by triple agonists 
are available from clinical trials and further human studies 
are needed in this regard.

Conclusions and future perspectives

Appetite inhibitors and inhibitors of the absorption of nutri-
ents represent the pharmacological agents currently recom-
mended for the treatment of obesity. However, the control 
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of body weight under these therapies is often not achieved 
and/or maintained in the long-term due to counter-regulatory 
mechanisms modulating energy disposal and thermogenesis. 
In recent decades, the rediscovery of metabolically active 
BAT in adulthood provoked strong interest in the identifica-
tion of new browning molecules to counteract obesity and 
related metabolic complications (Fig. 1 and Table 1), includ-
ing emerging poly-agonists, with potential for induction of 
thermogenesis and browning. The recent clinical results 
achieved with the selective β3-AR agonist mirabegron 
have shown improvements in multiple measures of glucose 
metabolism in obese and insulin-resistant individuals prob-
ably driven by activation of the beigeing process. Similarly, 
preclinical results described TRβ and FXR agonists as good 
candidates for obesity treatment through the activation of 
thermogenic and browning responses occurring via direct 
or indirect mechanisms.

In addition, several preclinical and clinical studies have 
demonstrated that novel incretin and glucagon mimetic com-
pounds initially developed for the treatment of T2D, such as 
the dual agonists GIPR/GLP-1R and GLP-1R/GCGR and 
the triple agonist GLP-1R/GIPR/GCGR, can enhance BAT 
activity and browning of WAT, introducing a new perspec-
tive for the management of obesity. The pharmacological 
activation of GLP-1R, GIPR, GCGR triggers several intra-
cellular mediators (p38 MAPK, PI3K/AKT, AMPK/SIRT1/
PGC1α) whose combined activation may ultimately enhance 
BAT activity and browning through the upregulation of 
UCP1, the key transducer of thermogenesis (Figs. 1 and 
2). Therefore, these novel molecules, differently from older 
anti-obesity drugs (e.g. orlistat), could potentially lead to 
effective weight management in the long-term through the 
sustained activation of thermogenesis, thereby reducing the 
risk for weight-loss resistance and weight regain. Further 
studies are needed to elucidate whether thermogenic and 
browning responses associated with these agents are directly 
elicited on adipocytes or are achieved by indirect mecha-
nisms, potentially involving the CNS.
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