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Abstract
Purpose  The incidence of acute myocardial infarctions (AMI) shows circadian variation typically peaking during morning 
hours with a decline at night. However, this variation does not occur in patients with diabetes mellitus (DM). The night’s 
decline of AMI may be partially explained by melatonin-related platelet inhibition. Whether this effect is absent in diabetic 
patients is unknown. The aim was to study the effect of melatonin on in-vitro platelet aggregation in healthy individuals and 
patients with type 2 DM.
Methods  Platelet aggregation was measured in blood samples from healthy individuals (n = 15) and type 2 DM patients 
(n = 15) using multiple electrode aggregometry. Adenosine diphosphate (ADP), arachidonic acid (ASPI) and thrombin 
(TRAP) were used as agonists. Aggregability for each subject was tested after adding melatonin in two concentrations.
Results  In healthy individuals, melatonin inhibited platelet aggregation in both higher (10–5 M) and lower concentrations 
(10–9 M) induced by ADP, ASPI, and TRAP (p < 0.001, p = 0.002, p = 0.029, respectively). In DM patients, melatonin 
did not affect platelet aggregation in both concentrations induced by ADP, ASPI, and TRAP. Melatonin decreased platelet 
aggregation induced by ADP, ASPI, and TRAP significantly more in healthy individuals compared to patients with DM. 
(p = 0.005, p = 0.045 and p = 0.048, respectively).
Conclusion  Platelet aggregation was inhibited by melatonin in healthy individuals. In-vitro antiplatelet effect of melatonin 
in type 2 DM patients is significantly attenuated.
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Introduction

Acute myocardial infarction (AMI) is a leading cause of 
mortality and morbidity in the developed world. Depend-
ing upon the infarction size, 30-day mortality is up to 6.5% 
[1–3]. From the surviving patients, 10% will die within 
12 months and almost half of the patients will require rehos-
pitalization within one year [4, 5].

The incidence of AMI shows a circadian variation that 
peaks during morning hours continuously declines in the 
afternoon, and reaches a trough during the evening and 
night-time. The increased morning incidence of AMI is 
most likely caused by a rise in blood pressure, heart rate, 
vascular tone and prothrombotic activity [6–9]. Interestingly, 
in the population of patients with diabetes mellitus (DM), 
circadian variation of AMI is absent [10]. We hypothesized 
this could be caused by the inability of melatonin to inhibit 
platelets aggregation in DM.
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Melatonin is an endogenous hormone released primar-
ily by the pineal gland and is one of the key components 
of the human circadian system [11, 12]. Melatonin directly 
or indirectly affects many physiological functions including 
the immune system, body temperature, foetal development, 
metabolism, coagulation [13–17] and platelet aggregation 
[18–20]. Evidence shows that genetic variants in the mela-
tonin receptor as a result of single nucleotide polymorphisms 
are associated with atherosclerosis and the risk of myo-
cardial infarction (MI) [21–23]. The relationship between 
melatonin and DM is also the subject of extensive research. 
Melatonin supplementation has been shown to improve 
insulin resistance, leptin resistance, hyperinsulinaemia, 
hyperglycaemia and reduce HbA1c levels. Low levels of 
melatonin secretion were able to predict the onset of Type 2 
DM in women [24] and melatonin has been also studied as 
a potential drug in the therapeutic management of diabetic 
patients [25].

It is not known which platelet aggregation pathways are 
impaired by melatonin and if this effect is attenuated in DM. 
We designed a study to evaluate the effect of melatonin on 
platelet aggregation activated by arachidonic acid, adenosine 
diphosphate and thrombin in the blood of healthy individuals 
and in patients with type 2 DM.

Methods

The study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Ethics Committee of 
the National Cardiovascular Institute, Bratislava, Slovakia. 
Written informed consent was obtained from all participants.

Study population

Fifteen consecutive healthy adult individuals scheduled for 
blood donation were enrolled in the control normoglyce-
mic group and 15 consecutive adult outpatients with type 2 
DM on insulin were enrolled in the DM group. Exclusion 
criteria for both groups were treated with any antiplatelet, 
anticoagulant, or anti-inflammatory drug, smoking, present 
cancer, acute or chronic infectious disease, renal disease, 
pregnancy, history of any thrombotic cardiovascular dis-
ease, history of any platelet disorder or bleeding disorder 
and platelet count < 120 × 109/L.

Laboratory methods

In all participants, peripheral, fasting blood was taken 
from an antecubital vein in the morning after 30 min rest 
in a seating position. Blood was collected during the day-
time when melatonin concentrations are very low (below 

1 pg mL−1) [26]. These levels are negligible compared to 
night-time levels, which we mimicked in our study.

Blood for platelet counts was collected in 3.0 mL tubes 
containing K2EDTA and assessed by an automated haema-
tology analyser SYSMEX XT 4000i.

Blood for platelet aggregation analysis was collected in 
3.0 mL tubes containing hirudin and stored at room tempera-
ture for a minimum of 30 min and a maximum of two hours 
before analysis. Subsequently, blood samples were aliquoted 
and incubated with saline or melatonin in two different con-
centrations (10–5 and 10–9 M, respectively) for 10 min.

Platelet aggregation analysis was performed by mul-
tiple electrode aggregometry using the impedance-based 
Multiplate® Analyzer (Roche, Mannheim, Germany). Ara-
chidonic acid 15 mmol/L (ASPI), Adenosine diphosphate 
0.2 mmol/L (ADP) and thrombin-receptor-activating-peptide 
(TRAP-6) 1 mmol/L (TRAP) were used as agonists (ASPIt-
est, ADPtest and TRAPtest, Roche, Mannheim, Germany). 
Platelet aggregation levels are expressed as area under the 
curve (AUC) in Units (U) derived from the older AU * min 
(1U = 10 AU * min). Sample preparation and pipetting were 
done under standard laboratory conditions in laboratories 
in the Faculty of Natural Sciences, Comenius University, 
Bratislava. Measurement analysed by Multiplate® Analyzer 
is dependent on the hematocrit level and platelet count such 
that extreme values of these parameters may result in an 
imprecise assessment of platelet function. However, no 
extreme values in both hematocrit levels and platelet count 
were detected in any sample.

Statistical methods

Continuous variables are presented as sample means and 
standard deviations. The normality of data was assessed 
using a Shapiro–Wilk test and visually inspected on Q–Q 
plots. Repeated measures ANOVA was used to analyse con-
centration differences for each group and agonists separately. 
Student’s t test was used to compare differences in platelet 
aggregation response induced by ADP, ASPI, and TRAP 
with saline vs melatonin (10–5 M). Mixed linear model 
regression was used to analyse the effect of covariates (study 
group, age, sex and melatonin concentration) as well as the 
interaction of group (diabetic and control) and melatonin 
concentration on the platelet aggregation levels for each 
agonist separately.

Data were analysed using Python version 3.7.12 (https://​
www.​python.​org/) with appropriate libraries (for statistical 
analyses pingouin package version 0.5.0: https://​pingo​uin-​
stats.​org/).

https://www.python.org/
https://www.python.org/
https://pingouin-stats.org/
https://pingouin-stats.org/
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Sample size calculation

Platelet aggregation in the healthy population measured by 
Multiplate analyser was 68.6 ± 20.12 for ADP, 72.3 ± 18.08 
for ASPI and 104.6 ± 19.60 for TRAP, respectively [27]. 
Expected reduction in platelet aggregation in response to 
melatonin is 30% in healthy individuals and 0% in diabetic 
patients [18]. With a minimal relevant difference of 20 U, 
a level of significance of 5% (alpha) and a power of 90%, 
(1-beta) we needed 13 sample pairs for ADP. With a minimal 
relevant difference of 22 U, a level of significance of 5% 
(alpha) and a power of 90%, (1-beta) we needed 10 sample 
pairs for ASPI. And with a minimal relevant difference of 31 
U, a level of significance of 5% (alpha) and a power of 90%, 
(1-beta) we needed seven sample pairs for TRAP.

Results

Our study was composed of two groups. The healthy control 
group (n = 15) included 11 males and 4 females with a mean 
age of 31.67 (ranging from 19 to 44, SD ± 7.28). Patients in 
this group had no relevant medical history.

Diabetic group (n = 15) included 4 males and 11 
females with a mean age of 72.47 (ranging from 59 to 89, 
SD ± 10.12). Patients in this group had no relevant medical 
history. There was a statistically significant difference in age 
(p < 0.001) and sex (p < 0.001) between the groups (Table 1).

Since the data for all markers were normally distributed 
(ADP: W = 0.98, p = 0.25; ASPI: W = 0.99, p = 0.88; TRAP: 

W = 0.99, p = 0.67), we decided to use parametric statistical 
tests for subsequent analyses.

In healthy individuals, melatonin significantly inhibited 
platelet aggregation both in higher (10–5 M) and lower 
concentrations (10–9 M) induced by ADP (Fig. 1), ASPI 
(Fig. 2), and TRAP (Fig. 3). Repeated measures ANOVA 
demonstrated statistically significant reductions (ADP: 
p < 0.001, ASPI: p = 0.002, TRAP: 0.029).

In samples from patients with DM melatonin did not 
affect platelet aggregation both in higher (10–5 M) and lower 
concentrations (10–9 M) induced by ADP (Fig. 1), ASPI 
(Fig. 2), and TRAP (Fig. 3). Repeated measures ANOVA 
demonstrated no statistically significant reduction (ADP: 
p = 0.579, ASPI: p = 0.871, TRAP: p = 0.757).

The difference in platelet aggregation response induced 
by ADP, ASPI, and TRAP with saline vs melatonin 
(10–5 M) was significantly higher in healthy individuals 
compared to patients with DM (p = 0.005, p = 0.045 and 
p = 0.048, respectively) (Fig. 4).

Mixed linear model regression models for TRAP 
(Table 2), ASPI (Table 3) and ADP (Table 4) showed a sta-
tistically significant effect of the study group (control vs. 
diabetic, p < 0.001, p = 0.014 and 0.006, respectively), 10–5 
melatonin concentration (p = 0.01, p = 0.001 and p < 0.001, 
respectively), 10–9 melatonin concentration (p = 0.002, 
p = 0.001 and p = 0.007, respectively) and age (p < 0.001, 
p = 0.016 and p = 0.009, respectively) on platelet aggrega-
tion response. There was a statistically significant interac-
tion between study group and 10–5 melatonin concentration 
(p = 0.035, p = 0.037 and p = 0.02) on platelet aggregation 
response. There was a statistically significant interaction 
between the study group and 10–9 melatonin concentra-
tion on platelet aggregation response for TRAP and ASPI 
(p = 0.041 and p = 0.037, respectively) but not for ADP 
(p = 0.098). There was no statistically significant effect of 
sex on platelet aggregation response induced by TRAP, ADP 
and ASPI (p = 0.618, p = 0.857 and 0.491, respectively).

Table 1   Baseline data of diabetic and control group

Diabetic Control p value

Age 72.47 ± 10.12 31.67 ± 7.28 < 0.001
Female sex 73.33% 26.67% < 0.001

Fig. 1   The difference in platelet 
aggregation response between 
healthy individuals (control) 
and diabetic patients induced 
by ADP: saline, melatonin 10–5 
and melatonin 10–9 concentra-
tions. Data are presented as 
mean with 95% confidence 
interval. Control group—n = 15, 
diabetic group—n = 15. ADP 
adenosine diphosphate, AUC​ 
area under the curve
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Discussion

Our in  vitro study demonstrated that melatonin sig-
nificantly attenuates platelet aggregation induced 
by arachidonic acid, adenosine diphosphate and 

thrombin-receptor-activating-peptide in healthy patients’ 
whole blood. Blood was collected during the daytime 
when melatonin concentrations are very low, (below 
1 pg mL−1). These concentrations are negligible compared 
to night-time levels, which we mimicked in our study. 
Moreover, published studies show that daytime melatonin 

Fig. 2   The difference in platelet 
aggregation response between 
healthy individuals (control) 
and diabetic patients induced by 
ASPI: saline, melatonin 10–5 
and melatonin 10–9 concentra-
tions. Data are presented as 
mean with a 95% confidence 
interval. Control group—n = 15, 
diabetic group—n = 15. ASPI 
arachidonic acid, AUC​ area 
under the curve

Fig. 3   The difference in platelet 
aggregation response between 
healthy individuals (control) 
and diabetic patients induced by 
TRAP: saline, melatonin 10–5 
and melatonin 10–9 concentra-
tions. Data are presented as 
mean with a 95% confidence 
interval. Control group—n = 15, 
diabetic group—n = 15. TRAP 
thrombin, AUC​ area under the 
curve

Fig. 4   The difference in platelet 
aggregation response induced 
by ADP, ASPI, and TRAP 
with saline vs. melatonin 
(10–5 M). Control group—
n = 15, diabetic group—n = 15. 
* = p value < 0.05, ** = p 
value < 0.01. ADP adenosine 
diphosphate, ASPI arachidonic 
acid, TRAP thrombin, AUC​ area 
under the curve



2497Journal of Endocrinological Investigation (2023) 46:2493–2500	

1 3

levels do not significantly differ between nondiabetic indi-
viduals and diabetic patients [26]. This was true for higher 
(10–5 M) and lower (10–9 M) concentrations which are 
similar to the physiological concentrations in human blood 
[28]. In the whole blood of diabetic patients, melatonin 
was not associated with statistically significant differ-
ences in platelet aggregation. Finally, the attenuation of 
whole blood platelet aggregation induced by melatonin 

was significantly higher in healthy people compared to 
diabetic patients.

In the bivariate analysis, there was a statistically signifi-
cant difference in both age and sex between the two study 
groups. Mixed linear model regression was used to ana-
lyse the effect of these covariates on platelet aggregation 
induced by ADP, ASPI and TRAP. This analysis confirmed 
attenuated response to melatonin in diabetic patients in 

Table 2   Mixed linear model regression model for TRAP

Coef. coefficient, Std. Err. standard error

Coef. Std. Err. z P >|z| [0.025 0.975]

Intercept 39.798 12.993 3.063 0.002 14.332 65.264
Diabetes − 75.67 18.254 − 4.145 0 − 111.446 − 39.893
Melatonin concentration 10–5 − 9.667 3.735 − 2.588 0.01 − 16.987 − 2.346
Melatonin concentration 10–9 − 11.533 3.735 − 3.088 0.002 − 18.854 − 4.213
Sex 3.377 6.766 0.499 0.618 − 9.884 16.638
Diabetes and melatonin concentration 10–5 interaction 11.133 5.282 2.108 0.035 0.78 21.486
Diabetes and melatonin concentration 10–9 interaction 10.8 5.282 2.045 0.041 0.447 21.153
Age 1.3 0.349 3.728 0 0.616 1.983
Subject random effect 0.514 0.685 0.75 0.453 − 0.829 1.856

Table 3   Mixed linear model regression model for ASPI

Coef. coefficient, Std. Err. standard error

Coef. Std. Err. z P >|z| [0.025 0.975]

Intercept 45.994 13.551 3.394 0.001 19.434 72.553
Diabetes − 46.542 19.035 − 2.445 0.014 − 83.85 − 9.233
Melatonin concentration 10–5 − 8.867 2.685 − 3.302 0.001 − 14.13 − 3.604
Melatonin concentration 10–9 − 9.067 2.685 − 3.376 0.001 − 14.33 − 3.804
Sex 1.279 7.109 0.18 0.857 − 12.654 15.211
Diabetes and melatonin concentration 10–5 interaction 7.933 3.798 2.089 0.037 0.49 15.376
Diabetes and melatonin concentration 10–9 interaction 7.6 3.798 2.001 0.045 0.157 15.043
Age 0.881 0.366 2.406 0.016 0.163 1.599
Subject random effect 0.176 0.72 0.245 0.806 − 1.234 1.587

Table 4   Mixed linear model regression models for ADP

Coef. coefficient, Std. Err. standard error

Coef. Std. Err. z P >|z| [0.025 0.975]

Intercept 29.849 13.46 2.218 0.027 3.468 56.231
Diabetes − 51.757 18.908 − 2.737 0.006 − 88.816 − 14.697
Melatonin concentration 10–5 − 16.267 2.995 − 5.432 0 − 22.136 − 10.397
Melatonin concentration 10–9 − 8.133 2.995 − 2.716 0.007 − 14.003 − 2.264
Sex 4.851 7.049 0.688 0.491 − 8.964 18.667
Diabetes and melatonin concentration 10–5 interaction 13.2 4.235 3.117 0.002 4.899 21.501
Diabetes and melatonin concentration 10–9 interaction 7 4.235 1.653 0.098 − 1.301 15.301
Age 0.944 0.363 2.601 0.009 0.233 1.656
Subject random effect 0.325 0.714 0.455 0.649 − 1.074 1.723
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all experiments except for lower (10–9 M) concentration 
for ADP. Sex was not a significant contributor contrary 
to previously reported data. A review study by Carazo 
et al. shows that out of 78 reviewed papers 68 reports a 
sex-related difference in platelet aggregation [29]. Higher 
platelet reactivity in women is probably affected via multi-
ple COX‐1–dependent and COX‐1–independent pathways 
[30]. On the other hand, age was a significant contributor 
to platelet aggregation also in this multivariate analysis. 
The effect of aging on platelet aggregation is complex and 
probably influenced by many factors including oxidative 
stress, age-related plasma membrane modifications, altera-
tions in platelet-serotonin system, vascular prostaglandin 
secretion, transcriptome, hormonal changes and the effect 
of coexisting diseases [31].

Previous studies reported that melatonin inhibits plate-
let aggregation that is induced by ADP or ASPI [19, 20], 
and we demonstrated that melatonin also inhibits aggre-
gation induced by thrombin. However, there are no mela-
tonin receptors in thrombocytes [32], and the antiplatelet 
mechanism of melatonin is unknown. The three most impor-
tant activators of platelet aggregation are ASPI, ADP and 
thrombin which were used in our study as prothrombotic 
inductors. Because melatonin in healthy people attenuates 
aggregation in all three of these activators, there is little 
likelihood that melatonin exerts its antiplatelet effects via 
one of these pathways. Besides known effects of melatonin 
on platelet aggregation a study on animal models by Hajam 
et al. demonstrated also that melatonin treatment restores 
impairments in the antioxidative system, serum electrolytes, 
cellular total protein, glycogen content and histoarchitecture 
of liver and kidney cortex caused by diabetes. The novelty 
of our study lies in the previously undescribed altered effect 
of melatonin in diabetic patients [33].

Except for triggering melatonin receptors, melatonin also 
activates proliferator-activated receptor (PPAR) α and γ 
[34–37]. It is known that PPAR stimulation causes increased 
intraplatelet cAMP, negative regulation of αIIbβ3 integri-
nand subsequent inhibition of platelet aggregation [38, 39].

One study reports that melatonin suppresses platelet 
aggregation via activation and restoration of PPARγ in 
platelets, which play an important role in FUNDC1‐required 
mitophagy, mitochondrial energy production, platelet hyper-
activity, and cardiac I/R injury [40]. This might explain the 
antithrombotic effects of melatonin in healthy participants.

In our in vitro study melatonin did not affect platelet 
aggregation in patients with DM. The night-time antiplate-
let mechanism of melatonin is missing in DM patients and 
might be responsible for their absence of AMI circadian 
variation.

One explanation for this phenomenon is the alteration of 
the PPAR signalling pathway seen in diabetes and hypergly-
caemia. The transcriptional network mediated by FoxO1/

PPARγ functions as a key element in pancreatic β-cell adap-
tation to metabolic stress with important regulatory control 
over glucose and mitochondrial metabolism, prodifferentia-
tion, incretin effects, and β-cell compensation to obesity and 
insulin resistance. Failure of this response is responsible for 
the onset or exacerbation of diabetes. Furthermore, exces-
sive expression of pro-inflammatory cytokines suppresses 
PPARγ activity causing abnormalities of the wnt/β-catenin, 
lysosomal acid lipase, plasminogen activator system, inflam-
matory and cell cycle pathways [41, 42].

This hypothesised relationship is further supported by the 
results from clinical trials of PPAR agonists. For example, 
PPARγ activation by pioglitazone reduced the incidence of 
AMI or stroke in patients with insulin resistance however, 
according to the prespecified sub-analysis the beneficial 
effect was present especially in patients with lesser grade 
insulin resistance (HOMA-IR < 4.6) and lower glycated hae-
moglobin concentrations (HBA1C < 5.7%) [43]. On the other 
hand, when rosiglitazone was given to patients with DM, 
a significant increase in AMI risk observed [44]. A simi-
lar situation was observed with fibrates which are PPARα 
agonists. In patients without DM, gemfibrozil showed sig-
nificant reductions in MI and stroke [45, 46]. However, in 
patients with DM fenofibrate had no effect on these throm-
botic events[47, 48].

This is the first study to demonstrate in vitro that the anti-
platelet effect of melatonin in patients with type 2 DM is 
significantly attenuated, possibly explaining their absence of 
circadian variation in AMI incidence. Whether this finding 
contributes to the etiopathogenesis of the prothrombotic state 
in patients with DM merits further research. Understanding 
the exact mechanism of platelet resistance to melatonin in 
diabetic patients would permit a better understanding of the 
disease pathophysiology and also the consideration of new 
therapeutic and diagnostic options such as therapeutically 
targeting the dysfunctional signalling pathways in diabetic 
patients or testing the degree of resistance to melatonin to 
stratify patient risk. A precise understanding of PPAR path-
way and the influence of individual signalling molecules 
would allow using PPAR agonists to reduce the risk of MI 
and stroke in precisely defined patient groups.

Study limitations

This study was performed as an in vitro experiment and 
although physiological concentration (M-9) of melatonin 
was used the results cannot be directly extrapolated to 
in vivo pathophysiology. Patients were not matched in the 
study groups therefore, other factors besides the presence 
of type 2 diabetes mellitus and age such as menstrual cycle, 
hormonal contraception, or differences in body mass index 
might have affected the platelet aggregability.
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