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Abstract
Purpose The hypothalamic–pituitary–adrenal (HPA) axis exerts many actions on the central nervous system (CNS) aside 
from stress regulation. Glucocorticoids (GCs) play an important role in affecting several cognitive functions through the 
effects on both glucocorticoid (GR) and mineralocorticoid receptors (MR). In this review, we aim to unravel the spectrum 
of cognitive dysfunction secondary to derangement of circulating levels of endogenous and exogenous glucocorticoids.
Methods All relevant human prospective and retrospective studies published up to 2022 in PubMed reporting information 
on HPA disorders, GCs, and cognition were included.
Results Cognitive impairment is commonly found in GC-related disorders. The main brain areas affected are the hippocam-
pus and pre-frontal cortex, with memory being the most affected domain. Disease duration, circadian rhythm disruption, 
circulating GCs levels, and unbalanced MR/GR activation are all risk factors for cognitive decline in these patients, albeit 
with conflicting data among different conditions. Lack of normalization of cognitive dysfunction after treatment is potentially 
attributable to GC-dependent structural brain alterations, which can persist even after long-term remission.
Conclusion The recognition of cognitive deficits in patients with GC-related disorders is challenging, often delayed, or 
mistaken. Prompt recognition and treatment of underlying disease may be important to avoid a long-lasting impact on GC-
sensitive areas of the brain. However, the resolution of hormonal imbalance is not always followed by complete recovery, 
suggesting irreversible adverse effects on the CNS, for which there are no specific treatments. Further studies are needed to 
find the mechanisms involved, which may eventually be targeted for treatment strategies.

Keywords Cognition · Brain · Mineralocorticoid receptor · Glucocorticoid receptor · Cushing syndrome · Adrenal 
insufficiency

Introduction

The hypothalamic–pituitary–adrenal (HPA) axis exerts many 
actions on the central nervous system (CNS) aside from 
stress regulation. Indeed, corticotropin-releasing hormone 
(CRH) fibers in the paraventricular nucleus of the hypothala-
mus also project to the brain stem and non-hypophysiotropic 

CRH neurons are abundant elsewhere, primarily in brain 
areas involved in sensory information processing (i.e., insu-
late cortex, parabrachial and solitary tract nuclei), emotional 
processing (i.e., amygdala, substantia nigra, and cingulate 
cortex), autonomic nervous system regulation (i.e., locus 
coeruleus), motor control (i.e., insulate cortex, substantia 
nigra), and cognitive functioning (i.e., pre-frontal cortex, 
substantia nigra) [1]. CRH also modulates behavioral activi-
ties concerning anxiety, mood, arousal, locomotion, reward, 
and feeding [2, 3], and increases sympathetic activation. 
Many of the non-hypophysiotropic behavioral and auto-
nomic functions of these peptides can be viewed as comple-
mentary to activation of the HPA axis in the maintenance of 
homeostasis under exposure to stress (e.g., immune, cardiac, 
gastrointestinal, and reproduction effects) [4]. Hyperactiv-
ity of the HPA axis is a common neuroendocrine finding in 
affective disorders [2, 5], and the activation of central CRH 
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pathways is a critical neurobiological substrate of anxiety 
and depressive states [3, 6]. The normalization of HPA regu-
lation is highly predictive of successful treatment for these 
conditions.

Glucocorticoid (GC) secretion is regulated via a nega-
tive feedback mechanism, similar to the other hormonal 
axes. However, severe neurogenic stress and a large amount 
of CRH secreted in response to various stimuli can break 
through the feedback inhibition mediated by GCs. A higher 
level of feedback control is exerted by GC-responsive neu-
rons in the hippocampus that project in the hypothalamus, 
determining the set point of pituitary responsiveness to GCs 
[7].

In this review, we describe the physiology governing the 
interaction between GCs, mineralocorticoids (MCs), and 
cognitive function, with the aim of unraveling the spectrum 
of cognitive dysfunction in different HPA-axis derangements 
involving endogenous and exogenous GCs’ secretion pat-
terns, such as Cushing’s syndrome (CS), Adrenal insuffi-
ciency (AI), Congenital Adrenal Hyperplasia (CAH), and 
exogenous GCs (eGCs) treatment (see Table 1).

Physiology of glucocorticoids in the brain

The kinetics of GC secretion follows two levels of control: 
a circadian rhythm, represented by extensive and pulsatile 
oscillations, on to which an ultradian rhythm is superim-
posed, interspersed within the daily kinetics with a recur-
rence of approximately one peak per hour, whose average 
amplitude influences the size of the major circadian fluc-
tuations. Fluctuations in circulating GC correlate with the 
effects of hormones on target tissues. This pattern of GC 
secretion (rhythmic binding and dissociation of hormones 
from their receptors and pulsatility) is defined by the ultra-
dian rhythm [8, 9]. Other than endogenous, eGCs, and other 
steroids can access the brain through the blood–brain barrier 
[10]. In the brain, GCs bind two different receptors: type I 
(the mineralocorticoid receptor—MR, so named because it 
binds aldosterone and GCs with high affinity) and type II 
(glucocorticoid receptor—GR, which has low affinity for 
MCs) [7, 11]. GRs are widely expressed throughout the 
brain, in neurons and glial cells, with high densities in lim-
bic areas, monoaminergic neurons of the brain stem, and 
paraventricular and supraoptic nuclei of the hypothalamus, 
where they regulate the biosynthesis and release of vasopres-
sin and CRH. The distribution of MRs is restricted to neu-
rons of fewer brain areas: the limbic system (hippocampal 
formation, septal area, amygdala, and olfactory nucleus), 
sensory and motor neurons of brain stem and brain cortex 
[12]. The spatial distribution of GRs and MRs in the brain 
is summarized in Fig. 1.

While the GR has a high selectivity for GCs, MR is a 
promiscuous receptor capable of interacting with multiple 

ligands. Despite its high affinity for cortisol (tenfold higher 
compared to GRs [13]) and aldosterone, it can also bind 
progesterone, deoxycortisol, and deoxycorticosterone [13]. 
MR activation within the brain has been shown to mediate 
the stress-induced adaptive shift from a “cognitive” memory 
(mediated by hippocampus) to a more rigid, “habit-like” 
memory (mediated by striatum) [14, 15], reflecting the lim-
ited-resources condition of the “fight or flight” paradigm, in 
which the system is conceived to rapidly recall and enable 
simple stimulus responses to face a stressful situation.

The complex interaction between steroid hormones and 
the areas responsible for several cognitive domains within 
the brain is coordinated by specific enzymatic activities and 
enzyme/receptor zonation.

The ligand specificity of the MR, which determines its 
activation by either GCs or aldosterone in various tissues, 
is mediated by the 11-beta-hydroxysteroid dehydrogenase 
(11β-HSD) enzymes [16]. There are two different isoforms 
of 11β-HSD: type 1 and type 2. The type 1 enzyme is widely 
expressed in key GC target organs (adipose tissue, skeletal 
muscle, and liver), including the brain [17, 18]. It predomi-
nantly converts inactive cortisone to active cortisol [19], thus 
amplifying local GC bioavailability. Conversely, 11β-HSD 
type 2 inactivates cortisol to cortisone [20]. The primary role 
of 11β-HSD type 2 is to protect the MR from inappropriate 
activation by GCs [21] in mineralocorticoid sensitive tis-
sue, such as the kidney, placenta, colon, and salivary glands 
by converting them in their 11-oxo metabolites, allowing 
aldosterone to bind to MR despite its 100–1000-fold lower 
concentration in the bloodstream, compared to GCs [22].

The different expression of these two isoforms within 
the brain areas impacts the activation of both MR and GR. 
Indeed, only 11β-HSD type 1 is expressed in hippocampal 
cells and limbic structures and, therefore, MRs are usually 
saturated by physiological cortisol concentrations in these 
areas, making them crucial for the emotional and memory 
processes [23]. Some brain areas also express 11β-HSD 
type 2, making them sensitive to aldosterone, such as the 
nucleus of solitary tract, which is implicated in modulat-
ing the behavioral response (including appetite, mood, and 
arousal) to fluctuations of sodium concentrations [24].

The regional distribution of MR and GR within the brain 
adds further complexity, suggesting that the brain response 
to GCs is extremely tightly regulated with a delicate between 
substrate availability and MR and/or GR activation. Spe-
cifically, during physiological basal and low pulsatile GCs 
conditions, GCs preferentially bind and activate the MR, 
resulting in an increased MR/GR activation ratio. This 
dynamic has a predominantly neuro-projective role. In fact, 
basal MR signaling contributes to the stabilization of excita-
tory postsynaptic currents, generating a negative feedback 
signal directed to the hypothalamus, limiting detrimental GC 
effects and mediating behavioral adaptation by proactively 
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regulating the sensitivity of the neuroendocrine stress-
response system [25]. Indeed, blocking MR activity with 
spironolactone has been shown to impair selective attention 
and visuo-spatial memory in healthy men [26], whereas MR 
stimulation with fludrocortisone improved spatial memory 
[27]. In contrast, when GC bioavailability increases beyond 
the saturating capacity of the MR receptors, as happens 
during the stress response, GCs bind to the otherwise inac-
tive low-affinity GR, causing an inversion in the MR/GR 
ratio (i.e., a reduction of the MR/GR activation ratio) which 
allows the gradual recovery from stress during reactive mode 
[12]. However, chronic and prolonged stress may promote 
an excessive reduction of the MR:GR ratio [28, 29]. This 
results in the progressive loss of hippocampal ability to exert 
negative feedback on the HPA axis and phenomena of mala-
daptive synaptic plasticity. The effects of GR receptor acti-
vation on neurogenesis and the reduced neuroprotective MR 
signaling affect the reversibility of the functional disorder, 
precipitating the appearance of the pathological phenotype 
[30, 31].

In the CNS, gene expression regulation by GCs is most 
significant in the areas where neurogenesis occurs, even in 
adulthood. Neuronal proliferation and differentiation corre-
late inversely with the central bioavailability of GCs: in the 
presence of reduced concentrations of cortisol and, therefore, 
in conditions of activation of the MR receptors alone, higher 
growth and differentiation rates can be documented. How-
ever, excess central bioavailability of cortisol leads to GR 
activation and precipitates a reduction in neurogenesis [32]. 
Numerous pathological and para-physiological conditions 
can, by increasing cortisol levels, affect adult neurogenesis: 

among these, all the endocrine diseases causing alteration 
in GC secretion patterns. These might be responsible for an 
imbalance between GR and MR activation in the brain, lead-
ing to detrimental effects on cognitive function.

Cushing’s syndrome and cognition

Cushing’s syndrome (CS) is a severe, chronic, and life-
threatening disease caused by prolonged hypercortisolism, 
which can be endogenous or exogenous. Endogenous hyper-
cortisolism can result from ACTH-secreting tumors—either 
pituitary (Cushing’s Disease, CD) or extra-pituitary (ectopic 
CS) [33]—or ACTH-independent increase in adrenal pro-
duction due to bilateral gland hyperplasia or tumoral lesions 
[34]. Of note, moderate hyperactivity of the HPA axis can 
also derive from adrenal incidentalomas presenting with 
mild autonomous cortisol secretion (MACS) and non-neo-
plastic hypercortisolism (NNH) states (including chronic 
alcoholism, polycystic ovary syndrome, anorexia nervosa, 
and psychiatric disorders) [35], resulting in partial clini-
cal and/or biochemical overlap with overt CS [36]. Long-
standing exposure to GC excess cause multiple medical 
comorbidities, most notably metabolic syndrome, increased 
cardiovascular risk, immune and musculoskeletal disorders, 
subfertility, and dermatological manifestations [37]. Neu-
ropsychiatric disorders are common in patients with CS, 
the most frequent being major depression (50–81%) and, 
to a lesser extent, anxiety (66%) and bipolar disorder (30%) 
[38]. Cognitive impairment (sometimes also called “steroid 
dementia syndrome”) is another common finding in patients 
with CS, which significantly impairs patients’ quality of life 

Fig. 1  The spatial distribution 
of glucocorticoid and mineralo-
corticoid receptors in the brain. 
Created with BioRender.com 
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[39]. Its prevalence is extremely variable, ranging from 15 
to 83% of cases [40, 41].

Cognitive decline and mood disorders often overlap in 
patients with CS [40]. A recent prospective study [42] dem-
onstrated that the improvement in the cognitive impairment 
in patients with CD after trans-sphenoidal surgery parallels 
(and perhaps depends on) the improvement in depressive 
scores, thus highlighting the close relationship between 
mood disorders and cognition [42]. Indeed, 4 weeks of 
antidepressant therapy (such as serotonin re-uptake inhibi-
tors) proved effective in improving cognitive function (e.g., 
memory, orientation, spatial navigation, and verbal fluency) 
in adolescents with CD [43].

However, cognitive impairment can often occur as a sepa-
rate neurological disorder in CS [38, 44]. Memory is the 
domain that is most frequently affected (86% of cases) [45] 
due to the density in GR and lack of 11β-HSD type 2 activity 
in hippocampal neurons, making them highly sensitive to 
HPA-axis hyperactivity. Indeed, moderate memory impair-
ment has been reported in patients with CD [46], regardless 
of associated neuropsychiatric comorbidities. Up to two-
thirds of patients with active CS report difficulties with the 
registration of new information, forgetfulness for appoint-
ments and locations of objects, as well as shortened attention 
span, reduced concentration ability, and impaired compre-
hension abilities [45, 47, 48]. In addition, worse perfor-
mance on visual and spatial information [49, 50], attention, 
executive functioning, and non-verbal aspects of memory 
[50] have also been described. Although the data are not 
all consistent [46], a direct relationship between ACTH and 
cortisol levels with the severity of neuropsychiatric impair-
ment has been described [44, 51].

A recent meta-analysis [47] including 294 patients with 
CS also confirmed cognitive decline in seven out of eight 
cognitive domains. Memory and learning-related functions 
(both visual and verbal) were the most impaired, along with 
the general intelligence and language skills domains. Other 
deficits concerned executive and visuo-spatial functions, as 
well as attention and processing speed [47].

Recently, the possibility that even mild hypercortisolism 
might associate with impaired cognitive function has been 
questioned. A small multicentre study evaluating cognitive 
function in 23 patients with MACS found differences in 
some (verbal fluency, symbol coding, and executive func-
tion) but not all (verbal and working memory) cognitive 
domains [52]. However, very recently, a prospective study 
on 63 patients with adrenal incidentalomas described worse 
performances regarding working memory, visuo-spatial 
domains, and overall cognitive function in patients with 
MACS compared to those with non-functioning adrenal 
adenomas. Multivariate linear regression also showed post-
DST cortisol as a risk factor for cognitive impairment [53]. 
Albeit conflicting, these preliminary findings suggest that 

mild hypercortisolism might affect mental health and cogni-
tive status, although its impact has yet to be clearly investi-
gated. Moreover, a direct comparison between patients with 
MACS and overt CS has never been performed, underlining 
the urgent need for further prospective studies to elucidate 
the contribution of hypercortisolism degree on cognitive 
impairment.

Interestingly, the pattern of cognitive deficits in CS is 
similar to that described with aging [54], with impairment 
in general intellective capacity and poorer performances in 
executive functions, spatial memory, and attention tasks. 
This suggests that cortisol excess might exhibit an “aging-
like” effect, further exacerbating the cognitive impairment 
typical of older age [54]. Similarly, higher plasma cortisol 
levels have been linked to faster cognitive deterioration in 
patients with Alzheimer’s Disease, and researchers are ques-
tioning whether alterations in genes involved in the regula-
tion of the GC system may influence the risk for this con-
dition. The study showed that patients carrying the apoE4 
allele (a known risk factor for Alzheimer’s Disease) have 
elevated cerebrospinal fluid cortisol levels [55], reinforcing 
the hypothesis that hypercortisolism accelerates hippocam-
pal damage and leads to a dementia-like cognitive phenotype 
[56]. Moreover, a rare haplotype in the region of the gene 
encoding 11β-HSD has been found to confer a sixfold higher 
risk for sporadic Alzheimer’s Disease [57], likely increasing 
neuronal GC-associated neurotoxicity.

From a morpho-structural point of view, early magnetic 
resonance imaging (MRI) studies linked hypercortisolism 
and hippocampal atrophy in patients with CS [58]. Since 
then, hippocampal atrophy has been reported as the most 
common finding in patients with active CS [47, 59–61], 
although global brain volume loss [62] and atrophy [48, 59, 
63], smaller volumes in the cerebellar cortex [64], and the 
pre-frontal regions have also been observed [65]. Recently, 
decreased hippocampal volume (HV) was described only in 
patients whose memory scores were impaired [48], suggest-
ing that hippocampal atrophy likely reflects higher disease 
severity and a more advanced state of cognitive dysfunction. 
Therefore, MRI assessment of HV may underestimate the 
neurocognitive consequences of CS [66].

Aside from HV, a negative correlation between urinary-
free cortisol and subcortical gray matter and cerebral white 
matter MRI intensity has been reported [67]. Changes in 
white/gray matter (consistency, intensity, and homogene-
ity), as well as axonal and myelin damage at MRI, might 
precede detectable changes in brain volume [67] in CS, as 
demonstrated in patients with both active and cured CS [68, 
69]. Interestingly, these alterations associate with worse 
information processing speed [70] and overall cognitive per-
formance scores [69]. Recently, the use of advanced MRI 
sequences [71] revealed specific microstructural changes 
involving hippocampus/parahippocampal areas, which 
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correlates with the clinical severity of CD and the degree of 
cognitive impairments [71].

Notably, functional and structural alterations similar 
to those found in CS have also been identified in states of 
NNH. HPA-axis hyperactivation has been hypothesized to 
play a role in the “alcohol dementia”, the cognitive defi-
cits observed during and after chronic alcohol consumption 
withdrawal [72]. The underlying mechanisms are not entirely 
clear, but, considering the global brain volume alterations 
frequently described during alcohol intake (mainly involving 
white frontal matter [72], white matter microstructure [73], 
and hippocampal volume [74]), a glucocorticoid-mediated 
toxicity at the hippocampal level has been suggested [75]. 
Among the main causes of NNH, major depressive disor-
der often presents cognitive dysfunction as a core feature 
of the clinical spectrum [76]: explicit memory and execu-
tive functions are the most affected cognitive domains, with 
the hippocampus being the main impaired brain area [77]. 
Similarly, anorexia nervosa has been linked with impaired 
cognition [78], decreased HV [79], and altered functional 
connectivity, especially in the corticolimbic circuit, which is 
deeply involved in cognitive control [80]. Notably, in these 
patients, serum cortisol levels are inversely related to hip-
pocampal and gray matter volumes [79].

In patients with CS, a prompt diagnosis of cognitive dys-
function is crucial as clinical manifestations often precede 
brain anomalies detected by imaging [81]. Longer disease 
duration and older age are associated with limited recovery 
of brain functioning, whereas earlier diagnosis and rapid 
normalization of hypercortisolism appear to reduce the pro-
gression of brain damage and functional impairments [81]. 
According to a recent meta-analysis [47], the majority of 
impaired cognitive domains undergo a significant improve-
ment following surgery. Similarly, medical treatment of 
hypercortisolism, either with GC-receptor antagonists or 
steroidogenesis inhibitors, can improve psychiatric symp-
toms within weeks of therapy [82–84].

The timing and degree of the reversibility of cognitive 
dysfunction in CS are still a matter of debate. Some stud-
ies have reported both cognitive and brain morphological 
improvement following treatment [85–89]. A recovery in 
verbal fluency/recall and HV increase has been documented 
18 months after medical treatment, with younger age being 
a predictor for functional recovery [88]. Endorsing these 
data, middle-aged (< 60 years), comorbidity-free patients in 
long-term (10 years) remission from CD exhibited the same 
hippocampus and pre-frontal cortex-dependent memory 
functioning when compared to healthy controls. While these 
results should be interpreted with caution due to a poten-
tial selection bias, it could be argued that the persistence of 
cognitive impairment after CD remission could be partially 
attributable to other comorbidities that might potentially 
affect cognition (i.e., diabetes, age, cardiovascular diseases, 

hormonal disbalance, and psychiatric disorders), further 
highlighting the importance of shortening the exposure to 
hypercortisolism and its comorbidities to preserve cognitive 
functioning [90].

Nevertheless, several studies have suggested that cogni-
tive function impairment might not completely resolve fol-
lowing surgical treatment of CS [91]. Persistent cognitive 
impairment (attention, spatial orienting, alerting, working 
memory, verbal fluency, reading speed [92], and trail-mak-
ing [93]) has been described after long-term remission in CD 
[92, 94] and adrenal CS [92], without differences between 
different etiologies [92]. To date, no accurate predictors of 
cognitive impairment recovery following remission have 
been identified.

The extent of the reversibility of structural brain abnor-
malities in patients with CS is still a matter of debate. The 
reduction of brain and HV in patients with active CD has 
been described as partially reversible after cure in some [95], 
but not all studies [48], and the amelioration of hippocampal 
morphology has been associated with symptom improve-
ments [96].

Similarly, in patients with NNH, the resolution of the pri-
mary noxa usually associates with partial improvement of 
cognitive functioning, although this is not often mirrored by 
restoration of physiological brain morphology [73, 79, 97].

Decreased cortical thickness [98] and smaller volumes 
in the anterior cingulate cortex [99] can persist after long-
term CS remission, but an inverse correlation with disease 
duration suggests a direct link between the prolonged expo-
sure to GC excess and the alterations of brain structures 
involved in emotional and cognitive processes [100]. Indeed, 
a recent study including young patients (< 32 years) with 
short disease duration (< 3 years) has demonstrated a rapid 
and complete recovery (within 3 months of surgical treat-
ment) of brain volume loss observed in the active phase of 
the disease [101]. New research approaches using functional 
MRI spectroscopy [102] are being used to explore neuronal 
vitality markers within the hippocampal area and their pos-
sible role in reversing hippocampal alterations.

It must be noted that successful treatment of CS can be 
followed by iatrogenic adrenal insufficiency, which is often 
transitory and promptly replaced with GC therapy. Current 
literature assessing the reversibility of cognitive and brain 
structure abnormalities following CS treatment is rather 
heterogeneous, with studies including hypocortisolemic 
[91], eucortisolemic [65], or mixed [88] cohort of patients. 
Whether the post-treatment serum cortisol fluctuations might 
shape cognitive recovery remains largely underexplored.

In conclusion, cognitive impairment is a common finding 
in patients with active CS and is directly related to corti-
sol levels and the duration of hypercortisolism. Long-term 
exposure to elevated cortisol levels affects several cognitive 
domains, including memory, verbal intellectual skills, and 
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learning, reflecting a solid hippocampus and neo-frontal cor-
tex involvement. Lack of complete normalization of cogni-
tive functioning after treatment is likely attributable to GC-
dependent structural brain alterations, which, if present at 
diagnosis, generally persist even after long-term remission.

A summary of the current evidence for cognitive function 
in CS is shown in Table 1 and Supplemental Table 1.

Adrenal insufficiency and cognition

Adrenal insufficiency (AI) is a relatively rare endocrine dis-
order with multiple causes that can be divided into primary 
(adrenal), secondary (pituitary), and tertiary (hypothala-
mus or eGC treatment) forms. Each form of AI has distinc-
tive causes with implications for treatment and follow-up. 
Patients with primary AI require GC and MC replacement 
therapy, whereas individuals with secondary and tertiary AI 
usually necessitate only GC replacement [103–105]. If left 
untreated, AI is a life-threatening condition.

Patients with AI exhibit a broad spectrum of non-specific 
symptoms (e.g., fatigue, weakness, mental straining, and 
malaise) [106–108], and therefore, the diagnosis of psychi-
atric conditions is challenging, often delayed or mistaken 
[109].

Cortisol deficiency is known to induce many neuropsy-
chiatric alterations, such as depression, delirium, and delu-
sional ideas [110], that generally reverse after appropriate 
GC treatment. However, a few studies investigated cognitive 
function in patients with AI.

Compared to matched healthy controls, impaired declar-
ative memory [111–114], poor performances in episodic 
memory [111], and verbal memory and learning [114] have 
been reported in patients with AI, despite stable replacement 
therapy. Worse performances in verbal and visual memory 
tasks [115], as well as some executive functions (including 
attention-related tasks [116] and processing speed) have also 
been observed, although some data are conflicting [113, 115, 
117]. Conversely, no significant differences have been found 
with respect to concentration, working memory, and visuo-
spatial functioning [111, 114].

The cognitive impairment found in AI patients is thought 
to be due to multiple cooperating pathogenic factors. A 
recent meta-analysis including more than 500 patients 
reported that both increased and decreased GCs levels might 
be responsible for impaired hippocampal-dependent memory 
and cognitive function [118]. In support of this hypothesis, 
the inhibition of cortisol production via metyrapone admin-
istration caused memory impairment in healthy patients, 
which was reversed after hydrocortisone treatment [119]. 
Furthermore, hypoadrenal patients who have experienced 
a long diagnostic delay and consequent prolonged exposure 
to cortisol deficiency have worse cognitive performance, 
notably declarative memory and processing speed [111]. 

Although there is some compelling evidence suggesting that 
circulating serum cortisol levels are an important contribu-
tor, the actual impact of cortisol deficiency has been ques-
tioned in a recent study, in which patients who omitted their 
morning hydrocortisone replacement doses did not report 
cognitive dysfunction [115].

In addition to absolute cortisol levels, both the circadian 
and ultradian rhythms have an important role to play [120]. 
Indeed, patients with AI generally experience an altered cir-
cadian profile of cortisol levels, ranging from low basal con-
centrations to supraphysiological peaks following acute GC 
administration. As already discussed, physiological cortisol 
levels influence cognitive function through a fine regula-
tion of the dynamic balance between MR and GR activation 
within the brain. However, excessive cortisol fluctuations 
during replacement regimens might affect MR/GR activa-
tion ratio, leading to impaired cognition in patients with AI 
[121–123]. MR activation has been linked to the ability to 
learn new information, whereas GR activation is generally 
associated with memory storage and retrieval [121]. Albeit 
dedicated pharmacodynamics studies aiming to find the dose 
of MC able to elicit effects on cognitive functions have never 
been performed, there are multiple evidences (in healthy 
subjects as well as in patients with AI) demonstrating that 
fludrocortisone administration at doses equal or higher than 
those employed in clinical practice (0.1–0.4 mg per day) 
causes high MR occupation and improves different domains 
of memory tasks (verbal [124–126], working [126, 127], 
and visuo-spatial memory [128]). However, attention and 
executive functions were impaired during low MR occupa-
tion, even after a single omission of a fludrocortisone daily 
dose [124].

In this context, taking into account the impact of GCs on 
brain regions, such as the hippocampus and the pre-frontal 
cortex, the importance of using physiological total daily GC 
dose in a circadian fashion is crucial. This has to be taken 
into account both from a functional and structural point of 
view [129, 130], as degeneration of hippocampal neurons 
[131], and related impaired performance on declarative 
memory tasks [132] have been described in AI patients. 
Moreover, higher hydrocortisone replacement doses have 
been associated with worse cognitive function, mainly 
impacting attention, executive function, visual and motor 
tasks [133], as well as short-term memory [134]. Notably, 
these cognitive domains are closely linked to the hippocam-
pus, a region exhibiting the highest density of GRs and MRs, 
and therefore particularly vulnerable to fluctuations in cor-
tisol levels.

The role of disease duration has been proposed as a 
potential risk factor for cognitive dysfunction in AI, but 
studies have reported conflicting results and should be 
interpreted with caution due to the small sample size 
and follow-up duration. Longer disease duration that was 
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associated with impaired verbal learning [115] and pro-
cessing speed [111] and prolonged hydrocortisone treat-
ment was found to negatively affect hippocampal structure 
and function [131]. However, these findings were not con-
firmed in later studies [133, 134] and require additional 
investigation.

A recent review of the literature underlined the concept 
that cognitive impairment is closely associated with sleep 
disturbances in patients with AI [122]. Hypoadrenalism 
is associated with poor sleep quality [135, 136], and sleep 
disturbances are reported in up to 34% of patients [135]. 
Sleep plays critical roles in memory consolidation [137, 
138], a process starting during slow wave sleep, in which 
HPA-axis suppression allows the retainment of memo-
ries acquired throughout the day [139]. Cortisol ensures 
initiation and transition between different sleep stages 
[140–142]. Its physiological nadir occurs during the first 
hours of nocturnal sleep and allows predominant MR acti-
vation in the brain, which is crucial for the consolidation 
of declarative memories. It would be anticipated that any 
impairment in the normal circadian rhythm would be det-
rimental to this process [143]. For instance, night cortisol 
levels might be too low to activate the MR in patients 
with AI. Accordingly, impaired declarative memory reten-
tion associated with poor sleep quality has been described 
in patients with AI compared to healthy controls [144]. 
Despite stable replacement therapy, patients with AI often 
report reduced quality-of-life outcomes, notably related to 
sleep disturbances and other cognitive dysfunction (mem-
ory impairment and affective disorders among the others) 
[112, 135, 145].

Several studies have investigated the impact of different 
replacement regimens on sleep and cognitive functioning 
in this context. Albeit it generally fails to mimic normal 
circadian rhythm [146], HC replacement therapy ensures 
a more consolidated sleep pattern [147], as opposed to GC 
deprivation which results in poor quality of sleep [136, 147]. 
Higher HC doses at night, multiple daily HC administra-
tions, and circadian rhythm disruption [117, 148] all lead to 
HPA-axis dysregulation and sub-optimal MR/GR activation 
[121], which in turn leads to poor sleep quality and cognitive 
impairment [149].

In conclusion, mild cognitive impairment is common 
in patients with AI, mainly affecting declarative memory, 
verbal learning, and processing speed. From a pathogenic 
perspective, there are multiple factors that have significant 
contributions to its development. Ultradian cortisol fluctua-
tion, disruption of circadian rhythm, unbalanced MR/GR 
activation, and sleep disturbances can all affect cognition 
in AI [60]. The role of disease duration, as well as that of 
replacement dosing, is still a matter of debate.

A summary of the current evidence for cognitive function 
in AI is shown in Table 1 and Supplemental Table 2.

Congenital adrenal hyperplasia and cognition

Congenital adrenal hyperplasia (CAH) includes a group of 
autosomal recessive disorders characterized by enzymatic 
defects in adrenal steroidogenesis [150]. Mutations involv-
ing the 21-hydroxylase gene account for 95% of cases [151]. 
According to the enzymatic defect, the impairment in GC 
production results in increased ACTH secretion, which leads 
to a shift of the steroidogenic pathway toward sex steroid 
production, with different clinical pictures [152].

CAH can be classified into different forms according to 
residual enzyme activity. The classic CAH is generally asso-
ciated with a more severe phenotype. In the most severe 
Salt-Wasting (SW-CAH) form, there is little or no residual 
enzyme activity, whereas patients with the Simple-Virilizing 
(SV-CAH) form still retain 1–5% enzyme activity [153]. The 
non-classic form of CAH is associated with various degrees 
of enzyme activity and is characterized by a late onset and 
milder symptoms, such as female virilization, menstrual 
irregularities, and subfertility [154]. Treatment generally 
consists of GC with or without MC replacement therapy, 
aiming to decrease androgen secretion, correct cortisol defi-
ciency, reduce virilization, and restore fertility [155].

Several studies have investigated cognitive function in 
patients with CAH describing lower Intelligence Quotient 
(IQ) with worse overall intelligence [156–160]. A recent 
study also reported worse performances in visual percep-
tion, visual memory, and executive functioning in patients 
with CAH compared to age-matched, healthy controls [161].

Interestingly, a more severe disease phenotype also asso-
ciates with greater cognitive impairment. A Swedish epide-
miological study reported SW-CAH patients as less prone to 
complete primary education, exhibiting a higher frequency 
of disability pensions and sick day leaves compared to con-
trols [162]. Other studies demonstrated worse performance 
in several cognitive domains (visual memory, fluid intel-
ligence, and non-verbal reasoning tasks) in SW [157, 163, 
164] compared to SV-CAH patients [158].

Various factors have been implicated in the development 
of cognitive impairment in SW-CAH patients. Brain injury 
related to hyponatraemic episodes secondary to salt-wast-
ing crises has been proposed among the possible underly-
ing mechanisms for lower IQ [157, 165]. Later studies have 
confirmed this finding in patients with CAH with a positive 
history of adrenal crises [163, 164]. The contribution of 
androgen excess to cognitive impairment may also be sig-
nificant. Patients with CAH (both male and female) are typi-
cally exposed to increased androgen levels in utero [166]. 
However, CAH boys compensate for this higher exposure 
by reducing testicular androgens, maintaining higher, but 
still acceptable testosterone levels [166]. On the contrary, 
CAH females are more susceptible to gestational androgen 
excess [167]. Increased pre- and post-natal androgen levels 
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affect neuronal development and brain functional connec-
tivity [168, 169], and impair sex-specific cognitive dimor-
phic abilities, finally leading to an increased risk of learning 
disabilities [159]. Neuronal myelinization [170, 171] and 
brain hemispheres maturation [164] are among the altera-
tion described.

Of note, increased levels of precursors (17-OH proges-
terone, 21-deoxycortisol, and 21-deoxycorticosterone, as 
well as their metabolites) are commonly observed in CAH 
patients. These molecules bind to the MR with different 
affinities and influence their activity [172], possibly inter-
fering with the MR/GR balance in the brain. However, their 
impact on cognitive functioning in CAH patients has yet to 
be studied.

Androgens excess can affect cognitive domains differen-
tially in women with CAH. Better performances on tasks 
involving cognitive domains which typically favor males 
[173] (mental rotation, spatial perception [174], and fine 
motor skills [175]) have been described: female patients 
with CAH and severe disease (and therefore the highest 
level of in-utero androgen exposure) perform similarly to 
both healthy males and male patients with CAH regarding 
spatial cognition [176]. On the other hand, not all cognitive 
domains benefit from androgen over-exposure and several 
studies have reported worse short-term memory than in con-
trols [157, 167, 177].

Interestingly, some authors described a lack of cogni-
tive impairment in children and adolescents with CAH, as 
opposed to their older counterparts [156, 177, 178]. While 
this observation might reflect a genuine age-related differ-
ence exerted by the underlying disease, it is plausible that 
this discrepancy might relate to the long-term therapeutic 
(perhaps supraphysiological) exposure to GCs. As discussed 
above, GC treatment often fails to replicate physiological 
circadian rhythms [179], resulting in times of under- or over-
treatment, both of which can negatively impact cognitive 
function [177], especially memory [180]. Recent observa-
tions have also reported significantly lower IQ in poorly 
controlled patients affected by SW-CAH, with multivariate 
analysis showing that in addition to androgen levels and 
hyponatraemic episodes, higher GC doses were associated 
with cognitive impairment [163]. Indeed, GC over-treatment 
is known to affect hippocampal development and function 
by altering neuronal structure [59], with hippocampal sub-
field CA1 (closely associated with learning and memory 
processes) [181, 182] displaying a notable, dose-dependent 
responsiveness to GCs [183, 184].

As with CS, brain structure alterations are also described 
in patients with CAH. MRI studies have confirmed a sig-
nificant reduction in whole brain volume and notably in the 
hippocampus, amygdala [185], thalamus, cerebellum, and 
brain stem [186], as well as alterations in areas closely asso-
ciated with visuo-spatial and working memory (pre-frontal, 

parietal, and superior occipital cortex) [187]. Similarly, 
white matter [188–190] as well as gray matter [191] abnor-
malities in regions closely associated with cognitive func-
tioning (hippocampus, hippocampal subiculum, and CA1 
subregions) were described in patients with CAH [192–194]. 
Importantly, these alterations were not always related to GC 
dose, suggesting that over-treatment might not be the only 
factor involved in determining structural brain alterations. 
In fact, these alterations have also been recently linked with 
cortisol deficiency in patients with CAH [195]. The amyg-
dala and hippocampus exhibit a high GR density [196] and 
are known to exert negative feedback on the HPA axis dur-
ing the stress response [197]. Where HPA-axis function is 
dysregulated, feedback circuit disruption results in a lack of 
proliferation, cell death, and, consequently, smaller volumes 
in these areas [198], resulting in cognitive impairment.

It is likely that multiple factors, including prolonged 
exposure to androgen excess, cortisol deficiency, and GC-
induced deterioration of brain regions, shape the cognitive 
impairment in patients with CAH [199, 200]. Other than pre-
natal androgen excess, the role of pre-natal dexamethasone 
(DEX) therapy on cognitive function in CAH patients has 
been explored during the last decade. DEX treatment has 
been traditionally employed to prevent genital virilization 
in female fetuses at risk of CAH. The results are conflicting, 
and current guidelines refer to pre-natal DEX treatment as 
an experimental therapy [155], since the fetal risks from pre-
natal DEX exposure outweigh the potential consequences 
of genital virilization [201]. Prenatal GC exposure can dis-
rupt the HPA axis, enhancing the cortisol response to stress 
[202], with negative long-term consequences regarding men-
tal health in childhood and adolescence [203]. Notably, DEX 
is not metabolized by 11β-HSD type 2 [103] and retains 
minimal (if not negligible) MC activity [204], which can 
be even more detrimental to the MR/GR activation ratio in 
MC-sensitive brain areas.

In utero, GC over-exposure increases the risk of affec-
tive, cognitive, and motor behavior impairment [205] and 
children treated prenatally with DEX have been reported to 
be less sociable, more emotional [206], and socially anxious 
[207] [206], albeit this was not confirmed in a recent meta-
analysis [208] (probably due to the observational nature 
and the small sample size of the available studies). Simi-
larly, the current evidence regarding cognitive function has 
yielded conflicting data. Several investigations reported no 
differences in general intelligence, long-term memory, and 
learning capabilities between children with CAH prenatally 
exposed to DEX versus those who were not. However, ver-
bal working memory, self-perception for scholastic compe-
tence [207], and verbal intelligence [178] were found to be 
significantly reduced in the former group. Interestingly, a 
single study reported sex-specific long-term cognitive effects 
(slower mental processing) of pre-natal DEX in girls with 
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CAH, but not boys [209]. The underpinning reasons are cur-
rently unknown.

In conclusion, patients with CAH have worse general 
intelligence and lower IQ compared to healthy controls, 
and cognitive impairment is often associated with disease 
severity. Adrenal crises, hyperandrogenaemia, cortisol 
deficiency, and GC dose regimens are all risk factors for 
cognitive decline in patients with CAH. This parallels with 
significant brain alterations seen at MRI, possibly secondary 
to abnormal brain development due to a mixture of in-utero 
hormonal imbalance and post-natal GC excess.

A summary of the current evidence for cognitive function 
in CS is shown in Table 1 and Supplemental Table 3.

Exogenous glucocorticoids’ treatment 
and cognition

eGCs are among the most prescribed drugs in clinical prac-
tice, being a mainstay for the treatment of several autoim-
mune and inflammatory disorders [210]. In recent years, a 
notable increase in prescription rates [211, 212] and, sub-
sequently, in eGC-associated side effects has been observed 
[212–215]. For instance, adverse psychiatric side effects 
(APSEs) frequently occur during eGC treatment, with a 
prevalence ranging from 3 to 60% of cases [216]. While 
psychosis, mania/hypomania, depression, and anxiety are the 
most common findings, long-lasting cognitive impairment is 
also described during eGC therapy, with a prevalence rang-
ing from 0.4 [217] to 7% of cases [218].

Overall, prolonged eGC treatment is known to cause 
cognitive deficits [219–221], in a pattern of neurocognitive 
decline known as “steroid dementia” [217], typically charac-
terized by deficits in declarative memory, mental processing 
speed, and concentration [222].

Interestingly, different eGCs might exert varying effects 
on cognitive functioning due to their specific impact on the 
MR/GR balance in the brain. Short- and intermediate-acting 
compounds (SIAGCs), such as cortisone, hydrocortisone, 
and prednisone (PRED), can activate both MR and GR, 
whereas longer-acting eGCs (LAGCs), like DEX and meth-
ylprednisolone (MP), preferentially bind to GR, suppressing 
endogenous cortisol production via negative feedback on the 
HPA and causing a decrease in MR occupation.

Indeed, the administration of hydrocortisone has been 
shown to partially improve memory deficits produced by 
the chronic administration of DEX [223]. Similarly, in a 
randomized-controlled trial conducted on 50 children treated 
with DEX (6 mg/m2/day for two 5-day courses) with acute 
lymphoblastic leukemia, the administration of 10 mg/m2/day 
of thrice-daily hydrocortisone in a circadian fashion (higher 
dosage given in the morning) markedly improved the DEX-
induced APSEs [224]. These beneficial effects have been 

ascribed to the refill of unoccupied brain MRs, which is 
typically associated with SIAGCs, but not LAGCs, resulting 
in a restoration of the correct MR/GR activation balance. 
Intriguingly, the fludrocortisone-mediated activation of the 
MR has been demonstrated to improve memory in healthy 
individuals [126].

The direct comparison between the neurocognitive effects 
of DEX and PRED has yielded unexpected results: in pedi-
atric patients with lymphoblastic leukemia, no differences 
were found in cognitive functioning [225], except for worse 
fluid reasoning, higher likelihood of enrolling in special 
education services [226] and word reading [227] in DEX-
treated patients. Similarly, the available findings regard-
ing the effects of SIAGCs on cognition are controversial. 
Mild, acute rises in cortisol, following the administration 
of low-to-moderate doses of hydrocortisone (< 25 mg), are 
known to enhance memory consolidation [228], and emo-
tional and habit learning [229, 230] in healthy individuals. 
However, the short-term administration of SIAGCs has 
also been shown to adversely affect memory performance 
in both adults [217, 231] and children [232]. Several studies 
in healthy subjects have reported poor long-term memory 
retrieval [233, 234] (mainly impairments in autobiographi-
cal memory [235, 236] and recall performance of verbal 
material) after acute challenge with HC [118]. On the other 
hand, attention, vigilance [237], working memory, and ver-
bal executive functions [234, 238] seem to be less affected 
by eGC administration. The discrepancy between these find-
ings might reflect different designs, small sample sizes, and 
an overall heterogeneity of the studies.

In this regard, a meta-analysis with a total of 563 healthy 
volunteers identified two possible factors influencing the 
relationship between eGC administration and memory. First, 
administering eGCs before learning was not found to have 
a significant effect on memory, whereas when given prior 
to information recall, a significant mnemonic impairment 
was seen [118], mainly affecting the retrieval of declarative 
memory [233, 239].

Second, the time of the day in which eGCs are adminis-
tered appears to be an important determinant of their cog-
nitive effects. Specifically, administration of modest doses 
(i.e., hydrocortisone 20–40 mg) before cognitive testing in 
the afternoon results in mild memory enhancement [240], 
whereas a morning administration (a time in which GRs are 
already partially saturated by higher endogenous cortisol 
levels) is associated with memory impairment [118], likely 
due to the oversaturation of GRs [241].

The cognitive alterations in patients receiving eGCs 
resemble those observed in patients with CS (impaired 
memory and verbal learning) [45]. However, in the latter 
group, cognitive impairment is typically persistent, whereas 
the extent of the reversibility of mnemonic impairments in 
patients receiving eGCs is still a matter of debate. While 
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several reports have documented complete cognitive recov-
ery within weeks of eGCs’ discontinuation [242, 243], 
others observed a long-term persistence of mild cognitive 
decrement up to 1 year following suspension [217, 244], a 
divergence that may be attributable to the different duration 
and fluctuations in eGC exposure [45].

Another concern is whether eGCs’ administration might 
affect brain structure. In agreement with older evidence 
[245, 246], recent investigations have documented the inci-
dence of hippocampal and cerebral atrophy following eGC 
treatment. Notably, brain atrophy has been reported to occur 
shortly after the acute administration of high-dose methyl-
prednisolone (1 g daily for 3 consecutive days) in patients 
with multiple sclerosis, with reduced brain volume being 
observed up to 2 months following intravenous infusion 
[247, 248]. However, current evidence is still limited and 
often inconsistent [219, 245, 249], with early studies sug-
gesting a potential correlation between the degree of brain 
atrophy with eGC dose [245]. Moreover, a clear recovery of 
brain architecture following treatment discontinuation has 
been documented in some, but not all patients [245, 250]. 
To date, no reliable predictors for structural brain recovery 
have been identified.

A correlation between treatment duration and degree 
of morphological alteration has been suggested in an MRI 
and proton magnetic resonance spectroscopy study on 17 
patients on long-term prescription with PRED therapy 
(≥ 10 mg/day for ≥ 6 months). Compared to matched con-
trols, patients with longer treatment durations had smaller 
HVs, atrophy of the amygdala, and decreased neuronal vital-
ity [219]. In line with these findings, multiple functional 
imaging studies have confirmed that cortisone administra-
tion significantly reduces blood flow and glucose metabo-
lism in memory-related brain regions (such as the posterior-
medial temporal lobe [251] and hippocampus [252, 253]) 
and exert detrimental effects on the excitability, structure, 
and functionality of the pre-frontal cortex, with a related 
impairment of working memory [254–258].

It might be expected that longer exposure to eGC treat-
ment would result in more severe cognitive impairment. 
However, the actual impact of treatment duration on memory 
function is unclear. Early work [220] evaluated cognition 
in patients receiving chronic PRED treatment (16.4 mg/day 
for more than one year). In accordance with similar findings 
in later studies [259, 260], patients receiving chronic eGC 
treatment performed significantly worse than controls on 
hippocampal-dependent memory tasks. However, in these 
studies, memory impairment was not influenced by the dura-
tion of treatment. A recent double-blind, placebo-controlled, 
crossover study compared cognitive function and brain MRI 
morphology in patients with rheumatoid arthritis, either 
treated with chronic PRED therapy (7.5 mg/day for 5 years) 
or without eGCs. No difference was found between the two 

groups regarding memory performance or HV. Interestingly, 
acute PRED challenge before cognitive testing resulted in 
impaired delayed verbal memory recall in both groups, sug-
gesting that acute, rather than chronic, exposure is responsi-
ble for memory deficits in these contexts [239]. Collectively, 
further evidence is needed to clarify the role of treatment 
duration in the pathophysiology of eGCs-induced cognitive 
impairment.

It is interesting to speculate that aging might influence 
the brain’s susceptibility to eGC-induced cognitive decline. 
Indeed, greater memory decline [220, 237] following expo-
sure to eGCs has been described in older, when compared 
to younger patients. However, this was not confirmed in 
another study [261] in which younger subjects showed 
impaired short-term working memory tests, suggesting that 
older individuals might be less responsive to acute GC chal-
lenge due to the physiological atrophy of the frontal lobe 
found in these subjects [261]. There is, therefore, currently 
no conclusive evidence as to the predictive role of age in 
eGC-induced cognitive decline.

In contrast, there is a much clearer association between 
eGCs doses and the development of cognitive decline and 
neuropsychiatric symptoms [45, 216]. APSEs rarely occur 
at PRED-equivalent doses of < 20 mg/day [262], but doses 
above 40 mg PRED-equivalent per day exhibit the highest 
risk of acute events [263] up to a proper “steroid induced 
psychosis”. This is a quite difficult condition to manage, and 
a multidisciplinary approach (including dedicated support 
from psychiatrists) is strongly suggested. The most effective 
treatment consists of a combined strategy: both GC dose 
reduction or discontinuation (if possible) and administration 
of antipsychotic medications are required for the restitutio 
ad integrum of negative or delusional and hallucinatory 
symptoms. Among the antipsychotic drugs, haloperidol 
and risperidone have exhibited the best efficacy profile [264, 
265] with symptoms often resolving in few weeks [262]. 
Liver and kidney diseases and function need to be carefully 
assessed while examining the safety profile of the antipsy-
chotic drug. Quetiapine, aripiprazole or olanzapine, as well 
as mood stabilizers, selective serotonin re-uptake inhibitors, 
can be considered as second-line treatments [264, 265].

Regarding cognitive functioning, the relation between 
SIAGC dose and memory typically follows an inverted 
U-shaped function [241, 266], facilitating delayed memory 
retrieval at a threshold dose of 20 mg/day of hydrocortisone 
(which mirrors the physiological cortisol increases during 
mild stress), with higher doses resulting in impaired cogni-
tive function [241].

Early reports documented a striking dose–response cor-
relation between PRED dose and APSEs in hospitalized 
patients [267]. High eGC dosing (> 160 mg of hydrocorti-
sone equivalent) induces a reversible but significant decrease 
in declarative and autobiographical memory [237, 268, 269]. 
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The same effects were confirmed in healthy volunteers 
receiving high-dose intravenous hydrocortisone (0.45 mg/
kg/day) compared to those under lower dose (0.15 mg/kg/
day) [270]. Similarly, the administration of 40 mg/day of 
oral hydrocortisone worsens delayed recall performances 
compared to 20 mg/day [241].

Interestingly, higher eGC doses have also been associ-
ated with earlier symptom appearance, with memory defi-
cits occurring within 3–5 days from administration [268, 
271] and quicker recovery following medication with-
drawal [272].eGCs also affect emotional memory retention 
in a dose-dependent fashion: low-to-moderate eGCs doses 
(< 20 mg/day) have been shown to increase inhibition of 
negative emotional stimuli [273, 274], whereas higher doses 
(40 mg/day) facilitate the experience of negative emotions 
[275, 276].

It is important to note that, aside of the mentioned direct 
detrimental effects on cognitive function caused by eGC 
administration, tapering down longstanding supraphysi-
ological dose when the underlying disease has subsided 
or is well controlled with alternative non-GC medications, 
often results in an enigmatic phenomenon referred to as the 
glucocorticoid withdrawal syndrome (GWS) [277, 278]. 
This syndrome represents a unique challenge for the endo-
crinologist and manifests with symptoms resembling AI, 
often including irritability, mood swings, and psychiatric 
symptoms (depression, anxiety, panic attacks, up to psy-
chotic state) [85, 278, 279]. The mechanisms behind GWS 
probably depend on the developed dependence on supra-
physiological GC concentrations but are still not entirely 
understood. The pathogenesis seems to be multifactorial 
and, among the proposed mechanisms, the downregulation 
of CRH and proopiomelanocortin, as well as the upregula-
tion of mediators such as vasopressin, central noradrenergic, 
and dopaminergic systems, seem to mediate cognitive dis-
ruption [280]. Indeed, an intact CRH system in the brain is 
necessary for adequate mesolimbic dopaminergic function; 
its alteration contributes to inadequate stimulation of dopa-
minergic neurons terminating in the nucleus accumbens, 
fuelling anxiety and depression [280]. In this context, there 
are no studies defining possible predictors for GWS develop-
ment. Albeit there are data demonstrating possible predictor 
for recovery of the HPA axis in patients treated with chronic 
eGC [281, 282], studies investigating the effects of different 
titrating protocols on GWS development have so far been 
inconclusive [283] and, as such, an individualized approach 
is needed. Cognitive therapy in parallel with antidepressants 
(fluoxetine, sertraline, and trazodone) can be helpful to target 
specific patient symptoms and improve mood [284].

In conclusion, eGCs influence cognitive function, most 
notably impairing declarative, hippocampus-dependent 
memory. Chronic administration generally results in mem-
ory impairment; however, short-acting formulations can 

exert variable cognitive effects, depending on dosage and 
administration timing. The contribution of age, treatment 
dose, and duration have yet to be clearly established. The 
hippocampus, amygdala, and pre-frontal cortex are particu-
larly affected by eGC excess and display structural altera-
tions, that appear to be only partially reversible following 
treatment discontinuation.

A summary of the current evidence for cognitive function 
during eGC is shown in Table 1.

Conclusions

The HPA axis exerts important actions on the CNS in gov-
erning the physiological interactions between different brain 
areas involved in the cognition processes. GC fluctuation 
regulates a wide range of cognitive functions through a 
controlled interaction with GR and MR, guaranteed by sub-
strate availability and receptor distribution. Any alterations 
in these complex processes can result in cognitive dysfunc-
tion. Due to the broad spectrum of unspecific symptoms 
complained by the patients, the recognition of cognitive 
deficit in patients with GC disorders is challenging, often 
delayed, or mistaken. Aside from neuropsychiatric symp-
toms, both hyper- and hypocortisolism, as well as exogenous 
steroid treatment, can all affect cognitive function (impact-
ing mostly, but not only, memory), being the limbic system 
the more GC-sensitive brain area. A prompt recognition and 
treatment of underlying disease might be crucial to avoid 
permanent damage, albeit the resolution of hormonal imbal-
ance does not guarantee complete recovery. Several authors 
are spending efforts to find possible pathogenetic factors and 
predictors for cognitive recovery after treatment. The contri-
bution of absolute cortisol levels, the duration of exposure 
to altered cortisol concentrations or fluctuations, the balance 
between MR/GR activation, and the potential role of the 
androgen levels in CAH are all possible players involved in 
the damage. Sadly, to date, there are no accurate predictors 
for cognitive recovery following disease remission. Further 
studies are needed to find possible mechanisms involved to 
be targeted for future treatment strategies with the aim of a 
tailored precision-medicine approach.
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