
Vol.:(0123456789)1 3

Journal of Endocrinological Investigation (2023) 46:1491–1507 
https://doi.org/10.1007/s40618-023-02055-x

REVIEW

SARS‑CoV‑2 and male infertility: from short‑ to long‑term impacts

P. Dai1 · F. Qiao1 · Y. Chen1 · D. Y. L. Chan2 · H. C. H. Yim3 · K. L. Fok4,5 · H. Chen1 

Received: 1 October 2022 / Accepted: 1 March 2023 / Published online: 14 March 2023 
© The Author(s), under exclusive licence to Italian Society of Endocrinology (SIE) 2023

Abstract
Purpose  The coronavirus 2019 (COVID-19) pandemic—caused by a new type of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2)—has posed severe impacts on public health worldwide and has resulted in a total of > 6 million deaths. 
Notably, male patients developed more complications and had mortality rates ~ 77% higher than those of female patients. 
The extensive expression of the SARS-CoV-2 receptor and related proteins in the male reproductive tract and the association 
of serum testosterone levels with viral entry and infection have brought attention to COVID-19’s effects on male fertility.
Methods  The peer-reviewed articles and reviews were obtained by searching for the keywords SARS-CoV-2, COVID-19, 
endocrine, spermatogenesis, epididymis, prostate, and vaccine in the databases of PubMed, Web of Science and Google 
Scholar from 2020–2022.
Results  This review summarizes the effects of COVID-19 on the male reproductive system and investigates the impact of 
various types of SARS-CoV-2 vaccines on male reproductive health. We also present the underlying mechanisms by which 
SARS-CoV-2 affects male reproduction and discuss the potentially harmful effects of asymptomatic infections, as well as 
the long-term impact of COVID-19 on male reproductive health.
Conclusion  COVID-19 disrupted the HPG axis, which had negative impacts on spermatogenesis and the epididymis, albeit 
further investigations need to be performed. The development of vaccines against various SARS-CoV-2 variations is impor-
tant to lower infection rates and long-term COVID risks.
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Introduction

The coronavirus disease 2019 (COVID-19) outbreak 
occurred in December 2019, and rapidly spread worldwide 
[1]. To date, more than 600 million COVID-19 cases have 
been reported, and the total death toll exceeds 6.4 million 
(as of September 5, 2022; https://​coron​avirus.​jhu.​edu/​map.​
html). COVID-19 is caused by the novel single-stranded 
RNA virus severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) of the Coronaviridae family [2, 3]. More 
comorbidities and higher mortality rates were observed 
in male than in female patients [4]. Testosterone has been 
found to affect the SARS-CoV-2 entry and priming in male 
hosts, and was correlated with a weaker immune response, 
higher infection rates, and greater predisposition to throm-
boembolism [5]. A meta-analysis indicated that diabetes is 
a key factors associated with high mortality rates in men 
and women diagnosed with COVID-19 [6]. SARS-CoV-2 
encodes four main proteins: a spike (S) protein that medi-
ates virus entry into host cells, N protein that regulates 
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nucleocapsid development, and envelope (E) and membrane 
(M) proteins that mediate viral assembly [7].

The potential impact and molecular mechanisms of 
SARS-CoV-2 on the reproductive system, particularly in 
male patients, have been reported in many studies [8–13], 
though often with conflicting results. In this review, we 
describe the endocrine status associated with COVID-19 
infection, relationship between SARS-CoV-2 and spermat-
ogenesis, effect of the virus on the epididymis and pros-
tate, and potential impact of COVID-19 vaccines on male 
fertility.

Methods

The current review was conducted using related English 
literature from electronic databases, including the Web 
of Science, PubMed, and Google Scholar. The literature 
search considered publications from 2020 to 2022 with the 
terms COVID-19, SARS-CoV-2, endocrine, hypophysis, 
hypothalamus, testosterone, sperm, spermatogenesis, testis, 
epididymitis, prostate, fever, inflammation, diabetes, and 
asymptomatic. The studies were further classified by topic. 
The validity of each publication was assessed by reviewing 
the title, abstract, and conclusion. The reference lists of valid 
papers were checked for other relevant studies. All original 
research or review papers were assessed by two independ-
ent investigators and the data of each study were used to 
summarize their conclusions and perform a meaningful 
classification.

Receptors for SARS‑CoV‑2 invasion in the male 
reproductive system

To infect or enter a cell, the SARS-CoV-2 S protein binds 
to angiotensin I-converting enzyme 2 (ACE2) expressed 
on a cell-surface receptor. The host transmembrane pro-
tease serine 2 (TMPRSS2) assists in this process by further 
activating and cleaving the S protein [14]. ACE2 occurs in 
many tissues and organs, including the lungs, liver, kidneys, 
and testes [15, 16]. According to the GETx, FAMTOM5, 
and Human Protein Atlas databases, the testis is among the 
tissues expressing the highest RNA level of ACE2 [17]. 
Both ACE2 and TMPRSS2 protein levels were found to be 
enriched in the testes [18]. Thus, the male reproductive sys-
tem is highly susceptible to SARS-CoV-2 [19, 20].

Single-cell RNA sequencing (scRNA-seq) suggested that 
ACE2 was enriched in various cells of the testis, including 
Sertoli cells, Leydig cells, spermatogonia, and somatic cells 
[21–23]. Compared to females, symptom severity and mor-
tality rates are higher in males [24, 25]. The transcription of 
TMPRSS2 could be promoted by an androgen response ele-
ment [26] and further activate its androgen [27]. Shastri et al. 

demonstrated a delay in SARS-CoV-2 clearance in male com-
pared with female subjects, likely associated with the higher 
level of ACE2 present in the testes, which creates a viral reser-
voir and promotes viral persistence [17]. Indeed, SARS-CoV-2 
antigens have been detected in fibroblasts, spermatogonia, 
Sertoli cells, and Leydig cells, while the viral particles reside 
in the cytoplasm of multiple cell types, such as Sertoli cells, 
Leydig cells, spermatids, endothelium cells, fibroblasts, and 
epithelial cells in the rete testis [28]. However, Rastrelli et al. 
concluded that poor prognosis and mortality were associated 
with lower total testosterone (T), based on the levels of free 
T [29]. Meta-analyses revealed that COVID-19 negatively 
impacted T production in the short term, which was related 
to an increased risk of death or admission to an intensive care 
unit (ICU) [11]. Although the contradictory effects of andro-
gen on COVID-19 progression need further clarification, at 
least it proves that the dysregulation of T occurs after SARS-
CoV-2 invasion.

Apart from ACE2, the transmembrane glycoprotein CD147 
was shown to mediate SARS-CoV-2 pseudovirus entry into 
host cells via ADP-ribosylation factor 6 (Arf6)-regulated endo-
cytosis [30, 31]. Our previous studies showed that CD147 was 
expressed at various stages of spermatogenesis, and CD147 
null mutants resulted in infertility [32]. Furthermore, CD147 
regulated the migration of spermatogonia and spermatocytes 
via metalloproteinases-2 (MMP-2) signals [33]. CD147 also 
repressed the extrinsic apoptosis of spermatocytes via nuclear 
factor κB (NF-κB) signaling [34, 35]. Moreover, CD147 
played an indispensable role in sperm motility and acrosome 
reactions, suggesting that CD147 acts as a therapeutic target 
against asthenozoospermia [36]. Our previous investigations 
implied that SARS-CoV-2 might affect spermatogenesis via 
CD147 regulation. However, whether CD147 is involved in the 
entry of SARS-CoV-2 into the testes remains unclear.

Apart from ACE2, TMPRSS2, and CD147, other recently 
identified factors involved in SARS-CoV-2 cell invasion may 
contribute to the impairment of spermatogenesis by acting as 
receptors (e.g., receptor tyrosine kinase [AXL], kringle con-
taining transmembrane protein 1 [KREMEN1], and aspara-
ginase and isoaspartyl peptidase 1 [ASGL1]), co-receptors 
(e.g., N-acetylneuraminate pyruvate lyase [NPL], C-type 
lectin domain family 4 member D [CLEC4D], neuropilin-1 
[NRP1], and CD4), and cofactors (ectonucleotide pyroph-
osphatase/phosphodiesterase 1 [ENPP1], serine protease 1 
[PRSS1], TMPRSS6, cathepsin F [CTSF], and paired basic 
amino acid cleaving enzyme [FURIN]; Fig. 1).

SARS‑CoV‑2 impairs male fertility by interfering 
with the hypothalamus–pituitary–gonadal (HPG) 
axis

Gonadotropins and various steroids serve as a molecular 
bridge between the brain and testes by regulating HPG axis 
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Fig. 1   Expression profile of SARS-CoV-2 invasion-related factors in 
male reproductive system. A RNA expression of receptors, corecep-
tors, and cofactors related to SARS-CoV-2 cell entry. Gene expres-
sion data were acquired from the Human Protein Atlas [162]. ACE2 

is abundant in the testis but rarely expressed in the epididymis, semi-
nal vesicle, and prostate. B, C Differential expression of TMPRSS2 
and CD147 in different tissues and organs. The expression values 
were clarified as normalized transcript per million (nTPM)
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activity. The activity of the HPG axis is initiated by the 
secretion of gonadotropin-releasing hormone (GnRH) from 
specialized hypothalamic neurons. Gonadotrophs, including 
follicle-stimulating hormone (FSH) and luteinizing hormone 
(LH), are secreted by GnRH-dependent adenohypophysis. 
FSH primarily acts on Sertoli cells to regulate spermato-
genesis and keep the seminiferous tubule intact, whereas LH 
plays a crucial role in stimulating Leydig cells to produce T 
[37]. Notably, the production of androgens by steroidogen-
esis is restricted to Leydig cells. Androgens play a vital role 
in spermatogenesis and regulate gonadotropin levels via a 
negative feedback mechanism [38].

Male infertility is closely associated with pathological 
changes in HPG regulation [39, 40]. Previous studies have 
shown that male patients or animal models infected with 
SARS-CoV-2 exhibited aberrant hormone levels. Ma et al., 
in the first report of the effects of SARS-CoV-2 infection 
on male gonadal function, showed that infected males had 
considerably increased serum-luteinizing hormone (LH) 
levels and lower levels of T and FSH. The concentration 
of C-reactive protein (CRP, a marker of viral infection) 
was strongly correlated with the T:LH ratio after COVID-
19 infection [41]. Coincidentally, serum T, FSH, and LH 
levels decreased acutely in infected patients, particularly in 
the case of viral pneumonia [42]. Furthermore, a series of 
retrospective cohort studies noted that decreased concentra-
tions of T were mostly found in severe COVID-19 cases that 
required admission to the ICU and prolonged hospitalization 
[43–45]. In hospitalized men, this low T level was associ-
ated with an overactive immune response and inflamma-
tory storm manifested by elevated levels of D-dimer, CRP, 
interleukin 6 (IL-6), and procalcitonin [46–48]. Lower levels 
of total T and free T were associated with poor prognosis 
and increased mortality rates in patients of the respiratory 
ICU [29]. Interestingly, estradiol levels were substantially 
increased in critically ill male COVID-19 patients, and their 
interferon γ (IFN-γ) levels were positively linked to serum 
estradiol levels, thereby increasing the requirement for extra-
corporeal membrane oxygenation (ECMO) treatment and 
risk of mortality [47, 49].

In a cohort of men recovering from COVID-19, a 
7-month follow-up study revealed that T levels were fur-
ther decreased in 10% of the patients, suggesting persistent 
hypogonadism, especially in cases with a higher burden of 
comorbid conditions. Moreover, the LH and 17β-estradiol 
levels in men with restored T levels decreased significantly 
[50]. In contrast, Apaydin et al. showed that hypogonadism 
persisted in 48.2% of men with lower T concentrations over 
a 6-month follow-up post-recovery [48]. In summary, these 
studies revealed that the male endocrine system was both 
directly and indirectly disrupted by COVID-19 infection, 
and reproductive health was negatively affected overall. The 
possible adverse effects of SARS-CoV-2 on the HPG axis 

are summarized in Fig. 2. The characteristics of the cited 
studies are listed in Table 1.

COVID‑19 and spermatogenesis

Spermatogenesis can be divided into three consecutive 
phases. First, spermatogonia differentiate through mitosis 
into a B-type, which acts as the precursor of tetraploid pri-
mary spermatocytes. Second, diploid secondary spermato-
cytes are generated from primary spermatocytes via meiotic 
I division, and haploid spermatids are produced during mei-
osis II. Third, spermatids undergo spermiogenesis—nuclear 
elongation and condensation and acrosome biogenesis—to 
form spermatozoa. During spermatogenesis, different types 
of germ cells attach to Sertoli cells through specialized 
cell junctions to enable cell migration from the basement 
membrane to the abluminal compartment. Additionally, the 
blood–testis barrier (BTB), constituted by cell–cell junctions 
among Sertoli cells, limits mature sperm penetration into the 
circulatory system [51].

Evidence suggests that SARS-CoV-2 infection downregu-
lates the expression of spermatogenesis-related genes [21]. 
The higher levels of ACE2 expression in the testes of infer-
tile men suggests that COVID-19-mediated reproductive dis-
orders likely depend on ACE2 activation, or that men with 
reproductive abnormalities may be more susceptible to viral 
infection [18, 22]. Indeed, SARS-CoV-2 mRNA has been 
detected in semen [52, 53] and COVID-19 has been associ-
ated with decreased numbers of Leydig cells in the testes 
[54]. Several studies have shown the effects of COVID-19 
on sperm quality and spermatogenesis during infection and 
recovery. For instance, semen volume and total sperm num-
ber were lower in COVID-19 patients than those in control 

Fig. 2   SARS-CoV-2 invasion caused the dysfunction of the HPG 
axis. Abnormal FSH and LH serum levels observed during SARS-
CoV-2 infection, along with systemic inflammation, which eventu-
ally led to a lower concentration of T. Serum estradiol content was 
elevated by SARS-CoV-2 infection
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subjects (non-infected men) [55–59]. Sperm viability, motil-
ity, and progressive motility were decreased [56–59], and 
the sperm DNA fragmentation index (DFI) was positively 
correlated with COVID-19 [57, 59–61]. The deterioration 
of sperm function and T levels have also been associated 
with the dysregulation of serum FSH and LH levels [56, 59, 
62, 63]. Nonetheless, a number of studies reported unaf-
fected testis or epididymis function, but abnormal sperm 
parameters. Scroppo et al. showed that the levels of T, gon-
adotropins, and inflammatory factors were unaffected in 
young males with mild or moderate COVID-19 infections, 
in spite of abnormal seminal values [64]. Guo et al. showed 
that the semen of 23 COVID-19-infected male patients had 
no detectable SARS-CoV-2 RNA, and their sperm counts, 
and morphology were within normal ranges [65]. Holtmann 
et al. found that mild COVID-19 infection did not affect 
testis and epididymis function, but semen parameters were 
impaired in moderate infection cases [66]. Emerging evi-
dence suggests that the detrimental impact was imposed on 
spermatogenesis under SARS-CoV-2 invasion, although 
few studies indicating no influence were reported on sperm 
quality, the reason for which was mostly due to the males 
infected with COVID-19 being asymptomatic or with very 
mild conditions.

Oxidative stress (OS)—induced by an imbalance between 
reactive oxygen species (ROS) production and clearance 
by antioxidants—is an important driver of male infertility 
and is increased under COVID-19 infection [67]. Testicu-
lar dysfunctions induced by OS include impaired sperm 
quality and endocrine function, with oxidative damage in 
sperm corresponding predominantly to increasing DFI [68]. 

Total antioxidant capacity was negatively correlated with 
COVID-19, along with a higher DFI [59]. Similarly, ROS 
and DFI scores were found to be markedly higher at 14 d 
after COVID-19 diagnosis compared to those at 120 d [57]. 
A case report revealed that SARS-CoV-2 invasion into male 
germ cells may occur prior to the onset of symptoms and 
disrupt spermatogenesis, as evidenced by high levels of oxi-
dative DNA damage in sperm [61].

In addition to OS, inflammation associated with COVID-
19-induced testicular lesions may adversely affect spermato-
genesis. Although an unusual presentation, testicular pain 
can occur with COVID-19 infection, suggesting a link to 
orchitis [69–71]. Duarte-Neto et al. observed testis con-
gestion, testicular basilemma thickening, and interstitial 
edema in COVID-19-infected men, which are comparable 
to the symptoms of interstitial orchitis [28]. Moreover, the 
number of Sertoli and Leydig cells decreased [28, 72, 73], 
and testicular blood vessels showed strong expression of 
vascular cell adhesion molecule (VCAM) in infected men. 
Fibroblasts, spermatogonia, Sertoli, and Leydig cells all 
tested positive for the SARS-CoV-2 antigen [28]. COVID-
19-infected men also had higher levels of pro-inflammatory 
cytokines, such as tumor necrosis factor α (TNF-α), IFN-γ, 
IL-8, IL-10, IL-1β, and IL-6, in seminal plasma [74, 75]. 
With the upregulation of these pro-inflammatory cytokines, 
the expression of junctional proteins involved in the BTB, 
such as connexin-43, claudin-11, and occludin, is disrupted 
[76]. The expression of genes involved in apoptosis, such 
as BAX, caspase-3, caspase-8, and caspase-9, was mark-
edly increased in testicular specimens or sperms of infected 
men [77]. In deceased individuals, researchers observed a 

Table 1   The effect of COVID-19 on the HPG axis

Reference 
number

COVID-19 severity/stage Tissue assayed Study design Age range/
median 
age

Main conclusion

[41] Mild, moderate, severe, critical Serum Case report 20–54/38 Levels of LH, FSH, and T were influenced
[42] Severe Serum Case report 18–50 T level decreased
[43] Serum Prospective cohort study 19–88 T level decreased
[44] Mild, moderate, severe Serum Prospective cohort study 25–91 Lower total T level in serum predicted 

poor prognosis
[45] Mild, moderate, severe Serum Prospective cohort study 20–65 Increased LH and prolactin, and declined 

total T level
[46] Mild, moderate, severe Serum Case control report Lower T level was related to severe clini-

cal outcomes
[47] Serum Case report Decreased T level linked with overacti-

vated immunity
[48] Serum, semen Lower T level at baseline with higher 

inflammatory marker levels
[49] Severe Serum Retrospective cohort study Lower T and higher estradiol levels may 

be related to disease severity
[50] Recovery Serum Cohort study 49–65/57 Male hypogonadism persisted 7 months 

post-recovery
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marked loss of germ cells and increased levels of apoptotic 
cells, CD3+ (mature T lymphocytes), CD68+ (macrophage-
derived immune cells), CD20+ (B cell-derived immune 
cells), and IgG in the testis/epididymis [18, 74]. Together, 
these observations suggest that SARS-CoV-2 infection dis-
rupts reproductive microenvironments by triggering OS and 
inflammation, thereby inhibiting spermatogenesis (Fig. 3).

Males with COVID-19 mostly suffered long-term reper-
cussions and their reproductive functions were compromised 
even after recovery. Total sperm number at 37 d after recov-
ery was still lower than that of age-matched viral-negative 
men [78]. Similarly, Guo et al. found that sperm number, 
concentration, and motility were lower in recovered men 
after 29 d than those in control subjects, while sperm param-
eters, including sperm morphology, improved considerably 
at 56 d after recovery [79]. In contrast, another report found 
that the concentration and total motility of sperm at 80 d 
after recovery remained poor [80]. Another study revealed 
that sperm quality only returned to normal after half a year 
[81]. A meta-analysis of seven studies corresponding to 
934 subjects (median age of 37.34 ± 10.5 years) revealed 
deteriorating sperm quality and increased LH and prolac-
tin levels during recovery. Therefore, whether deteriorat-
ing sperm quality is regulated only by the testes remains 
unclear [82]. Adamyan et al. investigated transcriptional 

alterations in semen from COVID-19-recovered men and 
found that genes in sperm mitochondria involved in mito-
chondrial oxidative phosphorylation and toll-like receptor 
signaling were inhibited. In fact, all protein-coding genes 
of the mitochondrial genome were dramatically downregu-
lated. This could potentially explain how sperm motility is 
compromised in convalescent males after viral infection 
[83]. Moreover, semen proteomics revealed that the proteins 
linked to male fertility, including prosaposin and semeno-
gelin 1, were markedly downregulated after recovery. The 
signaling pathways associated with reproductive functions, 
such as sperm motility, adhesion regulation, endopeptidase 
activity, oocyte–sperm recognition, and T reaction, were 
also repressed during recovery [84]. Gacci et al. showed 
that IL-8 was expressed at pathological levels in 75% of men 
(33 individuals) during recovery [85]. Negative correlations 
were found between sperm number and IL-1β and TNFα 
levels in semen after recovery [86]. Overall, current findings 
suggest that it is necessary to conduct accurate follow-ups 
focusing on the fertility status of patients in convalescence. 
Additionally, some individuals recovering from COVID-19 
showed better recovery of spermatogenetic capacity than 
others. Gharagozloo et al. found that males with moderate 
COVID-19 infections along with azoospermia could recover 
rapidly as the infection waned [61]. Paoli et al. demonstrated 

Fig. 3   Possible mechanisms of SARS-CoV-2-mediated impairment of 
spermatogenesis and sperm function. Spermatogenesis was directly 
affected by SARS-CoV-2 infection of the testis. CD3+-, CD68+-, or 
CD20+-positive inflammatory cells infiltrated the seminiferous tubule 
upon SARS-CoV-2 infection, which elevated the levels of inflam-
matory factors, including TNF-α and IL-1β. Oxidative stress (OS)-

mediated disruptions of male fertility occurred after virus entry, 
further causing germ cell apoptosis and sperm DNA fragmentation. 
Epididymitis was observed and mainly characterized by lymphocyte 
infiltration, sperm hyperaccumulation in the cauda, and a swollen 
lumen. SPG spermatogonia, PS primary spermatocyte, SS secondary 
spermatocyte, ES elongated sperm 
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that testicular function was not damaged directly, and that 
indirect damage was transient during recovery [10]. Hor-
mone disorders and semen abnormalities gradually disap-
peared as COVID-19 was cleared [87]. The characteristics 
of the cited studies are listed in Table 2.

Effect of SARS‑CoV‑2 on the epididymis

The epididymis is a complex highly coiled duct that con-
nects the vas deferens to the efferent ducts through four 
anatomically distinct parts, namely the caput, corpus, 
cauda, and initial segments. A highly specialized micro-
environment exists along the lumen that secretes proteins, 
ions, and cytokines and reabsorbs rete testis fluid. Sperm 
generated in the testis are matured in the epididymis and 
acquire their full motility and fertility. The epididymis also 
acts as an environment to concentrate, store, and transport 
sperm before ejaculation [88]. Although ACE2 has lim-
ited expression in the epididymis [89], other cofactors and 
receptors, including NPL, NRP1, and CD147, are highly 
expressed in the epididymis (Fig. 1), suggesting potential 
for impairment by SARS-CoV-2. Furthermore, SARS-
CoV-2 can attach to epididymal sperm via the spike protein 
[90]. Histological analysis of the epididymis in deceased 
patients with COVID-19 demonstrated that a large num-
ber of sperm and immature spermatocytes accumulated in 
the cauda [91]. In a pediatric case diagnosed concurrently 
with COVID-19 and orchiepididymitis, Gagliardi et  al. 
confirmed inhomogeneous testis swelling and epididymal 
inflammation with reactive hydrocele [92]. Similarly, Marca 
et al. reported that COVID-19 induced slight swelling and 
gentle accentuation of vascularization in the epididymis, 
which were symptoms of epididymitis [69]. Epididymitis 
caused by COVID-19 can present as reactional hydrocele 
with nonuniform echo or microcyst dissemination, both of 
which appear as caput augmentation (> 1.2 cm) and scrotum 
incrassation [93]. In an extensive cohort study (142 patients 
hospitalized with COVID-19) conducted by Chen et al. 32 
patients were diagnosed with acute orchitis, epididymitis, 
or orchiepididymitis. Acute scrotal infection was found 
to increase with age, with an incidence rate of 53.3% in 
men > 80 years of age. Notably, compared with mild infec-
tions, severe infections were associated with a higher risk 
of developing orchiepididymitis [94]. In contrast, Holtmann 
et al. found that mild infection had no effect on the function 
of the epididymis and testis [66]. Histopathological assess-
ment of the epididymis after COVID-19 invasion indicated 
noticeable alterations compared with the control group. 
Interstitial hyperemia and edema, as well as exudation of 
red blood cells, were observed in the epididymis. In addi-
tion, a few T-lymphocytes appeared in the epididymal duct 
and infiltrated the testicular blood vessels [8]. Collectively, 
these results suggest that SARS-CoV-2 infection affects the 

epididymal microenvironment and interferes with sperm 
maturation. Therefore, the risk of epididymitis, especially 
in young aspiring parents, requires greater clinical attention. 
The key mechanisms associated with epididymal injury in 
SARS-CoV-2 are shown in Fig. 3.

Effect of SARS‑CoV‑2 on the prostate

The prostate, an essential accessory gland of the male repro-
ductive system, consists of the epithelium and stroma. The 
epithelial compartment secretes prostatic fluid, accounting 
for approximately one-fifth to one-third of the ejaculate vol-
ume. A large number of factors in the prostatic fluid regulate 
ejaculation and mediate sperm motility, semen liquefaction, 
and the clotting cycle [95]. Regarding the expression of 
ACE2 and TMPRSS2 in prostate tissues, single-cell RNA 
sequencing revealed that epithelial cells expressing ACE2 
and TMPRSS2 accounted for 0.32% and 18.65% of the total 
cells, respectively. Notably, 0.61% of the cells co-expressed 
ACE2 and TMPRSS2 [96]. Regarding the pathological char-
acteristics of the prostate following SARS-CoV-2 infection, 
Zhang et al. demonstrated for the first time that infected 
males had no detectable SARS-CoV-2 RNA in the expressed 
prostatic secretion (EPS), despite elevated levels of CRP, 
erythrocyte sedimentation, and IL-6 [97]. SARS-CoV-2 
RNA was also absent 80 d after complete clearance of the 
virus (based on RT-PCR) in mild, moderate, and severe 
pneumonia [80]. The hospitalized patients did not show 
signs of prostate inflammation, and the mean serum level 
of prostate-specific antigen was normal (1.13 ng/mL) [98]. 
The characteristics of the cited studies are listed in Table 3.

Indirect effects of COVID‑19 on male reproduction

Indirect injury to the HPG axis

Salonia et  al. reported that 85% of COVID-19 patients 
showed secondary hypogonadism with lower T levels, 
which predicted severe clinical outcomes [46]. A follow-
up study suggested that a slower recovery rate of T levels 
was associated with a higher burden of comorbid conditions. 
Different high-dose corticosteroid formulations for treating 
COVID-19 have drawn widespread attention [99, 100]. It 
is well established that the pituitary–gonadal axis can be 
disturbed by hypercortisolism [101]. Decreased serum T 
levels, perturbed spermatogenesis, and Sertoli cell dysfunc-
tion were associated with hypercortisolism in animal mod-
els [102–104]. Excessive treatment with corticosteroids for 
congenital adrenal hyperplasia in male patients appeared to 
decrease sperm quality and promote hypogonadism [105]. 
Compared with long-term corticosteroid treatment, high-
dose therapy for critical COVID-19 infections is the safer 
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approach, given the potential risks of cortisol drugs on tes-
tosterone production and semen quality.

Effects of COVID‑19‑mediated fever and inflammation 
on male reproduction

Higher scrotal temperatures caused by fever has an adverse 
impact on germ cell development as well as sperm DNA 
integrity, quality, and viability, and can transiently induce 
sperm apoptosis [106]. Fever was found to occur in 80% of 
infected patients, and was likely to decrease sperm quality, 
even in the absence of SARS-CoV-2 viral particles [107, 
108]. During recovery, patients presenting with fever had a 
decreased sperm volume, motility, concentration, and total 
number compared with those in patients without fever [66]. 
In addition, the secondary inflammatory response in the 
male reproductive tract is frequently associated with sub-
fertility [109]. The “cytokine storm” caused in severe and 
critical SARS-CoV-2 infections presents as the dysregula-
tion of several pro-inflammatory factors, including IL-6, 
IL-1β, IL-8, and TNF-α [110], which disrupts the integ-
rity and permeability of the BTB and potentially decreases 
semen quality and fertilization ability. Studies have shown 
that, even without the expression of SARS-CoV-2 RNA in 
semen plasma during infection or recovery, sperm count, 
concentration, and motility were downregulated and fre-
quently accompanied by alterations in the expression of 

oxidation and apoptosis markers [85, 111]. In general, the 
impact of COVID-19-mediated fever and inflammation on 
male fertility is unclear, especially as studies rarely regard 
the contribution of comorbidities and other pathologies. Fur-
ther studies are needed to clarify the relationship between 
reproductive injury and the myriad symptoms of COVID-19.

Diabetes: a potential cofactor affecting male reproduction 
in COVID‑19 patients

SARS-CoV-2 causes acute hyperglycemia and insulin resist-
ance in non-diabetic patients and exacerbates diabetes in 
pre-diabetic individuals [112–114], which is likely mediated 
by the increased expression of ACE2 in the exocrine glands 
and islets of the pancreas. SARS-CoV-2 infiltration with 
concomitant pancreatic injury has been observed in infected 
patients, which may cause acute β-cell dysfunction [115]. In 
addition, virus-induced ROS and pro-inflammatory cytokine 
production promote insulin resistance [116]. Markers of 
insulin resistance, such as the glucose index and triglyceride 
content, have been related to COVID-19 severity and mor-
tality rates [117]. Higher blood glucose levels were found 
to promote COVID-19 progression by facilitating cytokine 
production and viral replication in diabetic patients [118]. 
Mounting evidence indicates a relationship between diabetes 
and testicular injury in murine and human diabetic mod-
els [119–121]. Indeed, serum testosterone, FSH, LH, and 

Table 3   Effect of COVID-19 on epididymis and prostate parameters

References 
number

COVID-19 severity/stage Tissue assayed Study design Age range/median age Main conclusion

[90] Critical Testis, epididymis Cohort autopsy study 53–88 SARS-CoV-2 present in 
sperm, testis, blood–tes-
tis barrier, epididymis

[91] Testis, epididymis, semi-
niferous duct

Cohort autopsy study 22–83/49.5 Samples negative for 
SARS-CoV-2. Testis 
and seminiferous tubule 
injury, sperm and imma-
ture spermatocytes accu-
mulated in epididymis

[92] Testis Case report 14 Orchiepididymitis-associ-
ated with COVID-19

[93] Mild, moderate Testis, epididymis Cross-sectional study 18–55 No orchitis detected, 
42.3% of males had 
epididymitis

[94] Testis, epididymis Single-center-based 
study

Acute epididymitis 
or orchitis or orchi-
epididymitis was found 
in 22.5% patients

[97] Expressed prostatic 
secretion (EPS)

Case report 57.5 SARS-CoV-2 not detected 
in EPS

[98] Serum Case report 57.1 No prostate inflammation, 
serum prostate-specific 
antigen level was normal
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antioxidant levels along with sperm number and viability 
were increased after diabetes resistance treatment [122]. The 
apelin (APLN) peptide and its receptor are overactivated in 
the testes of diabetic patients, which promotes the dysfunc-
tion of the BTB and spermatogenesis. ML221, an antagonist 
of the APLN receptor, relieved BTB damage and enhanced 
spermatogenic ability in cultured human testicular cells 
[123]. In summary, current evidence shows that diabetes 
exacerbates the effect of COVID-19 on male reproduction.

SARS‑CoV‑2 vaccine and male fertility

A vaccine can provide effective protection for susceptible 
populations against the more serious symptoms of a infec-
tious disease [124]. At the end of 2020, several COVID-
19 vaccines were granted Emergency Use Authorization 
after third-phase clinical trials, which included attenuated 
amplicons from China and two mRNA vaccines from Mod-
erna and Pfizer [125, 126]. Numerous studies have inves-
tigated the safety of these vaccines in the short to medium 
term. Common side effects included local pain, swelling, 
redness at the injection site, fatigue, chills, and fever. Seri-
ous side effects have also been documented in rare cases, 
such as Bell’s pain, right leg paresthesia, and paroxysmal 
ventricular arrhythmia [127, 128]. In addition, the vaccines 
had a potential deteriorative effect on spermatogenesis in 
the recovery phase of males with persistent hypothyroid-
ism [78], resulting in elevated ROS content [57] and an 
inflammation storm in the testis [8, 129], which is similar 
to the physiological response that could theoretically occur 
via inoculation of COVID-19 [130]. These side effects can 
promote vaccine hesitancy (20.9% in males and 79.1% in 
females of the USA), along with fears that fertility could be 
affected [131]. Common concerns have also emerged regard-
ing sperm quality among couples receiving assisted repro-
ductive technology (ART) treatment and sperm donators 
[132, 133]. A small-cohort short follow-up (1–3 months) 
study of healthy males indicated that there were no notice-
able changes in sperm parameters after COVID-19 mRNA 
vaccines administration, including mRNA-1273 (Moderna) 
and BNT162b2 (Pfizer-BioNTech) [134–137]. A detailed 
analysis revealed that motility, DNA fragmentation, and the 
ultrastructure of sperm remained unchanged, while sperm 
concentration increased compared to that before three doses 
of mRNA vaccination [138]. A retrospective cohort study 
determined that there were no marked differences in sperm 
parameters after administration of the inactivated vaccine for 
SARS-CoV-2 after two doses [139]. Furthermore, vaccina-
tion with viral vectors or mRNA vaccines did not exacerbate 
poor fertility rates or sperm motility and concentration in 
patients with male-factor infertility [136, 140]. A meta-anal-
ysis showed that sperm quality was not affected by any of the 
mRNA COVID-19 vaccines [11]. A larger analysis involving 

subjects from seven countries concluded that there was no 
association between subfertility and COVID-19 vaccines, 
including BNT162b2 and mRNA-1273, in women or men 
[141]. mRNA vaccines also showed no relationship with the 
risk of developing orchitis and/or epididymitis [142]. Over-
all, COVID-19 vaccination has not affected sperm quality 
or testis and epididymis function. However, the long-term 
effect (> 10 years) of vaccination on male fertility requires 
a thorough follow-up investigation.

Conclusions and perspectives

It is clear that COVID-19 can cause dysfunction of the 
HPG axis [43–45]. Deviations in T levels reflected the 
pathological status of steroidogenesis in the testis, which 
was related to the dysregulated levels of LH and FSH in 
COVID-19-affected subjects. Moreover, the lowered T levels 
could cause erectile dysfunction and altered spermatogen-
esis, which promote subfertility [143]. Higher concentra-
tions of LH and FSH reflect testicular damage and other 
pathological outcomes [144]. Dysregulation of the HPG 
axis could result in not only hypothyroidism but also neu-
rodegenerative senescence, liver cirrhosis, and chronic kid-
ney disease [145]. The multiple possible mechanisms by 
which SARS-CoV-2 affects spermatogenesis are as follows: 
direct damage to testicular tissue or sperm; exaggeration of 
immune response, OS, and apoptosis mediated by SARS-
CoV-2 infection; dysregulation of hormone levels. However, 
SARS-CoV-2 may have longer-lasting effects on the HPG 
axis and spermatogenesis. First, several studies ignored 
the importance of simultaneously detecting hormone lev-
els and semen quality and did not consider the existence 
of SARS-CoV-2 in testicular tissue. Second, it is plausible 
to conclude that male reproduction is disturbed during the 
recovery phase [83]. Therefore, greater attention should 
be paid to the molecular mechanisms of male reproductive 
disorders and the long-term impact of COVID-19 to distin-
guish transient and irreversible injuries to the HPG axis and 
spermatogenesis. Furthermore, medical interventions, such 
as newly developed oral medications, should be considered 
during recovery to improve the transient subfertility state 
and avoid further deterioration of the reproductive system. 
Third, unlike for moderate and mild diseases states, data 
are lacking for reproductive outcomes in critical and severe 
cases. In addition, the relationship between disease sever-
ity, hormone levels, and semen parameters has not yet been 
reported. Finally, because of the high concentration of pro-
lactin, which inhibits the signaling of the HPG axis [146], 
prognosis and clinical management of COVID-19 could be 
improved by measuring the baseline level of prolactin in 
male patients.
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Although epididymal damage has been verified according 
to the clinical pathologic status, there is no evidence that 
the virus is present in the epididymis, and the pathologic 
changes observed in biopsy and autopsy are also limited. 
The analysis of sperm parameters and hormone levels is 
recommended in the evaluation of males with COVID-19 
diagnosed with epididymo-orchitis. The pathophysiologi-
cal changes observed in the epididymis are likely due to an 
exaggerated immune response or cytokine storm in cases of 
prolonged illness, though this requires further consideration. 
Furthermore, research indicated that the prostate may not be 
targeted by SARS-CoV-2; however, the relationship between 
EPS and semen parameters remains unclear. Regarding the 
potential influence of SARS-CoV-2 vaccines, follow-ups 
should be continued to accurately determine the effective 
recovery of spermatogenesis and reproductive capacity. 
Although sperm viability has not been influenced by any 
of the COVID-19 vaccines [134–136, 138, 139], hormone 
levels and clinical characteristics should not be neglected in 
follow-up studies, especially given the known side effects. 
An increasing number of vaccines have been approved for 
clinical use, and even if the features and side effects are simi-
lar among distinct vaccines, it is unlikely that results can be 
generalized to other vaccines for emergency use.

To date, five primary variants of SARS-CoV-2 have 
been reported, including alpha (B.1.1.7), beta (B.1.351), 
gamma (P.1), delta (B.1.617.2), and omicron (B.1.1.529). 
Although these variants are associated with lower morbid-
ity rates, they have shown higher transmission rates along 
with increased resistance to previous antiviral, antibody, 
and immune plasma treatments, which promotes the rein-
fection of recovered or vaccinated individuals, especially 
in the case of the omicron variant [147, 148]. Owing to its 
highly contagious nature, the omicron variant has aroused 
concerns of a new worldwide wave of COVID-19. In addi-
tion, findings also indicated a higher rate of asymptomatic 
cases associated with omicron infections, based on clini-
cal analysis and lung computed tomography [149, 150]. A 
delicate balance between inflammation and antiviral action 
occurs in asymptomatic patients, depending on the patho-
gen’s capacity to clear virus-specific T cells [151]. Moreo-
ver, higher functional cellular immune responses are trig-
gered in asymptomatic than in symptomatic individuals 
[151]. Higher levels of IL-2 and IFN-γ secretion were found 
in asymptomatic patients (including omicron-infected indi-
viduals), which were related to the increased production of 
IL-10, IL-6, IL-1β, and TNF-α triggered by virus-specific T 
cells [149, 152]. Therefore, asymptomatic individuals have a 
more robust cellular immune response than those with weak 
antiviral immunity.

In general, the innate immune response in the testicular 
microenvironment is counteracted by the immunosuppres-
sive system [153]. However, severe systemic inflammation 

can negatively affect the male reproductive system through 
blood-borne transmission or secondary inflammation [109, 
154]. Thus, the potential damage to the male reproductive 
system caused by SARS-CoV-2 cannot be neglected in 
asymptomatic individuals. While SARS-CoV-2 infection in 
young males is mostly mildly symptomatic or asymptomatic, 
its prevalence has been underestimated because children are 
often excluded from screening tests [155]. In fact, serologi-
cal analysis revealed that the rate of infection among chil-
dren under 18 years was 68% as compared with the reported 
33% from December 2021 to February 2022 [156]. Previ-
ous studies have shown that the integrity of the BTB can 
be compromised by SARS-CoV-2 infestation [76], which 
is linked to the production of nitric oxide, IL-6, and TNF-α 
and increased macrophage infiltration [76]. Since the BTB is 
only functional at the time of puberty [157], children could 
be at a higher risk of long-term COVID-19 infections with 
direct or indirect damage caused by SARS-CoV-2-related 
multisystem inflammation [155]. Therefore, the potential 
impact of SARS-CoV-2 infection on the development of the 
reproductive system of preadolescent or pubertal males and 
their fecundity should not be overlooked.

“COVID-19 illness” is used to describe prolonged symp-
tomatic infections or the persistence of symptoms after 
recovery [158]. Studies have indicated that “long COVID-
19” occurs in approximately 30% of infected individuals 
[159]. Davis et al. characterized COVID-19 through an 
online international survey conducted for 7 months. The 
common symptoms after 6 months were cognitive impair-
ment, fatigue, and post-exertional malaise. The mean preva-
lence of symptoms related to endocrine, reproductive, and 
genitourinary was 62.25% [160]. According to the largest 
cohort study, vaccination only 15% decreased the long-
term risk of COVID-19 [161]. The high prevalence of long 
COVID symptoms associated with the male reproductive 
system and the limited protection offered by vaccination 
emphasize the need for further research on the impact of the 
various SARS-CoV-2 variants on male reproduction. Fur-
thermore, more effective vaccines against various variants 
of SARS-CoV-2 need to be developed to reduce infection 
rates and long-COVID risks. Future studies should focus on 
the early diagnosis of reproductive abnormalities caused by 
COVID-19 to promote early treatment.
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