Skip to main content
Log in

Association of non-alcoholic fatty liver disease with total testosterone in non-overweight/obese men with type 2 diabetes mellitus

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Non-alcoholic fatty liver disease (NAFLD) is considered as both a vital risk factor and a consequence of type 2 diabetes mellitus (T2DM). Low total testosterone (TT) is common in men with T2DM, contributing to increased risks of metabolic diseases. This study aimed to investigate the association between TT levels and the prevalence of NAFLD in men with T2DM.

Methods

In this cross-sectional study, 1005 men with T2DM were enrolled in National Metabolic Management Center (MMC) of First Affiliated Hospital of Wenzhou Medical University between January 2017 and August 2021. NAFLD was diagnosed using ultrasound as described by the Chinese Liver Disease Association. Overweight/obesity was defined as body mass index (BMI) ≥ 25 kg/m2 according to WHO BMI classifications.

Results

Individuals without NAFLD had higher serum TT levels than those with NAFLD. After adjustments for potential confounding factors, the top tertile was significantly associated with lower prevalence of NAFLD compared with the bottom tertile of TT level [odds ratio (OR) 0.303, 95% confidence interval (CI) 0.281–0.713; P < 0.001]. The association between TT with NAFLD in individuals with normal weight (OR 0.175, 95% CI 0.098–0.315; P < 0.001) was stronger than in individuals with overweight/obesity (OR 0.509, 95% CI 0.267–0.971; P = 0.040). There was a significant interaction of TT with overweight/obesity (P for interaction = 0.018 for NAFLD).

Conclusion

Higher serum TT was significantly associated with a lower prevalence of NAFLD in men with T2DM. We found that the relationship of TT and NAFLD was stronger in individuals with non-overweight/obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

All the data collected and analyzed of this study was contained in this article.

References

  1. Zheng KI, Eslam M, George J, Zheng MH (2020) When a new definition overhauls perceptions of MAFLD related cirrhosis care. Hepatobiliary Surg Nutr 9(6):801–804. https://doi.org/10.21037/hbsn-20-725

    Article  PubMed  PubMed Central  Google Scholar 

  2. Younossi ZM (2019) Non-alcoholic fatty liver disease—a global public health perspective. J Hepatol 70(3):531–544. https://doi.org/10.1016/j.jhep.2018.10.033

    Article  PubMed  Google Scholar 

  3. Fan JG, Kim SU, Wong VW (2017) New trends on obesity and NAFLD in Asia. J Hepatol 67(4):862–873. https://doi.org/10.1016/j.jhep.2017.06.003

    Article  PubMed  Google Scholar 

  4. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  5. Polyzos SA, Kountouras J, Zavos Ch (2009) The multi-hit process and the antagonistic roles of tumor necrosis factor-alpha and adiponectin in non-alcoholic fatty liver disease. Hippokratia 13(2):127

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams LA, Waters OR, Knuiman MW, Elliott RR, Olynyk JK (2009) NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am J Gastroenterol 104(4):861–867. https://doi.org/10.1038/ajg.2009.67

    Article  PubMed  Google Scholar 

  7. Schindhelm RK, Heine RJ, Diamant M (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30(9):e94. https://doi.org/10.2337/dc07-0982. (author reply e95)

    Article  PubMed  Google Scholar 

  8. Harrison SA, Gawrieh S, Roberts K, Lisanti CJ, Schwope RB, Cebe KM et al (2021) Prospective evaluation of the prevalence of non-alcoholic fatty liver disease and steatohepatitis in a large middle-aged US cohort. J Hepatol 75(2):284–291. https://doi.org/10.1016/j.jhep.2021.02.034

    Article  PubMed  Google Scholar 

  9. Ding EL, Song Y, Malik VS, Liu S (2006) Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 295(11):1288–1299. https://doi.org/10.1001/jama.295.11.1288

    Article  CAS  PubMed  Google Scholar 

  10. Zitzmann M (2009) Testosterone deficiency, insulin resistance and the metabolic syndrome. Nat Rev Endocrinol 5(12):673–681. https://doi.org/10.1038/nrendo.2009.212

    Article  CAS  PubMed  Google Scholar 

  11. Kelly DM, Nettleship JE, Akhtar S, Muraleedharan V, Sellers DJ, Brooke JC et al (2014) Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice. Life Sci 109(2):95–103. https://doi.org/10.1016/j.lfs.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  12. Barbonetti A, Caterina Vassallo MR, Cotugno M, Felzani G, Francavilla S, Francavilla F (2016) Low testosterone and non-alcoholic fatty liver disease: evidence for their independent association in men with chronic spinal cord injury. J Spinal Cord Med 39(4):443–449. https://doi.org/10.1179/2045772314Y.0000000288

    Article  PubMed  PubMed Central  Google Scholar 

  13. Phan H, Richard A, Lazo M, Nelson WG, Denmeade SR, Groopman J et al (2021) The association of sex steroid hormone concentrations with non-alcoholic fatty liver disease and liver enzymes in US men. Liver Int 41(2):300–310. https://doi.org/10.1111/liv.14652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sookoian S, Pirola CJ (2017) Systematic review with meta-analysis: risk factors for non-alcoholic fatty liver disease suggest a shared altered metabolic and cardiovascular profile between lean and obese patients. Aliment Pharmacol Ther 46(2):85–95. https://doi.org/10.1111/apt.14112

    Article  CAS  PubMed  Google Scholar 

  15. Tian GX, Sun Y, Pang CJ, Tan AH, Gao Y, Zhang HY et al (2012) Oestradiol is a protective factor for non-alcoholic fatty liver disease in healthy men. Obes Rev 13(4):381–387. https://doi.org/10.1111/j.1467-789X.2011.00978.x

    Article  CAS  PubMed  Google Scholar 

  16. Apostolov R, Gianatti E, Wong D, Kutaiba N, Gow P, Grossmann M et al (2022) Testosterone therapy reduces hepatic steatosis in men with type 2 diabetes and low serum testosterone concentrations. World J Hepatol 14(4):754–765. https://doi.org/10.4254/wjh.v14.i4.754

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maseroli E, Comeglio P, Corno C, Cellai I, Filippi S, Mello T et al (2021) Testosterone treatment is associated with reduced adipose tissue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J Endocrinol Invest 44(4):819–842. https://doi.org/10.1007/s40618-020-01381-8

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Wang W, Ning G (2019) Metabolic management center: an innovation project for the management of metabolic diseases and complications in China. J Diabetes 11(1):11–13. https://doi.org/10.1111/1753-0407.12847

    Article  CAS  PubMed  Google Scholar 

  19. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419. https://doi.org/10.1007/BF00280883

    Article  CAS  PubMed  Google Scholar 

  20. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157–163. https://doi.org/10.1016/S0140-6736(03)15268-3

    Article  Google Scholar 

  21. Lu J, Bi Y, Wang T, Wang W, Mu Y, Zhao J et al (2014) The relationship between insulin-sensitive obesity and cardiovascular diseases in a Chinese population: results of the REACTION study. Int J Cardiol 172(2):388–394. https://doi.org/10.1016/j.ijcard.2014.01.073

    Article  PubMed  Google Scholar 

  22. Zeng MD, Li YM, Chen CW, Lu LG, Fan JG, Wang BY et al (2008) Chinese national consensus workshop on nonalcoholic fatty liver disease. Guidelines for the diagnosis and treatment of alcoholic liver disease. J Dig Dis 9(2):113–116. https://doi.org/10.1111/j.1751-2980.2008.00332.x

    Article  PubMed  Google Scholar 

  23. Kim S, Kwon H, Park JH, Cho B, Kim D, Oh SW et al (2012) A low level of serum total testosterone is independently associated with nonalcoholic fatty liver disease. BMC Gastroenterol 12:69. https://doi.org/10.1186/1471-230X-12-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jaruvongvanich V, Sanguankeo A, Riangwiwat T, Upala S (2017) Testosterone, sex hormone-binding globulin and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Ann Hepatol 16(3):382–394. https://doi.org/10.5604/01.3001.0009.8593

    Article  CAS  PubMed  Google Scholar 

  25. Lazo M, Zeb I, Nasir K, Tracy RP, Budoff MJ, Ouyang P et al (2015) Association between endogenous sex hormones and liver fat in a multiethnic study of atherosclerosis. Clin Gastroenterol Hepatol 13(9):1686–93.e2. https://doi.org/10.1016/j.cgh.2014.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seo NK, Koo HS, Haam JH, Kim HY, Kim MJ, Park KC et al (2015) Prediction of prevalent but not incident non-alcoholic fatty liver disease by levels of serum testosterone. J Gastroenterol Hepatol 30(7):1211–1216. https://doi.org/10.1111/jgh.12935

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Liu L, Wang B, Chen D, Wang J (2015) Nonalcoholic fatty liver disease and alteration in semen quality and reproductive hormones. Eur J Gastroenterol Hepatol 27(9):1069–1073. https://doi.org/10.1097/MEG.0000000000000408

    Article  CAS  PubMed  Google Scholar 

  28. Saez-Lopez C, Villena JA, Simó R, Selva DM (2020) Sex hormone-binding globulin overexpression protects against high-fat diet-induced obesity in transgenic male mice. J Nutr Biochem 85:108480. https://doi.org/10.1016/j.jnutbio.2020.108480

    Article  CAS  PubMed  Google Scholar 

  29. Le TN, Nestler JE, Strauss JF 3rd, Wickham EP 3rd (2012) Sex hormone-binding globulin and type 2 diabetes mellitus. Trends Endocrinol Metab 23(1):32–40. https://doi.org/10.1016/j.tem.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  30. Xita N, Georgiou I, Lazaros L, Psofaki V, Kolios G, Tsatsoulis A (2008) The role of sex hormone-binding globulin and androgen receptor gene variants in the development of polycystic ovary syndrome. Hum Reprod 23(3):693–698. https://doi.org/10.1093/humrep/dem382

    Article  CAS  PubMed  Google Scholar 

  31. Li C, Ford ES, Li B, Giles WH, Liu S (2010) Association of testosterone and sex hormone-binding globulin with metabolic syndrome and insulin resistance in men. Diabetes Care 33(7):1618–1624. https://doi.org/10.2337/dc09-1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeap BB, Marriott RJ, Antonio L, Raj S, Dwivedi G, Reid CM et al (2022) Associations of serum testosterone and sex hormone-binding globulin with incident cardiovascular events in middle-aged to older men. Ann Intern Med 175(2):159–170. https://doi.org/10.7326/M21-0551

    Article  PubMed  Google Scholar 

  33. Di Stasi V, Maseroli E, Rastrelli G, Scavello I, Cipriani S, Todisco T et al (2021) SHBG as a marker of NAFLD and metabolic impairments in women referred for oligomenorrhea and/or hirsutism and in women with sexual dysfunction. Front Endocrinol (Lausanne). 12:641446. https://doi.org/10.3389/fendo.2021.641446

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB (2006) Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab 91(3):843–850. https://doi.org/10.1210/jc.2005-1326

    Article  CAS  PubMed  Google Scholar 

  35. Ghanim H, Dhindsa S, Abuaysheh S, Batra M, Kuhadiya ND, Makdissi A et al (2018) Diminished androgen and estrogen receptors and aromatase levels in hypogonadal diabetic men: reversal with testosterone. Eur J Endocrinol 178(3):277–283. https://doi.org/10.1530/EJE-17-0673

    Article  CAS  PubMed  Google Scholar 

  36. Marino L, Jornayvaz FR (2015) Endocrine causes of nonalcoholic fatty liver disease. World J Gastroenterol 21(39):11053–11076. https://doi.org/10.3748/wjg.v21.i39.11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J et al (2000) Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci U S A 97(23):12735–12740. https://doi.org/10.1073/pnas.97.23.12735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maffei L, Murata Y, Rochira V, Tubert G, Aranda C, Vazquez M et al (2004) Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab 89(1):61–70. https://doi.org/10.1210/jc.2003-030313

    Article  CAS  PubMed  Google Scholar 

  39. Mårin P, Holmäng S, Jönsson L, Sjöström L, Kvist H, Holm G et al (1992) The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int J Obes Relat Metab Disord 16(12):991–997

    PubMed  Google Scholar 

  40. Selvin E, Feinleib M, Zhang L, Rohrmann S, Rifai N, Nelson WG et al (2007) Androgens and diabetes in men: results from the third national health and nutrition examination survey (NHANES III). Diabetes Care 30(2):234–238. https://doi.org/10.2337/dc06-1579

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Zhao Y, Xu C, Hong Y, Lu H, Wu J et al (2014) Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Sci Rep 4:5832. https://doi.org/10.1038/srep05832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eguchi Y, Mizuta T, Sumida Y, Ishibashi E, Kitajima Y, Isoda H et al (2011) The pathological role of visceral fat accumulation in steatosis, inflammation, and progression of nonalcoholic fatty liver disease. J Gastroenterol 46(Suppl 1):70–78. https://doi.org/10.1007/s00535-010-0340-3

    Article  CAS  PubMed  Google Scholar 

  43. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289(5487):2122–2125. https://doi.org/10.1126/science.289.5487.2122. (PMID: 11000114)

    Article  PubMed  Google Scholar 

  44. Russell SH, Small CJ, Stanley SA, Franks S, Ghatei MA, Bloom SR (2001) The in vitro role of tumour necrosis factor-alpha and interleukin-6 in the hypothalamic-pituitary gonadal axis. J Neuroendocrinol 13(3):296–301. https://doi.org/10.1046/j.1365-2826.2001.00632.x

    Article  CAS  PubMed  Google Scholar 

  45. Vignozzi L, Filippi S, Comeglio P, Cellai I, Sarchielli E, Morelli A et al (2014) Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit. Mol Cell Endocrinol 384(1–2):143–154. https://doi.org/10.1016/j.mce.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  46. Isidori AM, Caprio M, Strollo F, Moretti C, Frajese G, Isidori A et al (1999) Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab 84(10):3673–3680. https://doi.org/10.1210/jcem.84.10.6082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the individuals involved in the present study. We also thank the support of all the colleagues in the Department of Endocrine and Metabolic Diseases at the First Affiliated Hospital of Wenzhou Medical University.

Funding

This work was funded by the Natural Science Foundation of Zhejiang Province (Project No. LY20H070003) and the National Natural Science Foundation of China (81900737).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported. XJG designed the experiments. LJY, JZZ, YFZ, ZYH, LJD, XG, XYH, JL, YQL, LYP, and XXZ performed the experiments. JZZ, LJY, and XJG analyzed and interpreted the data. LJY, JZZ, and XH wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to X. J. Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Institutional Review Board of First Affiliated Hospital of Wenzhou Medical University (Project No. KY2021-173).

Informed consent

Written consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L.J., Zhou, J.Z., Zheng, Y.F. et al. Association of non-alcoholic fatty liver disease with total testosterone in non-overweight/obese men with type 2 diabetes mellitus. J Endocrinol Invest 46, 1565–1572 (2023). https://doi.org/10.1007/s40618-023-02006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02006-6

Keywords

Navigation