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Abstract
Purpose  Patients with type 2 diabetes (T2D) have demonstrated a higher risk for developing more severe cases of COVID-
19, but the complex genetic mechanism between them is still unknown. The aim of the present study was to untangle this 
relationship using genetically based approaches.
Methods  By leveraging large-scale genome-wide association study (GWAS) summary statistics of T2D and COVID-19 
severity, linkage disequilibrium score regression and Mendelian randomization (MR) analyses were utilized to quantify the 
genetic correlations and causal relationships between the two traits. Gene-based association and enrichment analysis were 
further applied to identify putative functional pathways shared between T2D and COVID-19 severity.
Results  Significant, moderate genetic correlations were detected between T2D and COVID-19 hospitalization (rg = 0.156, 
SE = 0.057, p = 0.005) or severe disease (rg = 0.155, SE = 0.057, p = 0.006). MR analysis did not support evidence for a causal 
effect of T2D on COVID-19 hospitalization (OR 1.030, 95% CI 0.979, 1.084, p = 0.259) or severe disease (OR 0.999, 95% 
CI 0.934, 1.069, p = 0.982). Genes having pgene < 0.05 for both T2D and COVID-19 severe were significantly enriched for 
biological pathways, such as response to type I interferon, glutathione derivative metabolic process and glutathione deriva-
tive biosynthetic process.
Conclusions  Our findings further confirm the comorbidity of T2D and COVID-19 severity, but a non-causal impact of T2D 
on severe COVID-19. Shared genetically modulated molecular mechanisms underlying the co-occurrence of the two disorders 
are crucial for identifying therapeutic targets.
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Introduction

As of 14 April 2022, SARS-CoV-2 infection has killed over 
6.1 million of individuals and has posed a serious threat to 
public health worldwide [1, 2]. There is high heterogeneity 

in clinical severity of SARS-CoV-2 infection, ranging from 
asymptomatic to fatal [3]. Solid evidence from epidemiolog-
ical studies reported that type 2 diabetes (T2D) is strongly 
associated with COVID-19 adverse outcomes [4–10]. But 
whether the occurrence of T2D and severe COVID-19 is 
coincidence or causally associated has not been determined 
due to the limited number of cases and follow-up time, 
and whether this association is attributed to the correlation 
between T2D and other comorbidities remains unclear.

Therefore, a better understanding of the pathogenic mech-
anism underlying the co-occurrence of T2D and COVID-
19 severity is warranted, which may help to allocate proper 
medical resource, make vaccination decisions for patients 
with T2D as well as develop effective therapeutic strategies 
for severe COVID-19. Recently, shared genetic architecture 
can provide insight into the biological basis of the comor-
bidity phenomenon. For example, Fadista et al. observed 
shared genetic overlap between idiopathic pulmonary 
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fibrosis and severe COVID-19 [11]. A recent study detected 
strong genetic correlations between gastro-esophageal reflux 
disease and COVID-19 severity [12]. Both T2D and severe 
COVID-19 are moderately heritable, with estimates from the 
literature ranging from approximately 18.0% for T2D [13] 
and 6.5% for severe COVID-19 [14], respectively. Moreo-
ver, co-shared genetic etiology between T2D and numerous 
psychiatric disorders characterized by both internalizing and 
externalizing symptomatology that also shared molecular 
genetics with COVID-19 outcomes [15, 16]. Therefore, 
we speculated that genetic determinants contribute to the 
comorbidity of T2D with severe COVID-19.

To fill this urgent gap, we utilized large-scale genome-
wide association study (GWAS) datasets to appraise genetic 
correlations, potential causality, and shared genetic compo-
nents between T2D and COVID-19 severity.

Methods

Data source

The dataset of T2D was obtained from the most recent 
meta-analysis of T2D conducted by Mahajan et al. based 
on 32 European-descent GWASes, reaching 898,130 indi-
viduals [13]. Meanwhile, the T2D-unadjusted for BMI and 
T2D-adjusted for BMI datasets are subsets of the GWASes 
meta-analysis of T2D conducted by Mahajan et al. [13]. As 
obesity is an established risk factor for both T2D and severe 
COVID-19, we selected the BMI-adjusted T2D-association 
data for analysis in the current study. Summary genetic 
association estimates for COVID-19 severity (hospitaliza-
tion and severe disease) were extracted from largest GWAS 
meta-analysis of COVID-19 to data, by the COVID-19 
Host Genetics Initiative (HGI, round 5, shared publicly on 
18 January 2021) [17]. The hospitalized outcome compared 
9986 hospitalized COVID-19 patients (vs. 1,877,672 general 
population). The severe disease outcome compared 5101 
confirmed as "very severe respiratory" cases (vs. 1,383,241 
general population). The details of these GWASes were elab-
orated in Supplementary Table 1 and further information is 
provided elsewhere [13, 17, 18]. To minimize the potential 
bias due to ethnic heterogeneity, participants included in the 
above summary statistics were restricted to European ances-
try only. Since all analyses were based on publicly available 
data, no ethical approval was required for present study.

Linkage disequilibrium score regression (LDSC) 
of cross‑trait genetic correlation

We applied LDSC to estimate single nucleotide polymor-
phism (SNP)-based heritability (h2) of T2D and COVID-19 
severity (including hospitalization and severe disease) as well 

as their genetic correlation (rg) [19, 20]. Briefly, LDSC carried 
out a weighted linear model by regressing the cross products 
of z statistics for two phenotypes on the LD scores across 
all available genetic variants. We used the pre-computed LD 
scores of European samples from the 1000 Genomes Project 
provided in the website of this software (http://​github.​com/​
bulik/​ldsc). The regression slope provides an estimation of 
genetic correlation between T2D and COVID-19 severity.

Assessing the causality of T2D with COVID‑19 
severity

Selection of genetic instruments

Independent T2D-related SNPs (p < 5 × 10–8) were initially 
selected as the instrumental variables (IVs) for MR analy-
ses. Where an initial genetic instrument was not present in 
the outcome GWAS datasets (here, COVID-19 hospitaliza-
tion and severe disease), it can be replaced by a suitable 
proxy variant that were in high LD with the initial vari-
ant (r2 > 0.6). Furthermore, we computed R2 of each T2D-
related SNP and calculated the F statistic with the following 
formula: F statistic = R2 × (SampleSize − 2)/(1 − R2) [21, 
22]. A threshold of F statistic over 10 indicated lower risk 
of weak instrument bias [22].

Mendelian randomization analyses

To investigate causality of T2D with COVID-19 severity, two-
sample MR analyses were employed across four different MR 
methods: inverse-variance weighted (IVW) [23, 24], weighted-
median [25], weighted mode [26] and MR Egger [27] methods. 
To ensure the robustness of results, Cochran Q test and MR-
Egger intercept test were used to examine heterogeneity and 
directional horizontal pleiotropy, respectively. Leave-one-out 
analysis and MR-Pleiotropy Residual Sum and Outlier (MR-
PRESSO) were used to identify outlier IVs reflecting pleio-
tropic bias [28]. We further applied the PhenoScanner v2 [29] 
to check whether any of the selected IVs for T2D were associ-
ated (p < 1 × 10–5) with other phenotypes at risk of affecting 
COVID-19 severity, restricting to obesity and vascular or heart 
problems diagnosed by doctor: high blood pressure.

All MR analyses were carried out using the R packages 
''TwoSampleMR'', ''MendelianRandomization'' and ''MR-
PRESSO'' [30, 31].  A p value less than 0.05 was considered 
as statistically significant.

Gene‑based association and enrichment analysis

Gene-based association analysis was conducted using Multi-
marker Analysis of Genomic Annotation (MAGMA) based 
on SNP-wise mean model [30]. SNPs were assigned to a gene 
if they located within the gene body or mapped within the 
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20 kb upstream or downstream region. The Phase 3 of 1000 
Genomes European population was used for reference panel 
to calculate the LD information. The maximum and minimum 
numbers of permutations were set to ten thousand and ten for 
per gene, respectively. The gene-based p value was calculated 
based on asymptotic sampling distribution. Potentially pleio-
tropic genes that were significantly associated with both T2D 
and COVID-19 severity with p values less than 0.05 were 
identified for the subsequent gene set enrichment analysis. 
The Gene Ontology (GO) enrichment analysis was carried 
out using the "clusterProfiler" package with the ontology term 
"BP" for biological process [31]. p values were adjusted for 
multiple comparisons using the Benjamini–Hochberg method.

Results

Genetic correlation of T2D with COVID‑19 severity

The SNP-based heritability was estimated to 17.53% 
(SE = 0.013) for T2D, 0.20% (SE = 0.0005) for COVID-19 

hospitalization, and 0.35% (SE = 0.0007) for COVID-19 
severe. Significant positive genetic correlations between 
T2D and COVID-19 hospitalization (rg = 0.156, SE = 0.057, 
p = 0.005) or severe COVID-19 (rg = 0.155, SE = 0.057, 
p = 0.006) were detected with the LDSC software.

Causal relationship assessment between T2D 
and COVID‑19 severity

A total of 191 independent SNPs were included as IVs for 
T2D, the F-statistic values for each SNP was above the 
threshold 10 (ranging from 28 to 1280, with means of 70) 
(Supplementary Table 2). Genetically predicted T2D was not 
associated with COVID-19 hospitalization or severe disease 
across four MR approaches (Table 1). Furthermore, the test-
ing of Cochran’s Q test suggested evidence of heterogene-
ity, and MR-PRESSO detected horizontal pleiotropy outliers 
across estimates of included SNPs for COVID-19 hospitali-
zation (Supplementary Table 3 and Fig. 1). After removing 
the outliers, no heterogeneity for T2D remained and consist-
ent null causal association was observed (all p > 0.05). In 

Table 1   Causal relationships 
of T2D on COVID-19 severity 
estimated by approaches 
of IVW, weighted median, 
weighted mode and MR Egger

T2D type 2 diabetes, IVW inverse-variance weighted, MR Egger Mendelian randomization Egger, IVs 
instrumental variables, OR odd ratio, CI confidence interval, SNPs single nucleotide polymorphisms
a MR-PRESSO outliers: rs1801212, rs10406431, and rs3768321
b Other phenotype: associated with one or more risk factors for COVID-19 severity (see Supplementary 
Table S4)

Outcome IVs OR 95% CI lower 95% CI upper P value Methods

Using all SNPs
 Hospitalization 181 1.030 0.979 1.084 0.259 IVW

181 1.027 0.937 1.125 0.572 Weighted median
181 1.021 0.932 1.119 0.648 Weighted mode
181 0.930 0.830 1.043 0.216 MR-Egger

 Severe disease 186 0.999 0.934 1.069 0.982 IVW
186 0.987 0.866 1.125 0.845 Weighted median
186 0.972 0.855 1.105 0.667 Weighted mode
186 0.940 0.812 1.089 0.409 MR-Egger

Using SNPs with no MR-PRESSO outliersa

 Hospitalization 178 1.028 0.979 1.079 0.263 IVW
178 1.027 0.936 1.126 0.576 Weighted median
178 1.021 0.927 1.124 0.673 Weighted mode
178 0.940 0.844 1.046 0.258 MR-Egger

Using SNPs with no other phenotypeb

 Hospitalization 163 1.031 0.974 1.091 0.297 IVW
163 1.028 0.932 1.135 0.582 Weighted median
163 1.029 0.932 1.136 0.571 Weighted mode
163 0.934 0.825 1.056 0.277 MR-Egger

 Severe disease 168 0.990 0.920 1.065 0.778 IVW
168 0.987 0.851 1.145 0.864 Weighted median
168 0.993 0.858 1.151 0.929 Weighted mode
168 0.967 0.828 1.129 0.669 MR-Egger
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addition, leave-one-out analysis did not detect any leverage 
points with significant influence (Supplementary Fig. 2). We 
further utilized the PhenoScanner tool to check if the SNPs 
used in this MR study were associated with any other phe-
notypes. Eighteen SNPs were associated with at least one of 
obesity and high blood pressure as shown in Supplementary 
Table 4. After removing these SNPs, non-causal effect esti-
mation remained for COVID-19 hospitalization and severe 
disease (all p > 0.05) (Table 1).

Gene‑based analysis and functional enrichment 
analyses

MAGMA gene-based association analysis identified 9 005, 
1 438 and 1 393 genes nominally significant (pgene < 0.05) 
in the T2D, COVID-19 hospitalization, and severe disease 
GWAS level association results, respectively. Then, by 
leveraging gene-based test outputs, we looked for over-
lapping genes between T2D and COVID-19 hospitaliza-
tion, and severe disease, and revealed a total of 770 and 
784 significantly enriched genes shared by the two disor-
ders at pgene < 0.05, respectively. Further GO enrichment 
analysis identified 58, 16 enriched biological pathways 
between T2D and COVID-19 hospitalization, severe dis-
ease at pFDR less than 0.2, respectively, including response 
to type I interferon (GO:0034340), glutathione derivative 
metabolic process (GO:1901685), glutathione derivative 
biosynthetic process (GO:1901687), regulation of ATPase 

activity (GO:0043462), natural killer cell activation involved 
in immune response (GO:0002323), interleukin-7-mediated 
signaling pathway (GO: 0038111), etc. (Supplementary 
Tables 5–6).

Discussion

By leveraging the genetic correlation estimation, MR anal-
ysis, gene-based association and enrichment analyses, our 
results provided insights into the relationship between T2D 
and severe COVID-19.

We detected positive genetic correlations and further 
identified shared molecular mechanisms between T2D and 
severe COVID-19. Some of the molecular mechanisms that 
lead to T2D are also crucial in the progression of COVID-
19. In agreement with this, Byun et al. utilized the sum-
marized data from the UK Biobank observed robust posi-
tive genetic correlations between diabetes and COVID-19 
severity (rg = 0.254) or hospitalization (rg = 0.309) [32]. We 
found that genetically predicted T2D did not increase the 
risk of COVID-19 severity, in keeping with earlier MR stud-
ies employing data from the previous data freeze (COVID-
19 HGI, release 3 and 4, 2020) with smaller sample size for 
hospitalized as well as severe COVID-19 cases [33, 34]. Our 
current work also improves on previous MR investigations, 
as multiple complementary MR techniques and sensitivity 
analysis (MR-PRESSO and manually pruning pleiotropic 

Fig. 1   Scatter plots for effect sizes of SNPs for T2D and those for 
COVID-19 hospitalization and severe disease. The x-axis represents 
the effect size of SNPs on T2D; the y-axis represents the effect size 
of SNPs on COVID-19 hospitalization (A) and severity (B). Colors 

of fitted line represents for four MR approaches. T2D type 2 diabetes, 
SNPs single nucleotide polymorphisms, MR Mendelian randomiza-
tion
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variants) were performed to appraise the robustness of 
causal inference.

The relation between T2D and severe COVID-19 is 
more likely to be coincidental rather than causal, some 
other mechanisms of connection may account for their co-
occurrence. This notion is supported by the results of our 
gene-set analysis, which identified common shared etio-
logical pathways underlying T2D and COVID-19 severity 
such as response to type I interferon, glutathione derivative 
metabolic process, and glutathione derivative biosynthetic 
process. T2D and severe COVID-19 are hypothesized to be 
linked by several pathophysiological mechanisms includ-
ing the role of inflammation, altered immune status, glucose 
homeostasis and activation of the renin–angiotensin–aldos-
terone system [35]. Notably, inflammation is central to the 
aetiology of the two traits [36]. The type I interferon (INF, 
INF-α and INF-β) response induce the expression of vari-
ous interferon-stimulated genes (ISGs) that confer antivi-
ral activities to host cells, but the aberrant and inappropri-
ate activation can exacerbate inflammation [37], and this 
response was significantly enriched biological mechanism 
underpinning T2D and COVID-19 hospitalization and severe 
disease. Delayed but exaggerated type I INF responses, asso-
ciated with hyperinflammation and contributing to severe 
progression of COVID-19, were observed in patients with 
severe COVID-19 [38]. Specifically, in early stage of infec-
tion, SARS-CoV-2 inhibits the host type I INF responses, 
resulting in delayed virus clearance and higher SARS-CoV-2 
viral loads, which makes patients have a higher risk of devel-
oping severe disease [39]. A recent study reported that high 
glucose suppressed type I INF production and subsequent 
signaling in human peripheral blood mononuclear cells [40]. 
Another study also found that dendritic cells, which are the 
“professional” IFN producing cells, are poor producers of 
INF-α in human diabetes [41]. Furthermore, Bhavya et al. 
suggested that host microRNAs play a pivotal role in linking 
the diabetes and COVID-19 severity [42].

"Glutathione derivative metabolic process" and "glu-
tathione derivative biosynthetic process" are well con-
firmed in the pathway of T2D and severe COVID-19 
illness in present research. Glutathione (GSH), a thiol-con-
taining tripeptide made up of L-glutamate, cysteine and 
glycine, exerts function against oxidative stress in most 
living organisms, based on its redox buffering action and 
abundance in the cell [43, 44]. The main cause of oxida-
tive stress is an imbalance between creation and buildup 
of reactive oxygen species (ROS) [45]. Angiotensin-con-
verting enzyme 2 (AEC2), the receptor of SARS-CoV-2, 
forms angiotensin (Ang) 1–7 from Ang II [46]. High Ang 
II concentrations and low Ang 1–7 concentrations lead 
to oxidative stress and, consequently, causes oxidation of 
the cysteine residues in the peptidase domain of receptors 

ACE2 as well as the receptor binding domain of proteins 
SARS-CoV-2 spike protein, being associated with more 
severe forms of COVID-19 [45]. T2D was widely con-
sidered to be associated with oxidative damage, and char-
acterized by increased oxidized glutathione (GSSG/GSH 
ratio and decreased GSH content in different tissues [47]. 
Weaken antioxidant defense system exposed to the patho-
genesis of T2D, might help to explain why patients with 
T2D are more likely to develop severe COVID-19 illness.

The major advantage of our current study is the effi-
cient use of a series of genetic statistical techniques to 
address an important clinical association between T2D and 
COVID-19 severity at the molecular genetic level. How-
ever, several limitations ought to be noted. First, accord-
ing to lack of the individual genetic data, we were unable 
to quantify the proportion of sample overlap between 
T2D and COVID-19 severity datasets, which may con-
found LDSC and MR analyses. Second, study participants 
included in the COVID-19 severity GWAS meta-analysis 
were not screened for T2D at baseline. In MR studies, the 
existence of exposure in the outcome dataset may have an 
impact on the causal estimates. However, this is a general 
restriction of two-sample MR analyses and is inevitable 
without individual-level data [48]. Third, since all analyses 
herein utilized summary data from Europeans and focused 
on severe COVID-19, the associations may not apply to 
other populations or patients with asymptomatic to mod-
erate COVID-19. Lastly, genetic factors only explained a 
tiny fraction of T2D etiology, the causality of T2D and 
severe COVID-19 cannot be fully ruled out with these 
analyses.

In conclusion, our findings further confirm the comor-
bidity of T2D and COVID-19 severity, but a non-causal 
impact of T2D on severe COVID-19. Shared genetically 
modulated molecular mechanisms underlying the co-
occurrence of the two disorders are crucial for identifying 
therapeutic targets.
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