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Abstract
Purpose  To evaluate circulating soluble α-klotho (sαKL) levels in GHD children before and after 12 months of GH treat-
ment (GHT).
Methods  Auxological and basal metabolic parameters, oral glucose tolerance test for glucose and insulin levels, insulin 
sensitivity indices and klotho levels were evaluated before and after 12 months of follow-up in 58 GHD children and 56 
healthy controls.
Results  At baseline, GHD children showed significantly lower growth velocity standard deviation score (SDS) (p < 0.001), 
bone/chronological age ratio (p < 0.001), GH peak and area under the curve (AUC) after arginine test (ARG) (both p < 0.001) 
and glucagon stimulation test (GST) (p < 0.001 and 0.048, respectively), IGF-1 (p < 0.001), with higher BMI (SDS) 
(p < 0.001), WC (SDS) (p = 0.003) and sαKL (p < 0.001) than controls. After 12 months of GHT, GHD children showed a 
significant increase in height (SDS) (p < 0.001), growth velocity (SDS) (p < 0.001), bone/chronological age ratio (p < 0.001) 
IGF-1 (p < 0.001), fasting insulin (p < 0.001), Homa-IR (p < 0.001) and sαKL (p < 0.001) with a concomitant decrease in 
BMI (SDS) (p = 0.002) and WC (SDS) (p = 0.038) than baseline. At ROC curve analysis, we identified a sαKL cut-off to 
discriminate controls and GHD children of 1764.4 pg/mL in females and 1339.4 pg/mL in males.
At multivariate analysis, the independent variables significantly associated with sαKL levels after 12 months of GHT were 
the oral disposition index (p = 0.004, β = 0.327) and IGF-1 (p = 0.019, β = 0.313).
Conclusions  Gender-related sαKL may be used as a marker of GHD combined to GH and IGF-1. Insulin and IGF-1 are 
independently associated with sαKL values after 12 months of GHT.
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Introduction

Growth hormone deficiency (GHD) affects about 1 out 
of 4000 children [1]. GHD is characterized by short stat-
ure, altered body composition (reduced muscle mass and 
increased adiposity) [2, 3] as well as metabolic alterations 
(increase in fat mass) [4–6], and recombinant human (rh) 

GH treatment (GHT) may result in a reversal of these effects 
[7, 8].

The diagnosis of GHD is based on many factors including 
clinical, auxological, and biochemical parameters. As GH is 
secreted in a pulsatile way, basal GH measurements are use-
less, and the secretion is assessed using stimulation tests [9].

Children with normal GH secretion and GHD frequently 
show superimposable peak GH concentrations [9]. Only a 
minority of children with idiopathic GHD remain GH defi-
cient after discontinuation of GHT [10–13], and about 20% 
of healthy children may test “deficient” if a single stimula-
tion test is used [14]. For these reasons, two stimulation tests 
are recommended to assess the diagnosis of GHD [14]. In 
addition, serum biomarkers (e.g., IGF-1, IGFBP-3) are not 
fully accurate in distinguishing between GH sufficient and 
deficient children [15].
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A strong relationship between klotho protein and GH/
IGF-1 system has been demonstrated [16].

The Klotho gene was first identified in 1997 as an anti-
aging agent [17]. An impairment in its genetic expression 
has been associated with short lifespan, infertility, athero-
sclerosis, metabolic syndrome, skin atrophy, osteoporosis, 
and emphysema in mice [17], while over-expression leads 
to a longer life span [18, 19]. The Klotho gene encodes the 
alpha klotho (α-klotho) protein composed by an intracellu-
lar and transmembrane domain and an extracellular domain 
[20, 21]. The transmembrane form (mKL) is a co-receptor 
of fibroblast growth factor 23 (FGF23), which regulates 
calcium and phosphorus homeostasis [20, 22]. From the 
cleavage of the extracellular domain mediated by proteases 
ADAM, can be obtained the soluble form (sαKL), a circulat-
ing molecule with endocrine functions [23]. Several effects 
of sαKL have been reported on insulin physiology, inhibition 
of insulin/IGF-1 receptor phosphorylation and signalling 
events, such as tyrosine phosphorylation of insulin receptor 
substrates and phosphoinositide 3-kinase, thereby blocking 
insulin and IGF-1 signalling [18, 24].

In the current study, we evaluated sαKL levels in a cohort 
of GHD children at diagnosis, and during GH treatment 
(GHT) to assess its potential diagnostic role in GHD.

Materials and methods

We prospectively studied 58 pre-pubertal children (32 males 
and 26 females, mean age 7.8 ± 1.7 years) with isolated idi-
opathic GHD, consecutively admitted to the Endocrinol-
ogy Section of the University of Palermo during the years 
2016–2018 and treated with rhGH for at least 12 months. 
Fifty-six healthy short children, matched for sex (36 M, 20 
F), age (mean age 8.4 ± 1.9 years) and pubertal status, were 
recruited among patients referred for assessment of short 
stature as a control group and followed up at baseline and 
after 12 months. Both controls and GHD children were pre-
pubertal during the observation period.

Exclusion criteria were the following: having a multiple 
pituitary hormone deficiency or panhypopituitarism, not 
having completed the 12 months of follow-up and pubertal 
onset before and during treatment. The diagnosis of GHD 
was assessed according the criteria of the GH Research 
Society [9]. Both the patients and the controls underwent 
two stimulation tests (arginine and glucagon) for their short 
stature or reduced height velocity SDS. Controls had a GH 
response > 10 μg/L to both stimulation tests.

All patients with GHD received replacement recombinant 
human GH therapy once daily at bedtime with a pen injec-
tion system. Children were treated with an initial mean daily 
dose of 0.025 mg/kg from baseline until the sixth month 
and a mean dose of 0.028 mg/kg from months 6 to 12. The 
decision to change the dose of rhGH therapy was based on 

the biochemical and auxological parameters, as previously 
reported [25]. During the entire follow-up IGF-1 levels were 
maintained within the normal range for age (81.3–255.3 
mcg/L for males and 85.9–323 mcg/L for females).

Study protocol

At baseline and after 12 months of follow-up in controls 
and GHD children body height, growth velocity, body mass 
index (BMI), waist circumference (WC) [expressed as 
Standard Deviation Score (SDS)] and bone/chronological 
age ratio were evaluated.

The arginine test (ARG) and glucagon stimulation test 
(GST) were performed at baseline as provocative tests to 
diagnose GHD and the areas under the curve (AUC) of GH 
(AUC​GH) were calculated. GHD was defined when GH peak 
was < 10 μg/L after two provocative tests. Brain MRI was 
performed in all children with a GH response < 10 μg/L after 
the two stimulation tests. No pituitary abnormalities were 
detected in the group of patients enrolled.

Fasting blood glucose and insulin, hemoglobin A1c 
(HbA1c), total and high-density lipoprotein (HDL) cho-
lesterol and triglycerides, IGF-1 and sαKL were assayed. 
Low-density lipoprotein (LDL) cholesterol levels were cal-
culated by the following formula: total cholesterol – (HDL 
cholesterol − triglycerides/5). We performed an oral glucose 
tolerance test (OGTT), with 1.75 g/kg body weight of glu-
cose, with blood samples collection every 30 min up to 2 h 
for glucose and insulin measurements.

The homeostasis model assessment estimate of insu-
lin resistance (Homa-IR) [(fasting glucose × fasting insu-
lin)/22.5] [26], the Matsuda index of insulin sensitivity 
(ISI-Matsuda) [10,000/glucose (mg/dL) × insulin (mU/mL) 
× glucose mean × insulin mean] [27], the oral disposition 
index (DIo) [(ΔInsulin 0–30/ΔGlucose 0–30) × (1/fasting 
insulin)] [28] and the area under the curve for insulin (AUC​
2h insulinemia) and glucose (AUC​2h glycaemia) were calculated.

The population evaluated in the current study was differ-
ent from that enrolled in another study of our group [25].

The study was approved from the Ethics Committee of the 
Policlinico Paolo Giaccone Hospital, University of Palermo, 
in agreement with the ethical standards of the local commit-
tee on human experimentation (institutional and national) 
and with the Declaration of Helsinki (1964). At the time of 
hospitalization, all patients and their parents gave informed 
written consent to the study and for scientific use of the data.

Hormone and biochemical assays

Biochemical parameters were measured with standard meth-
ods previously reported [25].

Serum samples for sαKL concentration were ana-
lyzed using a commercial solid phase sandwich ELISA 
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(Enzyme-linked Immunosorbent Assay) assay kit (cat.27998, 
Immuno-Biological Laboratoires Co., Fujioka-Shi, Japan). 
The normal measurement range was 93.75–6000 pg/mL 
[29]. Samples were assayed following the manufacturer’s 
instructions.

Statistical analysis

The Statistical Package for Social Sciences SPSS version 
19 was used for data analysis. Baseline characteristics were 
presented as mean ± standard deviation (SD) for continuous 
variables, while rates and proportions were calculated for 
categorical data. Normality of distribution for quantitative 
variables was assessed with the Kolmogorov–Smirnov test. 
The differences between the two independent groups (GHD 
children vs. controls) were evaluated by Student’s t test, 
while the differences between paired continuous variables 

(before and after 12 months of follow-up in GHD children 
and controls) were analyzed by the paired t-Test. ROC curve 
analysis was performed to identify the sαKL cut-off differen-
tiating children with GHD from healthy controls.

The independent variables associated with the dependent 
variable (sαKL) after 12 months of GHT were evaluated 
by multivariate analysis. A p value < 0.05 was considered 
statistically significant.

Results

The clinical, hormonal, and metabolic parameters of control 
subjects and GHD children at diagnosis and after 12 months 
of GHT are shown in Table 1. 

At baseline, GHD children showed significantly lower 
bone/chronological age ratio (p < 0.001), GH peak and AUC 

Table 1   Clinical, hormonal and metabolic parameters of controls and GHD children at diagnosis

GHD GH deficiency, SDS standard deviation score, BMI body mass index, WC waist circumference, ARG​ arginine test, GST glucagon stimula-
tion test, AUC​ area under the curve, Homa-IR homeostasis model assessment estimate of insulin resistance, ISI insulin sensitivity index, sαKL 
soluble α-klotho

Controls
No 56

GHD
No 58

p

Subjects (%) Subjects (%)

Gender
 Males 36 (64.3%) 32 (55.1%) 0.354
 Females 20 (35.7%) 26 (44.9%)

Mean ± SD Mean ± SD

Age (years) 8.4 ± 2.75 7.8 ± 1.75 0.130
Height (SDS) − 1.8 ± 0.5 − 2.11 ± 0.71 0.198
BMI (SDS) − 0.99 ± 0.47 − 0.51 ± 0.27  < 0.001
Waist circumference (SDS) − 0.3 ± 0.15 0.3 ± 0.1 0.003
Height velocity (SDS) 0.79 ± 0.19 − 0.95 ± 0.53  < 0.001
Bone/chronological age ratio 0.89 ± 0.09 0.76 ± 0.13  < 0.001
GH peak during ARG (µg/L) 15.1 ± 5.91 4.27 ± 3.65  < 0.001
AUC​GH during ARG (µg/L) 931.7 ± 397.1 490.2 ± 155.4  < 0.001
GH peak during GST (µg/L) 11.4 ± 4.1 3.55 ± 2.5  < 0.001
AUC​GH during GST (µg/L) 598.1 ± 376.3 249.9 ± 158.1 0.048
IGF-I (µg/L) 100.5 ± 12.5 74.1 ± 27  < 0.001
Fasting glucose (mmol/L) 4.11 ± 0.42 4.32 ± 0.59 0.402
Fasting insulin (µU/mL) 4.92 ± 3.10 6.2 ± 3.3 0.380
HbA1c (%) 5.24 ± 0.29 5.2 ± 0.33 0.537
Homa-IR 1.2 ± 0.75 0.87 ± 0.46 0.680
ISI-Matsuda 11.6 ± 4.2 12.2 ± 4.5 0.829
Oral disposition Index 0.56 ± 4.21 0.48 ± 4.47 0.799
Total cholesterol (mmol/L) 3.89 ± 0.52 4.14 ± 0.71 0.694
HDL cholesterol (mmol/L) 1.65 ± 0.33 1.61 ± 0.21 0.320
LDL cholesterol (mmol/L) 1.98 ± 0.56 2.02 ± 0.69 0.839
Triglycerides (mmol/l) 1.61 ± 0.51 1.49 ± 0.54 0.533
sαKL (pg/mL) 1594.5 ± 461.3 1136.5 ± 649.9 0.001
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after ARG (both p < 0.001) and GST (p < 0.001 and 0.048, 
respectively), IGF-1 (p < 0.001) and sαKL (p = 0.001), with 
higher BMI (SDS) (p < 0.001) and WC (SDS) (p = 0.003) 
than controls (Table 1).

After 12 months of follow-up, controls had a signifi-
cant increase in height (SDS) (p < 0.001), BMI (SDS) 
(p = 0.002), WC (SDS) (p < 0.001), height velocity (SDS) 
(p < 0.001) and sαKL (p = 0.030; females p = 0.045 and 
males p = 0.024) (Table 2) than baseline. After 12 months 
of GHT, GHD children showed a significant increase 
in height (SDS) (p < 0.001), growth velocity (SDS) 
(p < 0.001), bone/chronological age ratio (p < 0.001), 
IGF-1 (p < 0.001), fasting insulin (p < 0.001), Homa-IR 
(p < 0.001) and sαKL (p < 0.001; females p = 0.004 and 
males p = 0.001) levels, with a concomitant decrease in 
BMI (SDS) (p = 0.002) and WC (SDS) (p = 0.038) com-
pared to baseline (Table 2). A comparison between sαKL 
levels at baseline and after 12 months of treatment in 
males and females with GHD was performed, showing 
that females with GHD had higher sαKL values than males 
(Fig. 1). No other differences between females and males 
were observed in controls and GHD (data not shown).

The comparison between GHD children and controls 
at 12 months showed that GHD children had significantly 
higher WC (SDS) (p < 0.001), fasting glucose (p < 0.001), 
fasting insulin (p < 0.001), HOMA-IR (p < 0.001), sαKL 
(p < 0.001; females and males p < 0.001) levels, than con-
trols (Table 2).

In addition, a ROC curve analysis was performed to 
identify the sαKL cut-off differentiating GHD children 
from controls. The sαKL cut-off of 1764.4 pg/mL dis-
criminated female controls and GHD children with 83.3% 
sensitivity and 62.5% specificity, and the area under the 
curve was 0.667 (Fig. 2). The sαKL cut-off of 1339.4 pg/
mL differentiated male controls and GHD children with 
a sensitivity of 72.7% and a specificity of 81%; the area 
under the curve was 0.828 (Fig. 2).

At multivariate analysis, the independent variables sig-
nificantly associated with sαKL levels after 12 months of 
GHT were the oral disposition index (p = 0.004, β = 0.327) 
and IGF-1 (p = 0.019, β = 0.313) (Fig. 3).

Table 2   Clinical, hormonal and metabolic parameters of controls and GHD children at diagnosis and after 12 months

SDS standard deviation score, BMI body mass index, WC waist circumference, Homa-IR homeostasis model assessment estimate of insulin 
resistance, ISI insulin sensitivity index, sαKL soluble α-klotho
p = difference between controls at baseline and after 12 months
p* = difference between GHD children at baseline and after 12 months of GH treatment
p** = difference between controls and GHD children after 12 months

Controls baseline
No = 56

Controls 12 months
No = 56

p GHD baseline
No = 58

GHD 12 months
No = 58

p* p**

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Height (SDS) − 1.8 ± 0.5 − 1.41 ± 0.42  < 0.001 − 2.11 ± 0.71 − 1.58 ± 0.91  < 0.001 0.205
BMI (SDS) − 0.99 ± 0.47 − 0.69 ± 0.37 0.002 − 0.51 ± 0.27 −  0.67 ± 0.37 0.002 0.773
Waist circumference (SDS) −  0.31 ± 0.15 − 0.12 ± 0.08  < 0.001 0.3 ± 0.1 0.1 ± 0.08 0.038  < 0.001
Height velocity (SDS) − 0.59 ± 0.19 − 0.23 ± 0.12  < 0.001 − 0.95 ± 0.53 − 0.43 ± 0.05  < 0.001  < 0.001
Bone/chronological age ratio 0.89 ± 0.09 0.91 ± 0.11 0.891 0.76 ± 0.13 0.90 ± 0.09  < 0.001 0.595
IGF-I (µg/L) 100.5 ± 12.5 148.9 ± 21.5 0.624 74.1 ± 27 147.3 ± 37.1  < 0.001 0.061
Fasting glucose (mmol/L) 4.11 ± 0.42 4.08 ± 0.36 0.866 4.32 ± 0.59 4.38 ± 0.36 0.057  < 0.001
Fasting insulin (µU/mL) 4.92 ± 3.10 4.78 ± 2.95 0.805 6.2 ± 3.3 9.1 ± 3.8  < 0.001  < 0.001
HbA1c (%) 5.24 ± 0.29 5.18 ± 0.25 0.538 5.2 ± 0.33 5.3 ± 0.34 0.686 0.053
Homa-IR 1.2 ± 0.75 1.4 ± 0.53 0.112 0.87 ± 0.46 2.02 ± 0.76  < 0.001  < 0.001
ISI-Matsuda 11.6 ± 4.2 10.9 ± 4.8 0.409 12.2 ± 4.5 10.5 ± 2.35 0.065 0.571
Oral disposition Index 0.56 ± 4.21 0.63 ± 3.87 0.926 0.48 ± 4.47 1.01 ± 2.04 0.068 0.128
Total cholesterol (mmol/L) 3.89 ± 0.52 3.63 ± 0.48 0.065 4.14 ± 0.71 3.77 ± 0.64 0.401 0.198
HDL cholesterol (mmol/L) 1.65 ± 0.33 1.66 ± 0.27 0.513 1.61 ± 0.21 1.67 ± 0.24 0.260 0.834
LDL cholesterol (mmol/L) 1.98 ± 0.56 1.86 ± 0.66 0.096 2.02 ± 0.69 1.97 ± 0.71 0.104 0.279
Triglycerides (mmol/L) 1.61 ± 0.51 1.57 ± 0.54 0.685 1.49 ± 0.54 1.53 ± 0.55 0.270 0.696
sαKL (pg/mL) 
Females
Males

1594.5 ± 461.3
1953.4 ± 1024.7
1273.7 ± 430.3

1879.4 ± 567.3
2124.2 ± 1073.2
1583.7 ± 465.8

0.030
0.045
0.024

1136.5 ± 649.9
1607.1 ± 493.5
1034.3 ± 472.8

2776.2 ± 1501.3
3754.2 ± 1834.8
2493.1 ± 1283.4

 < 0.001
0.004
0.001

 < 0.001
 < 0.001
 < 0.001
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Discussion

In the current study, we evaluated the effects of GHT on 
sαKL levels in a paediatric cohort of GHD children and 
healthy controls. As expected from previous reports [30, 
31], sαKL was lower at diagnosis in patients with GHD 
compared to healthy controls and increased after GHT.

Lower sαKL values have been reported in children 
with GHD compared with controls [30]. Interestingly, 
patients with organic GHD had lower sαKL levels than 
idiopathic GHD and GH-sufficient participants [31]. By 
contrast, some authors did not find differences in sαKL in 

the diagnosis of GHD compared to short stature, showing 
superimposable values in the two groups, likely due to the 
small sample included in the study and maybe to the lack 
of information on FGF-23 [32].

In the current study we found that the sαKL cut-off to 
discriminate healthy controls from GHD was 1764.4 pg/mL 
with a sensitivity of 83.3% and a specificity of 62.5% and 
1339.4 pg/mL, with a sensitivity of 72.7% and a specificity 
of 81% in females and males, respectively.

As expected, IGF-1 was independently associated with 
sαKL levels. A positive correlation of sαKL and IGF-1 val-
ues has been widely demonstrated with interesting close 
reciprocal regulation [32, 33]. IGF-1 appears to stimulate 

Fig. 1   Comparison of sαKL levels between male and female children with GHD at baseline and after 12 months of treatment

Fig. 2   ROC curve analysis of 
sαKL cut-off in females and 
males to discriminate controls 
from GHD
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klotho secretion [30, 34], whereas klotho inhibits IGF-1 
signalling and activation of the hormone receptor [19]. A 
significant increase in IGF-1 and IGFBP3 after intraperi-
toneal injections of klotho has been reported in mice [35], 
which seems to contradict the inhibition of klotho on pitui-
tary secretion of GH. However, in GH3-cultured cells it has 
been reported that klotho induces GH secretion by activation 
of the ERK1/2 pathway [35]. In these cultured cells cotreat-
ment of klotho and bFGF further increased ERK1/2 phos-
phorylation, while inhibition of ERK1/2 favours the klotho-
induced inhibition of GH release in normal pituitaries [35]. 
In brief, α-klotho stimulates GH secretion at the expense of 
ERK1/2 phosphorylation and blocks the inhibitory effect of 
IGF-1 on GH secretion in GH-secreting adenoma cultures 
[35].

In addition, we found a gender difference in sαKL. To our 
knowledge, this is the first time that this has been reported in 
humans, because till now it has only been shown in animals 
[36]. However, further studies are required to confirm our 
results.

Interestingly, we also found that insulin secretion 
expressed by the oral disposition index, a composite measure 
of β-cell function, which estimates the ability of β-cells to 
produce insulin adjusted for insulin sensitivity, was indepen-
dently associated with sαKL levels. Insulin has been demon-
strated to stimulate α-klotho [37, 38]. Recently, an exacerba-
tion and aggravation of insulin resistance in sαKL deficiency 
was reported in patients with type 2 diabetes mellitus, while 
overexpression of sαKL was associated with increased insu-
lin sensitivity [39]. On the other side, klotho might induce 

insulin resistance in adipocytes, preventing insulin effects 
on promotion of GLUT4 plasma membrane translocation, 
and attenuating intracellular insulin signalling through main 
mediators, such as Akt, GSK3β, and PFKf3β [40]. However, 
detailed information about the relationship between sαKL 
and insulin and the possible role of rhGH is still lacking and 
needs to be further investigated.

GHT has been suggested to impair insulin sensitivity, 
even though many studies have investigated insulin sensi-
tivity by HOMA-IR, a basal index not enough reliable to 
assess insulin sensitivity [41].

The increase in Homa-IR, may just represent an expected 
consequence of GH-induced basal hyperinsulinemia and 
currently very few studies have investigated different indices 
[8]. In the current study, we found an increase in HOMA-
IR, but no changes in ISI Matsuda and DIo were found after 
12 months of GHT in GHD children.

A limitation of the study is that we do not have full infor-
mation about the nutrition and physical activity of the chil-
dren. The strength of the study is relevant number of chil-
dren enrolled, with a very homogeneous sample (all children 
were pre-pubertal).

In conclusion, the findings of this study suggest that 
sαKL may be used as a marker of GHD combined with 
IGF-1 and GH. Direct GH measurements alone are useless 
due to the pulsatile nature of GH secretion, while IGF-1 
levels alone are unsatisfactory as well as being influenced 
by age, gender (oestrogens), race, genetics, liver function, 
nutritional status, portal insulin, thyroid hormones, and con-
comitant inflammatory disease [42]. A gender-related cut-off 
of sαKL to discriminate controls from GHD children was 
identified. Insulin and IGF-1 are independently associated 
with sαKL values after 12 months of GHT, supporting the 
interesting relationship between sαKL levels and insulin/
IGF-1 signalling.

However, further larger prospective studies are needed to 
confirm our results.
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