
Vol.:(0123456789)1 3

Journal of Endocrinological Investigation (2022) 45:1151–1160 
https://doi.org/10.1007/s40618-022-01752-3

SHORT REVIEW

Human genital tracts microbiota: dysbiosis crucial for infertility

M. A. Venneri1   · E. Franceschini1 · F. Sciarra1 · E. Rosato1 · G. D’Ettorre2 · A. Lenzi1

Received: 13 December 2021 / Accepted: 18 January 2022 / Published online: 3 February 2022 
© The Author(s) 2022

Abstract
Human body is colonized by trillions of microbes, influenced by several factors, both endogenous, as hormones and circadian 
regulation, and exogenous as, life-style habits and nutrition. The alteration of such factors can lead to microbial dysbiosis, a 
phenomenon which, in turn, represents a risk factor in many different pathologies including cancer, diabetes, autoimmune 
and cardiovascular disease, and infertility. Female microbiota dysbiosis (vaginal, endometrial, placental) and male microbiota 
dysbiosis (seminal fluid) can influence the fertility, determining a detrimental impact on various conditions, as pre-term birth, 
neonatal illnesses, and macroscopic sperm parameters impairments. Furthermore, unprotected sexual intercourse creates a 
bacterial exchange between partners, and, in addition, each partner can influence the microbiota composition of partner’s 
reproductive tracts. This comprehensive overview of the effects of bacterial dysbiosis in both sexes and how partners might 
influence each other will allow for better personalization of infertility management.
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Introduction: microbial communities 
harbored in intestinal and genital tracts

In recent years, the existence of a human associated micro-
bial fauna was the topic of many and very detailed stud-
ies. Scientific projects like the U.S.A. National Institutes of 
Health (NIS) “Human Microbiome Project” (HMP), which 
started in 2007 and lasted for almost a decade, provided 
methods and resources to detect firstly, the existence of a 
microbial fauna in many human body niches, and secondly, 
to detect microbial effects on human health [1].

Most of the human microbiota (80%) resides in the intes-
tinal tract and is considered as an additional human organ. 
As a matter of fact, the gut microbiota strongly affect human 
health, by hindering pathogen colonization [2], exerting met-
abolic and trophic actions, and contributing to the devel-
opment of the immune system functions [3]. As the host 

on which the gut microbiota is harbored is subjected to a 
circadian regulation, that is the influence of environmental 
signals deriving mainly from the day/night alternation, also 
the gut microbiota is subjected to its own specific circadian 
regulation. This regulation can influence both tropism and 
metabolites secretion, conditioning in turn also host home-
ostasis [4]. In addition, recent evidence showed how gut 
microbiota also exert a role in reproductive system’s devel-
opment [5], influencing both male and female sexual matura-
tion. In particular, the synthesis of metabolites, as secondary 
bile acids, that are gut derivatives able to influence testicular 
physiology [6], and of nutritional metabolites, as indole that 
can induce oogenesis-associated genes in some animal taxa 
[7] and as soybean, that has estrogenic effect [8].

Intestinal epithelial barrier harbors a large microbial com-
munity characterized by four major phyla, Bacteroidetes, 
Firmicutes, Actinobacteria, Proteobacteria, and an intestinal 
healthy microbiota composition able to maintaining intesti-
nal homeostasis, that is characterized by > 90% of Firmicutes 
and Bacteroidetes, and is correlated with a low Firmicutes/ 
Bacteroidetes (F/B) ratio [9]. An imbalanced F/B ratio, 
named dysbiosis, represents a risk factor linked to many 
pathological consequences onset, both intestinal and whole 
organism related, impairing intestinal homeostasis through 
a microbial diversity reduction (which increases F/B ratio), 
and the lowering of the synthesized metabolites [9].
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Only the 9% of the human microbiota was detected as 
harbored in urogenital tracts [10], and many studies detected 
their microbial composition in female and male, although the 
definition of their microbiota healthy state is complicated, 
due to the problems connected to the bacterial contamina-
tion and the detection of a low microbial concentration. In 
addition, numerous evidence proved how a genital microbial 
dysbiosis can represent a risk factor in infertility onset. In 
healthy conditions, females host a dominance of Lactoba-
cillus bacteria, which exert many protective functions con-
nected to lactic acid production and to the keep of vaginal 
acid pH [11]. Female microbiota composition was correlated 
to exert an influence on natural pregnancy [12] and in vitro 
fertilization (IVF) outcomes [13], and the variation of its 
constitution might be useful marker of pregnancy outcomes 
[14]. In male microbiota, Lactobacillus, Pseudomonas and 
Prevotella could exert influence on sperm quality parameters 
and specifically Pseudomonas was associated with sperm 
count in opposite way respect to Prevotella, which was 
instead inversely associated. Interestingly, Prevotella abun-
dance was inversely associated with sperm concentration, 
and Pseudomonas was directly associated with total motile 
sperm count. Using a shotgun metagenomics a recent work 
demonstrated that the gut and urinary dysbiosis represent a 
risk factor for infertility, while the testicular one may have a 
role in mammalian spermatogenesis [15].

The aim of this review is to summarize the available find-
ings on the most recent data about microbial colonization 
of the female and male genital tracts, and to highlight the 
features of the dysbiosis and its role on infertility.

Interactions between gut microbiota, circadian 
regulation, and sexual development

The circadian regulation is the biological mechanism by 
the organisms living on the planet adapt their physiology 
and their behaviors to the astronomical day-night alterna-
tion. This system is hierarchically structured with a central 
clock located in the suprachiasmatic nucleus and a series of 
peripheral clocks present in the cells of all tissues. At the 
base of the mechanism there are a series of genes, called 
"Clock genes", [16, 17] whose regulation influence some 
processes like fertility and control spermatogenesis, oogen-
esis, steroidogenesis, pregnancy, and sexual development 
[18].

Gut microbiota abundance and metabolic activity pre-
sents diurnal circadian rhythm, that are mainly regulated by 
host nutrition and hormones. The rhythmicity gut microbiota 
could be loss by the disruption of clock genes highlighting a 
link among these factors [19]. A role of gut microbiota was 
observed in sexual development [20], and studies are focus-
ing to clarify to connect gut microbiota, circadian regulation 
and sexual development [21]. Accumulating evidence thus 

suggest that gut microbiota may have an important role in 
determining the timing of puberty via metabolic and hormo-
nal effects. It is also possible that gut microbiota composi-
tion is dependent on hormonal signals [22]. Interestingly, no 
significant microbiota discrepancies were found among the 
same sex infant twin pairs, however there were changes in 
opposite sex [23]. Gut microbiota composition and predicted 
metabolic profiles exist before puberty and are characteristic 
in male and female and become more substantial different at 
puberty [24]. The various species of gut microbiota changed 
gradually associated with puberty stages. To date, no study 
has examined the temporal changes of sexual dimorphism 
in gut microbiota in humans spanning the dynamic hormo-
nal changes from pre-puberty to puberty. Differences in 
gut microflora at different pubertal status may be related to 
estrogen and androgen levels [20].

Growth Hormone (GH)-sexual development, implicated 
in gonadal development, was related to gut microbiota. Gut 
microbiota circadian disruption can determine GH signaling 
impairment, and represent a risk factor for many patholo-
gies [25–27]. Furthermore, the GH-signaling-sexual devel-
opment disruption is a common complication in pathologies 
linked with both circadian disruption and microbial dysbio-
sis, as inflammatory bowel disease (IBD) [28] and polycystic 
ovary syndrome (PCOS) [29].

Microbiota regulation may be influenced also by Mel-
atonin even if the specific mechanisms are still not well 
understood, but it seems derived by their rhythm typically of 
a period of ~ 24 h regulated also by Melatonin release [30].

Microbiota, circadian regulation and hormones appear to 
be as linked factors able to influence reciprocally, although 
the topic is recent, and the more studies are needed to clarify 
the topic Fig. 1.

Microbial colonization in female

The balance of hosted microbiota, metabolites synthesized, 
and immune components is necessary for female genital 
tracts health. Vaginal microbiota (VMB) composition is 
dominated by Lactobacillus which represents 90–95% of 
vaginal bacteria. Four most abundant species detected in 
vaginal tract are Lactobacillus crispatus, Lactobacillus 
iners, Lactobacillus jensenii and Lactobacillus gasseri [31]. 
The importance of Lactobacillus and its species is linked 
to its ability to synthesize lactic acid (2-Hydroxypropanoic 
acid) by anaerobic fermentation [32], produced from vaginal 
epithelial cells. Estradiol (E2) controls lactic acid production 
[33] that contributes to the vaginal environment acidifica-
tion (pH ≈3.0–4.5), suitable for Lactobacillus bacteria har-
boring, and enabling them to grow, multiply, and dominate 
the cervico-vaginal niche [34]. In addition, lactic acid is 
considered a healthy VMB marker, due to its mild-acid pH 
shift, which makes cervico-vaginal environment unsuitable 
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for pathogenic colonization [35]. Lactobacillus bacteria, 
through lactic acid production, are able to up-regulate the 
autophagy process through cyclic adenosine monophosphate 
(cAMP) inhibition, promoting pathogen bacteria clearing. In 
order to kill other bacteria and to prevent vaginal coloniza-
tion by pathogen species, Lactobacillus bacteria synthesize 
hydrogen peroxide (H2O2) and bacteriocins proteins [36, 
37], contributing to maintain a healthy genitourinary sta-
tus. Many other bacterial genera were detected in healthy 
or not-healthy vaginal microbiota, including Actinomyces, 
Bacteroides, Campylobacter, Corynebacterium, Enterobac-
ter, Escherichia, Gardnerella, Haemophilus, Salmonella, 
Shigella, Staphylococcus, Streptococcus, Ureaplasma [38, 
39] (Table 1).

The endometrial microbial composition detection is still 
controversial due to contamination, and its role remains elu-
sive. At first, several pathogen bacterial genera like Entero-
bacter, Gardnerella, Streptococcus [40] were detected, and, 
in recent times, using advanced analytical techniques, Firmi-
cutes phylum [41] and Lactobacillus and Prevotella genera 
were detected as the most relative abundant in hysterecto-
mized uterus [42] (Table 1).

Concerning the fallopian tubes microbial colonization, 
tubal microbiota (TMB) existence is a topic under study, 
and it was explored on bilateral salpingectomy surgical sam-
ples. In both fertile and menopausal bilateral salpingectomy 
patients, bacterial phyla Proteobacteria, Actinobacteria, 
Bacteroidetes, Staphylococcus, Enterococcus, and Lacto-
bacillus genera were detected as the most relative abundant 
(Table 1) and there was detected a difference in right salpinx 
TMB composition (Staphylococcus) compared to the left 

one (Lactobacillus, Enterococcus, and Prevotella) [43] in 
pre-post-menopausal tissues. Such difference in different 
tubal physiological states, suggest a theoretical hormonal 
influence on TMB composition.

In placental samples were identified Firmicutes, Bacte-
roidetes, Actinobacteria, Proteobacteria, and Fusobacteria 
phyla (Table 1) similar to oral microbial composition [44]. 
Furthermore, Mesorhizobium, Ralstonia, Lactobacillus and 
Ureaplasma genera were found in placenta, although micro-
bial composition changes in the different placental areas 
were examined [45].

Role of hormone on female genital tracts microbiota

Many factors act in shaping female genital tracts microbiota 
composition including lifestyle, hormone, and reproductive 
age [18, 46]. Current studies detected E2 serum concentra-
tion as the most significant factor which determines VMB 
composition [47], due to its control of cervico-vaginal Lac-
tobacillus dominance, and, in addition, its concentration 
depends on patient’s age (reproductive or menopausal), on 
menstrual cycle phase (follicular or luteal) and on preg-
nancy state. During menopause, a E2 lower concentration 
determines a lower glycogen and lactic acid production, 
with a vaginal pH shift from mild acid-to a less acid (> 4,5) 
environment, and a consequent loss of the Lactobacillus 
dominance [48]. A non-Lactobacillus-dominated environ-
ment is positively related with colonization/infection by 
potentially pathogenic bacteria. Postmenopausal patients, 
which generally have a low E2 serum concentration, show 
an increase of Escherichia, Shigella, Gardnerella, Prevotella 

Fig. 1   Impact of lifestyle, 
genetic factors, race, reproduc-
tive age, geographic localiza-
tion and role of GH axis on 
microbiota influencing male and 
female sex maturation
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and Enterococcus genera, and menopause state was also 
positively related with the increase of potential pathogenic 
genera Varibaculum, Streptococcus, and Veillonella [49]. 
A positive correlation between E2 concentration and the 
Lactobacillus dominance was detected in post-menopausal 
chronic atrophic vaginitis affected patients, however it was 
highlighted a negative correlation between E2 concentration 
and the Streptococcus abundance [50], a common pathogen 
in bacterial vaginitis [51].

The E2 levels rise during pregnancy, with an increased 
abundance of Lactobacillus and a relevant decrease in over-
all diversity [52]. The major changes in its compositions 

occur in early pregnancy, while the pregnancy later stages 
bacterial communities resemble those of the non-pregnant 
state. In the postpartum period, VMB gradually reverts to 
baseline characteristics, including a decrease in Lactobacil-
lus abundance, an increase in diversity and enrichment of 
bacteria associated with vaginosis, such as Actinobacteria 
[53].

VMB composition also depends on gonadotropins, as 
follicle-stimulating hormone (FSH) and luteinizing hormone 
(LH) concentration. A negative correlation between FSH 
concentration and its composition in VMB was detected, 
and Paraprevotella abundance was found higher in younger 

Table 1   Microbiological flora of the female genital tract: colonization and action

Human fertility tracts Harbored Bacteria Comments References

Cervico- vaginal tract Phylum Firmicutes Lactobacillus crispatus, L.iners, L. 
ensenii, L. gasseri

Lactic acid synthesis [33]

Hydrogen peroxide (H2O2) synthesis [36]
Bacteriocins peptides synthesis [37]
Vaginal pH acidification

Uterine- endometrial tract Phylum Bacteroidetes Genus Prevotella It's not possible to exclude completely 
microbial contamination

[42]

Phylum Firmicutes L. iners, L. crispatus [31]
Fallopian tubes Phylum Proteobacteria Genera Acinetobacter, Comamonas, 

Pseudomonas, Delftia
Detected on bilateral salpingectomy 

surgical samples in both fertile and 
menopausal patients

[43]

Genera Pseudomonas, Burkholderia
Phylum Bacteroidetes Genus Dysgomonas Detected on bilateral salpingectomy 

surgical samples
[43]

Genus Prevotella Detected on bilateral salpingectomy 
surgical samples in both fertile and 
menopausal patients

[43]

Detected in left salpinx
Phylum Firmicutes Genus Vagococcus Detection on bilateral salpingectomy 

surgical samples
[43]

Genera Lactobacillus, Enterococcus Detected on left salpinx [43]
Genus Staphylococcus

Phylum Actinobacteria Genus Propionibacterium Detected on bilateral salpingectomy 
surgical samples in both fertile and 
menopausal patients

Placenta Phylum Bacteroidetes Prevotella tannerae, Bacteroides sp. Detected similar to oral microbiome 
composition

[44]

Phylum Actinobacteria Streptomyces avermitilis, Propi-
onibacterium acnes, Rhodococcus 
erythropolis

Phylum Proteobacteria Neisseria polysaccharea, Neisseria 
lactamica

Ralstonia insidiosa, Mesorhizobumsp. Detected on placental villi, fetal mem-
brane and basal plate

[45]

Phylum Firmicutes Escherichia coli Found similar to oral microbiome 
composition

[44]

L.crispatus; L.iners; Ureaplasma 
nucleatum

Detected in placental villi, fetal mem-
brane, and basal plate

[45]

Phylum Fusobacteria Fusobacterium sp. Detected similar to oral microbiome 
composition

[44]
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patients, that have a higher FSH concentration [47]. Further-
more, a negative correlation was found between Aerococcus, 
Atopobium, and LH hormone concentration since their abun-
dance is high in fertility age when the LH concentration rises 
[54]. On the contrary, Gemella was detected as positively 
related with both FSH and LH, because its abundance is low 
during fertility age and rises in menopause [55].

Female microbiota dysbiosis

A dysbiotic VMB is characterized by the loss of Lacto-
bacillus dominance and the rise of anaerobic bacteria, as 
Prevotella, Mobiluncus, Gardnerella, Ureaplasma and 
Mycoplasma [56, 57]. Such dysbiotic environment, rep-
resents a risk factor for the bacterial vaginosis onset, an 
inflammatory disease which can impair fertility in many 
ways: increasing sexually transmitted bacterial (Chlamydia, 
Neisseria, Trichomonas) [58] and viral (human papillomavi-
rus (HPV) diseases, human immunodeficiency virus (HIV) 
infections) [59]. A dysbiotic VMB represents a risk factor 
also for adverse pregnancies onset, being correlated to sev-
eral pregnancy related complications, like preterm delivery 
[60], maternal infectious morbidity [61], late miscarriage 
[12] and higher frequency of sudden amnio-chorial mem-
brane rupture before labor onset (preterm premature rup-
ture of membranes (pPROMs) [62]. VMB dysbiosis has an 
impact on IVF-embryo transfer outcomes: patients nega-
tive for bacterial contamination showed higher cumulative 
pregnancy rates, ongoing pregnancy and implantation rates 
[10, 63]. Interestingly, a low Lactobacillus abundance was 
identified as a predictive factor for unfavorable IVF outcome 

[13], while Lactobacillus iners as a positive IVF procedure 
marker and a vaginal microbiota health signal [64].

The problems connected with microbial contamination, 
make it hard to define precisely endometrial microbiota 
(EMB) composition due to Lactobacillus abundance. EMB 
dysbiosis was related to a significant decrease of IVF live 
birth rate positive outcomes [65].

The EMB composition related to reproductive failures 
was detected as also characterized by high Bacteroides, 
Pelomonas [66, 67]. However, the use of of NGS techniques 
permitted to detect Flavobacterium, Corynebacterium, Bifi-
dobacterium, Staphylococcus, Streptococcus in infertile 
patients [68].

In placenta, the microbiota composition exerts an influ-
ence on pre-term birth or neonatal illnesses. The placen-
tal microbiota composition of spontaneous pre-term birth 
patients with a chorioamnionitis are characterized by high 
abundance of both urogenital and oral commensal bacteria 
[69, 70]. However, this data is controversial, because other 
studies on the contrary detected no microbiota composition 
differences in spontaneous preterm and natural birth patients 
(Fig. 2A).

Microbial colonization in male

Many evidences suggest how male genitourinary tracts 
harbor a commensal microbial fauna, and how the semi-
nal microbiota (SMB) have a multiple combined origin 
from different urogenital tissues as bladder, prostate and 
urethra. The seminal fluid represents a particularly suit-
able environment for the trophic needs of a microbial 

Fig. 2   Effect of dysbiosis 
on female (A) and male (B) 
compound. Dysbiosis could 
influence the microbiota com-
position of other’s reproductive 
tracts. The effect of bacterial 
dysbiosis represents a risk fac-
tor for female fertility compart-
ments with detrimental effects 
on uterus and placenta. In male 
dysbiosis affect macroscopic 
sperm parameters, with motility, 
morphology and concentration 
impairment
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community, due to the wide range of nutrients, proteins, 
carbohydrates, and inorganic ions contained in its com-
position [71]. Both infertile and healthy patients seminal 
fluids show the presence of microbial bacteria, and in 
the seminal fluids were detected Enterococcus faecalis, 
Escherichia coli, Streptococcus agalactiae, Ureaplasma 
urealyticum species [72] (Table 2). Recently, many studies 
found a sperm bacterial seminal fluid composition charac-
terized mainly by the same bacterial phyla both in healthy 
donors and azoospermic patients [73]. The low qual-
ity sperm morphology patients presented an augmented 
abundance of Ureaplasma, Enterococcus, Mycoplasma, 
and Prevotella, in opposition to healthy, which showed 
a major presence of Lactobacillus [74]. In addition, low 
quality sperm morphology was correlated to the presence 
of Bacteroides ureolyticus [75].

Role of hormone on male genital tracts microbiota

Although there are no studies on the subject, it would 
be possible to hypothesize, based on some indirect evi-
dence, the existence of a hormonal influence on the male 
genital tract microbiota. Scientific data highlighted how 
gut microbiota is able to communicate with host distal 
organs, such as the testis, determining the existence of 
a gut-microbiota-testis axis [76]. Although the specific 
mechanisms which regulate this axis have not yet been 
determined, it was suggest in vivo and in vitro that some 
endocrine disruptors compounds [77] leads to a reduction 
of various endocrine and steroidogenic parameters, such 
as serum testosterone, LH hormone, steroidogenic acute 
regulatory protein (StAR) expression and alter of the gut 
male microbiota characteristics [78]. However, more stud-
ies are needed to adequately address the matter of how 
endogenous hormonal influences might regulate micro-
biota in the male.

Seminal microbiota dysbiosis

The detection of a causal relationship among microbial 
fauna presence in seminal fluid and its influence on sper-
matogenesis process is a topic under study for the influ-
ence on sperm quality parameters (motility, concentration, 
morphology), and the use of prognostic markers for dis-
permic conditions (oligozoospermia, astenozoospermia, 
teratozoospemia), azoospermia and in post-finasteride 
syndrome [79].

The most abundant microbial genera detected in disper-
mic patients and healthy donors are Lactobacillus, Pseu-
domonas, Prevotella and Proteobacteria, Firmicutes, Act-
inobacteria, Bacteroidetes, and Fusobacteria [73]. In low 
quality samples were detected Prevotella, and Anaerococcus 
[80]. Prevotella’s abundance was inversely associated with 
sperm concentration, while Pseudomonas was directly cor-
related with sperm motility [15] (Fig. 2B). Lactobacillus 
genus was significantly decreased in oligo-asthenozoosper-
mic patients. Interestingly, different bacterial genera and 
species including Ureaplasma, Bacteroides, Anaerococcus, 
Finegoldia, Lactobacillus and Acinetobacter iwoffii could be 
used as asthenozoospermia biomarkers [73].

In azoospermic patients it was shown an increase of Bac-
teroidetes and Firmicutes, and a decrease of Proteobacteria 
and Actinobacteria, compared to the healthy. In the oligo-
astheno-teratozoospermic (OATs) Firmicutes phylum and 
Neisseria, Klebsiella, Pseudomonas genera resulted as the 
most relative abundant with a decrease of Lactobacillus 
[81]. In the hyper-viscosity affected patients, Firmicutes 
and Proteobacteria phylum increased and Lactobacillus 
was reduced. The SMB composition of testicular tissues 
performed with micro testicular sperm extraction (micro-
TESE) from idiopathic non-obstructive azoospermic (NOA) 
patients [82], show a decrease in Clostridium abundance in 
NOA patients with a unsuccessful sperm retrieval compared 
to successful sperm-retrieval patients [83].

Table 2   Microbiological flora of the male genital tract: colonization and action

Human fertility tract Harbored Bacteria Comments References

Seminal fluid Phyla Firmicutes; Genera Lactobacillus, Enterococcus, 
Veillonella, Streptococcus

Bacterial phyla and species detected both in 
healthy donors and azoospermic patients semi-
nal fluids

[73]
[80]

Phylum Bacteroidetes; Genus Prevotella, Porphyromonas [73]
Phylum Actinobacteria; Genus Corynebacterium
Phylum Proteobacteria; Genus Acinetobacter, Pelomonas
Phylum Fusobacteria; Genus Sneathia
Phylum Bacteroidetes; Bacteroides ureolyticus Low quality sperm morphology marker [73]
Phylum Firmicutes; Enterococcus faecalis, Escherichia 

coli, Ureaplasma urealyticum, Streptococcus agalactiae
Reduced Sperm motility markers [72]

Phylum Bacteroidetes; Genus Prevotella Low quality sperm morphology marker [75]
Phylum Firmicutes; Genus Lactobacillus Seminal parameters improvement markers
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The effects of microbial trade‑off between sexes

Unprotected sexual intercourse determines a bacterial 
exchange between partners, and in addition, each partner can 
influence the microbiota composition of other’s reproduc-
tive tracts [84]. Regarding the male influence on the female 
microbiota, the cervico-vaginal flora can be subjected to 
fluctuations after sexual intercourse, and it can represent 
a risk factor for bacterial vaginosis onset [85]. Moreover, 
sexual activity influences the composition and consistency 
of cervico-vaginal microbiota: it increased relevantly Gard-
nerella vaginalis in young women (with or without bacte-
rial vaginosis), highlighting also the sexual transmission 
of potentially pathogenic bacteria [86]. However, bacterial 
sexual transmission is a difficult topic to deepen because 
female bacterial fluctuations are not associated only with 
semen microbial influence, but also with many other factors, 
including hormones and menstrual cycle [87].

Several evidence point also to an action of the female 
microbiota on male’s microbial fauna. Young men with no 
sexual experience showed lower bacterial diversity and rela-
tive abundance in their seminal microbiota, compared with 
men of the same age with sexual experience [88]. Some 
vaginal bacteria, as Lactobacillus crispatus, Lactobacillus 
iners, Gardnerella vaginalis resulted associated to younger 
men seminal microbiota, while, other genera, as, Pseu-
domonas, Flavobacterium and Acidovorax were detected in 
seminal fluid bacterial communities of older men [88, 89]. 
Even more, there is a correlation between male partner’s 
inflammatory status with leukocytes in seminal fluids, and 
the association with Streptococcus agalactiae, Gardnerella 
vaginalis and other bacterial vaginosis-related bacteria pres-
ence [90]. It was reported that Streptococcus agalactiae is 
present in bacteriospermic samples and that Gardnerella 
vaginalis is the predominant microorganism in women with 
partner that had significant leukocytospermia [84]. Bacte-
rial-vaginosis episodes caused by the changing of vaginal 
microbial communities, was associated to frequent sexual 
intercourse, multiple sex partners and frequent episodes of 
receptive oral and anal sex [91].

Thus, scientific evidence highlighted how both male and 
female genital microbiota are able to interact by microbial 
trade off, mainly during sexual intercourses, although spe-
cific clinical trial studies are needed to clarify the topic.

Conclusions

In recent years, great progress was made in the study of the 
microbial fauna associated to gut and genital tracts, detecting 
the existence of associated microbial communities and deter-
mining the effects of bacterial dysbiosis on fertility. Female 
lower genital tracts showed Lactobacillus-dominated healthy 

microbiota, and a VMB dysbiosis constitutes a risk factor for 
both fertility and pregnancy onset. As well, in upper genital 
tracts it was highlights the existence of endometrial, tubal 
and placental microbiota. The connections among endome-
trial and placental microbiota dysbiosis and fertility impair-
ments were deepened even if in the tubal microbiota, there 
is no study link between dysbiosis and fertility detrimental 
effects. Seminal fluid dysbiosis is associated with dispermic-
azoospermic detrimental conditions. The interactions among 
female and male genital tracts microbiota during sexual 
intercourse, and their microbial exchanges were strength-
ened, highlighting also their parallel and reciprocal effects.

Sex hormones participate in communication between 
microorganisms and their hosts and play several important 
physiological roles in reproduction and in sexual develop-
ment and function.

Alterations in the genital tract microbiota have specific 
impacts on the reproductive endocrine system and correct-
ing abnormal microbiomes may lead to improved reproduc-
tive outcomes. Specific linear correlations between micro-
biota and serum hormone levels, which may have additional 
effects on the health of the body, have been reported in some 
studies.

The knowledge of the infertility problem could be 
increasingly linked to the understanding of this vast network 
of interactions on genital tracts microbiota. Furthermore, 
also a greater experience of the role that the gut microbiota 
plays on fertility it could be useful to identify novel micro-
biome-based diagnostics and therapeutics for patients with 
this complex disease.
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