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Abstract
Purpose Per- and poly-fluoroalkyl-substances (PFASs) are synthetic compounds that raised concern due to their potential 
adverse effects on human health. Long-chain PFAS were banned by government rules in many states, and thus, new emerg-
ing PFAS were recently introduced as substitutes. Among these, Perfluoro{acetic acid, 2-[(5-methoxy-1,3-dioxolan-4-yl)
oxy]}, ammonium salt (C6O4) was recently introduced to produce a range of food contact articles and literature data about 
this compound are scanty. The aim of this study was to evaluate the in vitro effects of exposure to C6O4, compared with 
PFOA and PFOS on thyroid cells.
Methods FRTL5 rat-thyroid cell lines and normal human thyroid cells (NHT) were incubated with increasing concentra-
tions of C6O4 for 24, 48, 72, and 144 h to assess cell viability by WST-1. Cell viability was confirmed by AnnexinV/PI 
staining. Long-chain PFAS (PFOA and PFOS) were used at same concentrations as positive controls. The proliferation of 
cells exposed to C6O4, PFOA, and PFOS was measured by staining with crystal violet and evaluation of optical density 
after incubation with SDS. Changes in ROS production by FRTL5 and NHT after exposure to C6O4 at short (10, 20, and 
30 min) and long-time points (24 h) were evaluated by cytofluorimetry.
Results C6O4 exposure did not modify FRTL5 and NHT cell viability at any concentration and/or time points with no induc-
tion of necrosis/apoptosis. At difference, PFOS exposure reduced cell viability of FRTL5 while and NHT, while PFOA only 
in FRTL5. FRTL5 and NHT cell proliferation was reduced by incubation with by PFOA and PFOS, but not with C6O4. ROS 
production by NHT and FRTL5 cells was not modified after C6O4 exposure, at any time/concentration tested.
Conclusions The present in vitro study constitutes the first evaluation of the potential adverse effects of the new emerging 
PFAS C6O4 in cultured rat and human thyroid cells, suggesting its safety for thyroid cells in vitro.
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Introduction

Per- and poly-fluoroalkyl substances (PFASs) are a class of 
man-made chemicals, globally used as surfactants in indus-
trial productions due to their surface active properties as 
well as to their thermal and chemical stability [1]. Among 
PFAS, two “Long chain PFAS” (so-called owing to the pres-
ence of 8 or more carbon atoms), perfluorooctanoic acid 
(PFOA) and perfluorooctanesulfonic acid (PFOS), were 
object of growing concerns due to their elevated persistency 
and bioaccumulation in the environment [2]. Indeed, these 
compounds are constantly discharged into the environment 
from manufacturing processes and daily usage, being per-
sistent and with long time of degradation [1].
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Further concern derives from the fact that PFOA and PFOS 
were reported to act as endocrine thyroid disruptors and, in 
some cases, as cancer promoting agents [3]; they also induce 
oxidative stress, both in humans and in animal models [3–6]. 
Due to their potential adverse effects for human health, long-
chain PFAS production was restricted or even banned in some 
countries [7]. With the aim to reduce the ecological and health 
impact of long-chain PFAS, industries availed of both short-
chain alternatives as well as of newly synthesized PFAS [8]. 
Whether these alternative compounds should be really consid-
ered safe for human health and for the environment remains to 
be fully elucidated [9]. Several studies highlighted toxic effects 
of some short-chain PFAS compounds in different types of 
cells [10, 11]). A recent study also demonstrated that a new 
generation PFAS, i.e., hexafluoropropylene-oxide-dimer-acid 
(commonly known as GenX), exerts in vitro cytotoxic and 
genotoxic effects on thyroid cells [12]. On the other hand, 
other short-chain PFAS, such as perfluorobutanesulfonic acid 
(PFBS), perfluorobutanoic acid (PFBA), pentafluoropropionic 
anhydride (PFPA), and perfluoropentanoic acid (PFPeA), did 
not affect thyroid cell viability [13]. Another PFAS, perfluoro 
acetic acid, 2-[(5-methoxy-1,3-dioxolan-4-yl)oxy], ammonium 
salt (commonly known as C6O4) was recently introduced in 
the polymerization process of fluoropolymers to produce a 
range of food contact articles such as fittings and valves [14]. 
C6O4 has a high degree of solubility (> 667 g/L at 21 °C) and 
is thermally unstable. It is manufactured and/or imported in 
the European Economic Area in 1–10 tons per year [15]. On 
16 April 2019, ARPAV (the Regional Agency for the Preven-
tion and Protection of the Environment in Veneto) detected 
C6O4 in the River Po near certain municipalities in the Veneto 
region, bordering on the Emilia-Romagna region (Corbola), 
and in one municipality on the border between Lombardy and 
Emila-Romagna regions (Castelmassa), with peak concentra-
tions of around 100 ng/l [16].

Previous in vitro studies investigated the toxic effects of 
several PFAS in different types of cultured cells including thy-
roid cells [3, 17–21]. However, no information is still available 
regarding the in vitro effects of C6O4 on thyroid cells. Aim of 
the present study was to evaluate the in vitro effects of C6O4 
compared with PFOA and PFOS on a strain of differentiated 
rat-thyroid cells (FRTL5 cells) and on primary cultures of 
normal human thyroid cells (NHT) in terms of cell viability, 
proliferation rate, and reactive oxygen species (ROS) produc-
tion, after both short and long time of exposure.

Materials and methods

Cultures of FRTL5 cells

The differentiated strain of rat-thyroid cells (Fisher-rat-
thyroid-line-5; FRTL5; American Type Culture Collection, 

Manassas, VA; ATCC CRL 8305, F1 subclone) served 
as an in vitro experimental substrate. Cells were grown 
for 1 week in 6H medium (Coon’s Modified Ham’s F-12 
Medium (Sigma Chemical Co.) supplemented with 5% 
adult calf serum (BioWhittaker, Inc., Walkersville, MD) 
and a six-hormone mixture containing insulin, somatostatin, 
hydrocortisone, transferrin, glycyl-histidyl-lysine, and TSH 
(Sigma Chemical Co.).

Primary cultures of human thyroid cells

Surgical specimens of normal human thyroid were obtained 
from the contralateral disease-free lobe of patients who 
underwent thyroidectomy for a solitary benign nodule 
(n = 3). Surgical specimens were minced and then incubated 
with collagenase type II (Sigma, Saint Louis, MO, USA) 
5 mg/ml, in 5 ml of Coon’s F12 medium, for 4 h at 37 °C. 
Then, 10 ml of Coon’s F12 medium were added, follow-
ing which, cells were filtered, spun at 1000 × g for 10 min, 
washed with Coon’s F12 medium, spun again, and finally 
re-suspended in complete medium containing 5% newborn 
calf serum and a mixture of six hormones including insu-
lin (5 μg/ml), hydrocortisone (50 μg/ml), transferrin (5 μg/
ml), somatostatin (10 ng/ml), gly-his-lysine (10 ng/ml), and 
bovine TSH (1 mU/ml).

Cell viability and WST‑1 assay

FRTL5 and NHT cells were grown until an 80% confluence 
was reached. Thereafter, cells were detached and seeded 
in 96-well flat plates at a density of 2 × 104 cell/well. 6H 
medium was supplemented with C6O4, PFOA, or PFOS at 
the following concentrations: 0, 0.01, 0.1, 1, 10, and 100 ng/
ml. Because no information is currently available regarding 
the serum concentrations of C6O4 in humans, experiments 
were performed using a range of compound concentrations 
which corresponded to that observed for other long- and 
short-chain PFAS in the general population and in exposed 
workers [13]. The incubation times of FRTL5 and NHT with 
C6O4 were 24, 48, 72, and 144 h. Control FRTL5 and NHT 
cells were cultured in plain 6H medium. At the end of each 
time point, 20 μl of WST-1 were added to each well; plates 
were then incubated for 30 min at 37° in a 5%  CO2 atmos-
phere. WST-1 is a colorimetric reagent, which, after cleav-
age of a tetrazolium salt by mitochondrial dehydrogenases, 
results in the production of formazan if the cell is viable. A 
reduction in the overall activity of mitochondrial dehydro-
genases also decreases the amount of produced formazan. 
Using a multimode plate reader at the absorbance of 450 nm 
(Victor NIVO Multimode Microplate Reader, PerkinElmer), 
we quantified the amount of produced formazan.
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Annexin V‑FITC/PI assay to detect programmed cell 
death (apoptosis), late apoptotic, or necrotic cells

The use of AnnexinV/PI staining allows discriminating live 
cells from apoptotic (green fluorescence, Annexin V posi-
tive cells), necrotic (red fluorescence, PI positive cells), or 
late apoptotic (green and red fluorescence, AnnexinV and 
PI positive cells) cells. During apoptosis, the normal asym-
metry of the phospholipidic membrane is destroyed and 
phosphatidylserine (a component of the internal surface of 
the cell membrane) is exposed on the outside surface of the 
plasma membrane [22]. Since Annexin V protein binds with 
high affinity to phosphatidylserine, fluorochrome-conjugated 
Annexin V (displaying a green fluorescence) is commonly 
used to detect apoptotic cells. The differentiation between 
apoptotic and late apoptotic or necrotic cells is performed 
by simultaneous staining with Propidium Iodide (PI), a 
fluorescent DNA-intercalating agent. PI penetrates in cells 
when the integrity of their plasma and nuclear membranes is 
impaired [23]. This is typical of late apoptotic and necrotic 
cells. PI intercalates into nucleic acids and displays a red 
fluorescence [24].

The cell plasma membrane exposure of phosphatidylser-
ine was assessed using Annexin V-FITC Apoptosis Detec-
tion Kit (Life-Technologies Apo-Detect Kit). Briefly, FRTL5 
and NHT cells were harvested at a density of  104 cells per 
well on a coverslip placed in a 24-well plate. After adhesion, 
cells were exposed to the highest concentration of C6O4, 
PFOA, or PFOS. After 144 h of exposure, cells were washed 
with phosphate buffer saline (PBS) and cell culture superna-
tants were stored for subsequent cyto-spin. Coverslips were 
incubated with a mix of Annexin V-FITC, PI, and Hoechst 
33,258 (Hoecst is a blue fluorescent dye which stains DNA 
in nuclei) (Thermofisher) in the dark for 10 min at room tem-
perature. The same procedure was performed on cells recov-
ered in the supernatants after cyto-spin. Cells were fixed 
with PFA 4% for 10 min. After washing with PBS, cover-
slips were mounted with Dako (cells recovered by cyto-spin 
were placed onto a slide and covered with a coverslip also 
mounted with Dako) and fluorescence images were obtained 
with Olympus IX83 fluorescent inverted microscope.

Cell proliferation assay

FRTL5 and NHT cells were seeded in a 12-well plate at a 
density of 500 cells per well and incubated in the presence 
or absence of increasing concentrations of C6O4, PFOA, 
or PFOS (0, 0.01, 0.1, 1, 10, and 100 ng/ml) for 6 days. 
Cells were fixed with methanol for 20 min and stained with 
0.5% crystal violet dye (which binds to proteins and DNA 
of viable cells conferring them a violet staining) for 5 min 
[25]. Cell proliferation was assessed by observation with an 
Olympus BX51 inverted microscope (Olympus, Deutschland 

GmbH, Hamburg, Germany). For quantification of prolifera-
tion, cells were washed three times with deionized water to 
remove excess of stain. Subsequently, cells were incubated 
for 2 h with 1% Sodium dodecyl sulfate (SDS). The incuba-
tion with SDS led the crystal violet dye to be released from 
cells into the supernatant. The measured (at 570 nm using a 
Victor NIVO Multimode Microplate Reader) crystal violet 
in the supernatant is proportional to the number of cells per 
well.

Reactive oxygen species (ROS) production

Generation of cellular Reactive Oxygen Species (ROS) is 
induced by both endogenous and exogenous stimuli. ROS 
are formed as a natural bio-products of the normal oxy-
gen metabolism, and have important roles in homeostasis 
and cell signaling. In most cell types, they are also involved 
in the damage of cell structures and mitochondrial function 
[26].

The cell-permeant 2′, 7′-dichlorodihydrofluorescein 
diacetate (H2DCFDA) was used to assess reactive oxygen 
species (ROS) production by FRTL5 and NHT treated with 
C6O4. H2DCFDA is a fluorogenic dye that measures, within 
the cell, hydroxyl, peroxyl, and other ROS activity. This dye, 
after diffusion into the cell, is deacetylated by cellular ester-
ases to a non-fluorescent compound, which is later oxidized 
by ROS into a high fluorescent compound 2′, 7′-dichloro-
fluorescein (DCF) [27].

After seeding in a 24-well plate at a cell concentration of 
5 × 104 per well, FRTL5 and NHT cells were treated with 
C6O4 at increasing concentrations for short time points (10, 
20, and 30 min) and a long time point (24 h). The choice of 
these time points stems from the intent of detecting both 
early and late ROS production. H2DCFDA was added to 
cultures for ten minutes after each time point of C6O4 expo-
sure. Cells were then detached with a trypsin 0.05%, 0.002% 
Ethylene-diamine-tetra-acetic acid (EDTA) mixture, centri-
fuged and re-suspended in a solution of phosphate buffer 
saline/bovine serum albumin (PBS/BSA) for being analyzed 
by a flow cytometer (laser excitation 492 nM), and analyzed 
with Cell Quest software (FACScan, Becton Dickinson). 
FRTL5 and NHT cells treated with Ammonium persulphate 
10 mMol were used as a positive control for ROS induction. 
The assay was performed in concomitance with PI staining 
to assess if ROS induction was associated with a cytotoxic 
effect, the death rate being expressed as a percentage of 
Mean Fluorescence Intensity of untreated cells.

Statistical analysis

Statistical analysis was performed using the SPSS soft-
ware (SPSS, Inc., Evanston, IL). Mean group values were 
compared using one-way ANOVA for normally distributed 
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variables. Post hoc analysis was performed by Bonferroni’s 
correction for multiple comparisons. Values are reported as 
mean ± SD unless otherwise noted. A p value < 0.05 was 
considered statistically significant.

Results

Effect of C6O4 on FRTL5 and NHT cell viability

Exposure of FRTL5 to increasing concentrations of C6O4 
did not affect thyroid cell viability at any concentration 
tested after 24, 48, 72, and 144 h (ANOVAs: 24 h F = 1.706; 
p = 0.184 48  h F = 1.374, p = 0.280; 72  h F = 0.933, 
p = 0.483; 144 h F = 1.615, p = 0.177) (Fig. 1a–d). The 
WST-1 assay indicated that not only the viability of FRTL5 
was not affected by C6O4, but also that no damage on the 
mitochondrial respiration occurred following exposure to the 
compound. On the contrary, exposure of FRTL5 to increas-
ing concentrations of PFOA or PFOS affected cell viability. 
In particular, a significant reduction of cell viability was 
registered after 72 and 144 h of exposure to PFOA (ANO-
VAs: 72 h F = 9.316, p < 0.001; 144 h F = 9.892, p < 0.0001) 
(Fig. 1e–h) and after all time of exposure to PFOS (ANO-
VAs: 24 h F = 7.252, p < 0.001; 48 h F = 37.392, p < 0.0001; 
72 h F = 47.381, p < 0.0001; 144 h F = 8.718, p < 0.0001) 
(Fig. 1i–n). As for NHT cells, C6O4 exposure, similarly to 
FRTL5, did not affect cell viability at any time point and 
concentration tested (ANOVAs: 24 h F = 0.917, p = 0.479; 
48 h F = 1.978, p = 0.102; 72 h F = 0.393, p = 0.851,; 144 h 
F = 1.050, p = 0.401) (Fig. 2a–d). Similarly, PFOA exposure 
did not modify NHT cell viability at all time points and 
concentrations (ANOVA F = 3.641, p = 0.07) (Fig. 2d–g) At 
difference, PFOS exposure induced a reduction of NHT cell 
viability, starting from different concentrations at all time 
points (ANOVAs 24 h F = 15.338, p < 0.05; 48 h F = 13.609 
p < 0.05; 72  h F = 18.239 p < 0.05; 144  h F = 52.615 
p < 0.05) (Fig. 2h–m).

To further confirm data on cell viability, the AnnexinV/PI 
assay was performed. FRTL5 and NHT incubated for 144 h 
with 100 ng/ml C6O4 did not show changes in cell apoptosis 
and/or necrosis. At difference, the same concentration of 
PFOA and PFOS induced cell death in FRTL5 while PFOS 
but not PFOA induce cell death in NHT. Figure 3 shows 
representative images of FRTL5 and NHT cells exposed 
for 144 h to the highest concentration of C6O4, PFOA, and 
PFOS (100 ng/ml).

Effects of C6O4 on FRTL5 cell proliferation

Exposure to increasing concentrations of C6O4 for 6 days 
did not affect thyroid cell proliferation at any concentra-
tion tested in both FRTL5 (ANOVA F = 0.648 p = 0.668) 

(Fig. 4a) and in NHT cells (ANOVA F = 0.809 p = 0.565) 
(Fig. 4d). Exposure of FRTL5 to PFOA and PFOS showed 
a reduction of cell proliferation (ANOVA PFOA: F 12.881 
p < 0.05; ANOVA PFOS: F = 218.105 p < 0.001) (Fig. 4b, 
c). Exposure of NHT cells to PFOA did not show changes 
in cell proliferation (ANOVA F = 1.860 p = 0.176) at differ-
ence with PFOS that reduced cell proliferation (ANOVA 
F = 25.566 p < 0.001) (Fig. 4e, f).

Short and long time exposure to C6O4 
and induction of ROS in FRTL5 cells and NHT

C6O4 exposure for short (10, 20, or 30 min) and long time 
(24 h) did not induce ROS production in FRTL5cells at 
any concentration. This was consistently observed at any 
time point (10 min: ANOVA F = 0.435, p = 0.810; 20 min 
ANOVA F = 1.168, p = 0.379; 30 min: ANOVA F = 0.432, 
p = 0.818, 24 h: ANOVA F = 0.665, p = 0.665) (Fig. 5a–d). 
To rule out that the ROS production could be due to the 
induction of minimal cell death (in particular for short time 
points), PI positivity was assessed. This assay further con-
firmed the absence of any cytotoxic effect of C6O4 at any 
concentration and time point (10 min: ANOVA F = 0.033, 
p = 0.060; 20 min: ANOVA F = 2.690, p = 0.074; 30 min: 
ANOVA F = 0.478, p = 0.786; 24 h ANOVA F = 0.325, 
p = 0.881) (Fig. 5e–h). The exposure to C6O4 did not mod-
ify ROS production also in NHT cells at any time points 
(10 min: ANOVA, F 1.47 p = 0.324; 20 min ANOVA F 
0.344 p = 0.869; 30 min: ANOVA F 0.107 p = 0.987 24 h: 
ANOVA F = 2,248 , p = 0,176) (Fig. 6a–d). The assessment 
of PI positivity further confirmed the absence of cellular 
death (10 min: ANOVA F 0.104 p = 0.988; 20 min: ANOVA 
F 0.435 p = 0.811; 30 min: ANOVA F = 0.282 p = 0.907; 
24 h ANOVA) (Fig. 6e–h). 

Discussion

The present study, for the first time, evaluates the poten-
tial in vitro adverse effects of a new PFAS, C6O4, in 
comparison with long-chain PFAS, PFOA, and PFOS, in 
cultured rat and human thyroid cells. Several end-points 
were taken into account, including cell viability, pro-
liferation, induction of apoptosis, and ROS production. 
The results obtained showed that C6O4 has no detect-
able toxic effect on cultured thyroid cells. In particular, 
treatment with C6O4 did not affect FRTL5 cells viability 
as assessed either by mitochondrial respiration products 
(WST-1 assay) or by evaluation of apoptosis/necrosis 
(AnnexinV/PI staining) up to 144 h of exposure. At dif-
ference, long-chain PFAS, PFOA and mainly PFOS, both 
reduced cell viability of rat-thyroid cells. Slightly differ-
ent results were found in NHT, in which C6O4 and PFOA 
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did not modify cell viability at any time and concentra-
tion tested, at difference with PFOS, which exerted a sig-
nificant cytotoxic effect at different concentrations and at 
any time point. The lack of mitochondrial damage in the 
WST-1 assay further supports the absence of a cytotoxic 
effect of C6O4 in both rat and human cultured thyroid 
cells. This is because WST-1 reacts with products of the 

mitochondrial respiration chain and serves as marker of 
their functionality [28]. The fact that mitochondrial activ-
ity would be preserved during C6O4 exposure is also sup-
ported by the observation that there was no ROS induction 
neither in FRTL5 nor in NHT. Mitochondria are believed 
to be the major intracellular source of ROS [29–32] and 
mitochondria-generated ROS are involved in physiologic 

Fig. 1  Effect of C6O4, PFOA, and PFOS exposure on FRTL5 
viability. Incubation with C6O4 did not reduce cell viability at any 
concentration. a 24-h incubation (ANOVA F = 1.706; p = 0.184). 
b 48-h incubation (ANOVA F = 1.374, p = 0.280), c 72-h incuba-
tion (ANOVA F = 0.933, p = 0.483). d 144-h incubation (ANOVA: 
F = 1.615, p = 0.177) Exposure to PFOA reduced FRTL5 cells viabil-
ity. e 24-h incubation (ANOVA: F = 1.439, p = 0.220). f 48-h incu-
bation (ANOVA F = 1.021, p = 0.411). g 72-h incubation (ANOVA: 

F = 9.316, p < 0.001). h 144  h (ANOVA: F = 9.892, p < 0.0001). 
Exposure to PFOS reduced FRTL5 cells viability. i 24-h incuba-
tion (ANOVA: F = 7.252, p < 0.001). l 48-h incubation (ANOVA 
F = 37.392, p < 0.001). m 72-h incubation (ANOVA: F = 47.381, 
p < 0.001). n 144  h (ANOVA: F = 8.718, p < 0.0001). Results are 
expressed as percentage (%) of viable cells calculated on the OD of 
untreated samples estimated as 100%
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signaling cascades, which regulates various cell and organ 
functions. However, in pathologic conditions, an excess 
production of mitochondrial ROS causes significant dam-
age to cell structures leading to cell death [33–35]. Finally, 
C6O4 did not affect the proliferation rate of both FRTL5 
and NHT cells. On the other hand, PFOA and PFOS, both 

reduced cells proliferation of FRTL5 while only PFOS but 
not PFOA also of NHT.

Although few previous data regarding the in vivo and 
in vitro effects of C6O4 exposure are available, it is worth 
attempting a comparison between previous and present find-
ings. The ECHA registration dossier reports that C6O4 is 

Fig. 2  Effect of C6O4, PFOA, and PFOS exposure on NHT viabil-
ity. Incubation with C6O4 did not reduce cell viability at any con-
centration. a 24-h incubation (ANOVA F = 0.917, p = 0.479). b 
48-h incubation (ANOVA F = 1.978, p = 0.102), c 72-h incubation 
(ANOVA F = 0.393, p = 0.851), and d 144-h incubation (ANOVA: 
F = 1.050, p = 0.401). Incubation with PFOA did not reduce NHT 
cell viability. e 24-h incubation (ANOVA: F = 0.148, p = 0.979). 

f 48-h incubation (ANOVA: F = 2.227, p = 0.072). g 72-h incuba-
tion (ANOVA F = 3.641, p = 0.07). h 144-h incubation (ANOVA: 
F = 0.306, p = 0.906). Incubation with PFOS reduced NHT cell via-
bility. e 24-h incubation (ANOVA: F = 15.338, p < 0.05). f 48-h incu-
bation (ANOVA: F = 13.609, p < 0.001). g 72-h incubation (ANOVA: 
F = 18.239, p < 0.001). h 144-h incubation (ANOVA: F = 52.615, 
p < 0.001)



1631Journal of Endocrinological Investigation (2021) 44:1625–1635 

1 3

Fig. 3  Evaluation of induced apoptosis in FRTL5 and NHT cells 
(Annexin V-FITC/PI stain under fluorescent microscope (×20 magni-
fication). Cells were treated up-top 144 h with medium alone (C6O4, 
PFOA, PFOS = 0  ng/ml) or with C6O4, PFOA, or PFOS (100  ng/
ml). Representative images of merged Annexin V/PI/Hoecst in three 
experiments are shown. Both control, untreated FRTL5 and NHT 

cells and cells treated with C6O4 at 100  ng/ml were positive only 
for Hoecst staining of the nuclei. FRTL5 cells treated with PFOA 
and PFOS were positive to the fluorescent bright orange-green stain 
of Annexin V-FITC/PI. NHT cells were positive for treatment with 
PFOA but not for treatment with PFOS

Fig. 4  Assay of cell proliferation in FRTL5 and NHT following expo-
sure to C6O4, PFOA, and PFOS. a The ability of FRTL5 cells to 
proliferate was not reduced after 6  days at any concentration tested 
(ANOVA F = 0.648 p = 0.668). b, c Exposure of FRTL5 to PFOA 
and PFOS showed a reduction of cells proliferation (ANOVA PFOA: 

F 12.881 p < 0.05; ANOVA PFOS: F = 218.105 p < 0.001). d The 
ability of NHT to proliferate was not reduced by C6O4 (ANOVA 
F = 0.809 p = 0.565). e, f Exposure of NHT cells to PFOA did not 
show changes in cell proliferation (ANOVA F = 1.860 p = 0.176) at 
difference with PFOS (ANOVA F = 25.566 p < 0.001)
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free of in vivo acute toxic effects, as assessed by lack of 
mortality or other visible abnormalities in zebra fish after 
96 h of exposure. Similarly, C6O4, at the concentration of 
100 mg/L, did not affect the growth of aquatic algae and 
cyanobacteria (average growth rate and yield) throughout a 
72-h test period. In addition, a scientific opinion published 
by EFSA reported that C6O4 does not induce gene muta-
tions in mouse lymphoma cells and in bacteria, nor pro-
duces chromosome aberrations in rat bone marrow cells, 
as assessed by three in vitro and, more importantly, by one 
in vivo genotoxicity tests [14]. Similarly, the main decompo-
sition product of C6O4 did not promote genetic alterations 
in bacteria and in Chinese hamster V79 cells [15]. Although 
potentially reassuring, these previous and present findings 
do not allow drawing firm general conclusions as to the 
safety of C6O4 exposure, but still they should be regarded 
as mandatory steps for further characterization of the safety 
profile of this new PFAS.

From a thyroid point of view, human studies reported 
that significant concentrations of PFOA and PFOS can be 
detected in thyroid gland surgical specimens [21]. Reassur-
ingly, there is no evidence for an active thyroid concentra-
tion process both in vivo and in vitro [20]. In vitro experi-
ments also showed that these compounds exert a thyroid 
cytotoxic effects only at very high concentrations [20]. The 
here reported results would confirm previous findings, that 
among long-chain PFAS, PFOS displays a more powerful 
toxic effect as compared to PFOA.

On the other hand, some short-chain PFAS do not 
exert in vitro toxic effects or alterations in the functional 
response to TSH of thyroid cells [13]. At variance with 
these reassuring results, another new generation PFAS, 
GenX was recently shown to exert both cytotoxic and 
genotoxic effects in cultured thyroid cells [12]. Taken 
together, these data indicate that PFAS, even if similar in 
chemical structure and properties, are profoundly different 
in terms of their toxicity profile, at least in thyroid cells.

The main limitation of the present study derives from 
the fact that there are no reported data on the serum or tis-
sue levels of C6O4 in the general population or in exposed 
workers. Thus, the concentrations of C6O4 used in our 
in vitro experiments were chosen based on human data 
reported for other PFAS. Finally, although reassuring, 
the results of the present study require confirmation both 
in other types of animal and human cells and in in vivo 
models.
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Fig. 6  Assay of ROS production in NHT cells (determined using 
the H2DCFDA assay) paralleled by PI staining using FACS. Results 
are expressed as percentage (%) of the mean fluorescence intensity 
of untreated controls. ROS production did not increase after expo-
sure to C6O4 at any concentration. Histogram a after 10-min expo-
sure (ANOVA F 1.47 p = 0.324). b after 20-min exposure (ANOVA 
F 0.344 p = 0.869). Histogram c after 30-min exposure (ANOVA F 

0.107 p = 0.987). Histogram d after 24-h exposure (ANOVA F 2.248 
p = 0.176). PI staining did not increase after exposure to C6O4 at any 
concentration Histogram Panel E: after 10-min exposure (ANOVA 
F 0.104 p = 0.988). Histogram f after 20-min exposure (ANOVA F 
0.435 p = 0.811). Histogram g after 30-min exposure (ANOVA F 
0.282 p = 0.907). Histogram h after 24-h exposure (ANOVA F 2.256 
p = 0.175)
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