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Abstract
Purpose  Glucocorticoids (GCs), alone or associated to other drugs, were widely used in the management of patients affected 
by severe acute respiratory syndrome caused by SARS-CoV-2 infection, during the recent COVID-19 outbreak. This review 
summarizes the available data on HPA axis impairment in GC-treated SARS-CoV-2 patients, focusing on the risk of adrenal 
insufficiency and on potential drug interactions during concomitant treatments.
Methods  Literature on the impact of GCs therapy on HPA axis and on the consequences of coadministration of GCs and 
other drugs in SARS-CoV-2 patients has been reviewed.
Results  GC treatment can cause symptoms of hypercortisolism, especially in patients with individual hypersensibility, or 
hypoadrenalism after drug withdrawal, due to hypothalamic–pituitary–adrenal (HPA) axis suppression, with consequences 
in terms of increased morbidity and mortality risk. On the other hand, in SARS-CoV-2-infected patient’s cortisol secretion 
could be insufficient also due to critical illness-related corticosteroid insufficiency (CIRCI). In addition, in this clinical 
context, the co-administration of antiretroviral drugs and corticosteroids may trigger drug–drug interaction and enhance the 
exposure to the latter ones, metabolized through the CYP450 CYP3A pathway, severely impacting on HPA axis.
Conclusion  Physicians involved in the management of patients affected by COVID-19 should be aware of the need of an 
appropriate GC dose tapering, and of potential interaction of GCs with antiviral therapy and drugs used to treat associated 
co-morbidities.

Keywords  Glucocorticoid treatment · COVID-19 · SARS-CoV 2 · Drug interference · Adrenal insufficiency · Steroids · 
Infection

Introduction: glucocorticoids use 
during critical illness

During the Covid-19 outbreak occurring in Italy in the 
spring of 2020, glucocorticoids’ (GCs) administration, 
alone or associated with other drugs, was widely used in the 
management of patients affected by severe acute respiratory 
distress syndrome (ARDS) caused by Sars-Cov-2 infection. 
Nevertheless, several concerns exist about this therapeutic 
approach in patients with viral infections.

Some studies demonstrated that GCs administration 
increases the occurrence of nosocomial infections and 
mortality in patients with seasonal/mixed seasonal or A/
H1N1 flu [1, 2]. In addition, data collected during pre-
vious pandemics, as severe acute respiratory syndrome 
(SARS) or middle east respiratory syndrome (MERS), are 
contradictory about GCs efficacy and lethality reduction 
[3]. These evidences, however, relate to extremely high 
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doses (> 150 mg/day methylprednisolone dose equiva-
lent) of GCs, and are of low quality and with potential 
confounding factors [2]. Indeed, some studies were per-
formed in patients affected by ARDS or septic shock, 
while others enrolled patients in severe conditions and/
or resistant to conventional treatment, contexts that could 
increase mortality independently by GCs administration. 
Therefore, in a real-life clinical setting, physicians tend 
to use corticosteroids in most critically ill patients. The 
GCs doses used for treatment of community-acquired 
pneumonia in intensive care unit (ICU) are routinely low 
(32–40 mg/day methylprednisolone equivalent), in the 
majority of randomized controlled trials reported in the 
Cochrane review [4]. At these doses, GCs not only inhibit 
immune responses and pathogen clearance, but also sup-
press lung inflammation.

On the other hand, prolonged steroids treatment 
can cause symptoms of hypercortisolism, especially in 
patients with individual hypersensibility, or hypoadrenal-
ism after drug withdrawal, due to hypothalamic–pitui-
tary–adrenal (HPA) axis suppression. Moreover, the 
co-administration of antiretroviral drugs may affect GC 
metabolism, as detailed below in the dedicated section.

A recent study, the RECOVERY trial published in July 
2020, reported that dexamethasone is effective in reduc-
ing intermediate (28-day) mortality among patients who 
were receiving either invasive mechanical ventilation or 
oxygen alone [5]. The dose considered were quite high 
(6 mg) for a brief period (up to 10 days), both oral or iv. 
Nonetheless, dexamethasone is the most potent synthetic 
GC and is as effective as anti-inflammatory as potent to 
suppress hypothalamic-pituitary CRH-ACTH feedback 
[6]. Therefore, further studies to consider pros and cons 
of dexamethasone use in clinical practice are suggested.

In patients affected by Covid-19 and treated with high 
doses of intermediate/long acting steroids (summarized 
in Table 1), it is necessary to perform an appropriate 
dose tapering, but guidelines or consensus statements 
are unfortunately lacking. All these patients, as well as 
those assuming chronically GCs for treatment of primary 
or central hypoadrenalism, have to titrate the GCs dose if 
fever, cough or gastrointestinal symptoms (vomiting and 
diarrhoea) occur and to undergo urgent medical evalua-
tion. To conclude, the prevalence of adrenal insufficiency 
(AI) following corticosteroid administration is unknown; 
this condition is frequently underdiagnosed, especially 
when patients are evaluated by non-endocrinologists.

This review summarizes the available data on HPA axis 
impairment in GC-treated Sars-Cov2 patients, focusing 
on the risk of adrenal insufficiency and on potential drug 
interactions during concomitant treatments.

Risk of adrenal insufficiency in patients 
with Covid‑19

In patients with SARS-CoV-2 infections, Covid-19 dis-
ease with its consequences, individual conditions and 
GCs treatment can induce primary or secondary AI, which 
could be even combined.

In the course of COVID-19 outbreak, GCs have been 
extensively introduced in the management of patients 
affected by Sars-Cov-2. Steroid administration in this 
contest is justified by increasing evidences suggesting 
that an abnormal immune reactivity, maybe more than 
uncontrolled viral replication, could be responsible for 
lung damage and progression to severe respiratory fail-
ure, causing in turn disease-dependent lethality [7]. A 
similar mechanism was recognized in SARS [8]. On the 
other hand, endogenous cortisol exerts a crucial role in 
inflammation control, through its anti-inflammatory and 
vascular-protective properties, and activation of HPA axis 
occurs in patients with critical illnesses, as sepsis or severe 
pneumonia. Indeed, some studies showed that antibodies 
against Sars-Cov-2 could destroy circulating ACTH and 
in turn blunt the stress-induced cortisol rise for several 
months [9]. Based on these evidences, GCs’ treatment was 
also introduced in the management of some virus-induced 
pneumonia. Nevertheless, exogenous steroids administra-
tion disrupts circadian cortisol rhythm and per se exposes 
patients to the risk of post-treatment hypoadrenalism [10]. 
Indeed, driven by nocturnal ACTH increase, endogenous 
cortisol concentration peaks in the morning, then slowly 
decreases during the day and drops down to the lowest lev-
els in the late evening [11]. Therefore, high doses of GCs, 
especially long-acting formulations or given during the 
evening-night (usual in an ICU or other critical care area 
or emergency department), suppress ACTH secretion, thus 

Table 1   Corticosteroid Equivalency Table

Glucocorticoid 
equivalent

Mineral-
corticoid 
equivalent

Cortisol 1 1
Hydrocortisone 1 1
Cortisone acetate 0.8 0
Prednisolone 4 0.8
Deflazacort 4 1
Methylprednisolone 5 0.5
Triamcinolone 5 0
Fludrocortisone 12 125
Betamethasone 25 0
Dexamethasone 26 0
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resulting in a prolonged suppression of HPA axis [12]. It 
is noteworthy that circadian cortisol oscillation is crucial 
for biological function and that it is a major synchronizer 
of the circadian system that involves also peripheral clocks 
in many tissues, i.e., adrenal glands. The misalignment 
between central and peripheral clocks has a host of physi-
cal and psychological adverse effects. As consequence, 
also the timing of GCs’ administration differently affects 
the degree of HPA axis suppression.

AI is defined by the inability of the adrenal cortex to pro-
duce a sufficient amounts of GCs and/or mineralocorticoids 
[13, 14], a condition that may increase morbidity and mor-
tality risk [15]. Patients with hypoadrenalism complain of 
symptoms as fatigue, hypotension, loss of weight, nausea, 
vomiting, abdominal pain [15]; moreover, some symptoms 
of AI, as hyponatremia, can characterize COVID-19 also in 
adrenal-sufficient patients [16]. Secondary AI is caused by 
diseases or injury involving hypothalamus or pituitary gland 
[14], or by prolonged use of corticosteroids, as previously 
mentioned. The same effect can be induced by other chemi-
cals that suppress CRH and/or ACTH secretion [10]. Central 
AI is characterized by inappropriate ACTH secretion, with 
consequent impairment of cortisol synthesis and secretion. 
In central AI the renin-aldosterone system is preserved, as 
opposite to primary AI, and hyperkalaemia or pigmentation 
is not clinical features of ACTH deficiency [17].

Coronavirus is able to variously affect HPA axis. A direct 
negative effect on pituitary corticotroph cells was described 
during previous SARS outbreak in 2002–2003: according 
to both basal serum cortisol and dynamic test (especially 
the low-dose short synacthen test), up to 40% of the cohort 
was found with an insufficient HPA axis [18]. Recently, 
a primary adrenal injury consistent with bilateral adrenal 
haemorrhage has been reported in a patient with Covid-19 
infection [19].

High doses and/or prolonged administration of GCs 
increases AI risk [5], but also the recovery of HPA function 
displays a considerable individual variability. This could be 
due to individual differences in pro-inflammatory cytokine 
secretion that inhibit HPA axis, together with different sub-
strate availability for steroid synthesis, vascular damage 
of adrenal glands and peripheral corticosteroid resistance. 
Hypothalamus, pituitary and adrenal cells are strictly con-
trolled by several hormones, peptides, cytokines and other 
factors, in basal condition and during critical illness [20]. 
For instance, ACTH- independent inflammation-driven acti-
vation of Toll- like receptor two and four in adrenocortical 
cells directly activates cortisol production [21]. Moreover, 
during critical illness, there is an increase of free cortisol 
levels, secondary not only to increased secretion, but also to 
reduced plasma binding activity, to reduced glucocorticoid 
receptor activity and to decreased cortisol clearance by the 
11β- hydroxysteroid dehydrogenase type 2 [20]. Moreover, 

impaired cytokine balance (higher levels of IL-6, IL-10 and 
TNF-α) is observed in patients with Critical-illness Related 
Corticosteroid Insufficiency (CIRCI) [22]. Indeed, CIRCI 
does not indicate strictly a pituitary or adrenal injury, but 
rather a condition of relative AI resulting from inadequate 
glucocorticoid-mediated anti-inflammatory activity in rela-
tion to the severity of stress caused by a critical illness [23]. 
In CIRCI there is not an organic defect of HPA axis; how-
ever, the systemic availability of cortisol is assumed to be 
insufficiently high to face the stress of the illness [20, 24]. 
In this condition, either CRH and ACTH synthesis or adre-
nal steroidogenesis is impaired [24]. CIRCI occurs in some 
ICU-admitted patients: in selected cases, GC treatment is 
currently recommended [20, 25]. To conclude, in patients 
with critical illness (acute distress syndrome, pneumonia, 
shock) combined with Sars-Cov-2 infection, cortisol secre-
tion could be insufficient, as a result of primary and second-
ary AI combination.

AI following GC discontinuation is relatively frequent, 
despite it is sometimes unrecognized, but there are not GC 
administration regimen, titration, treatment duration, or 
underlying health problems that could predict or exclude its 
occurrence. Some studies reported that higher the GC doses 
and/or more prolonged the time of administration, higher the 
AI risk [12, 26]. A meta-analyses published in 2015 reported 
that the risk of secondary AI is dependent on the adminis-
tration route, being higher if GCs are administered orally or 
by intra-articular injection (respectively, 48.7% and 52.2% 
of cases), and lower by inhalation, or if administered topi-
cally or by intranasal spray (7.8%, 4.7% and 4.2%, respec-
tively) [26]. Use of low, medium, or high GC doses results 
in an AI prevalence of 2.4%, 8.5% and 21.5%, respectively. 
A short, medium, or long-duration treatment (< 1 month, 
1 month–1 year, > 1 year, respectively) resulted in an AI 
rate of 1.4%, 11.9% and 27.4% [26]. In a recent study, AI 
was observed in patients taking prednisolone 5 mg per day, 
with a mortality increase following treatment interruption 
[27]. Nonetheless, the risk of AI post COVID-19 infection in 
patients treated with high-dose GCs (as those with Graves’ 
orbitopathy [28]) is not yet reported. Nonetheless, the pulse 
immunosuppressive GC treatment for ophthalmopathy does 
not increase the risk of secondary AI [29, 30].

Therefore, in patients with active or recently resolved 
Covid-19 infection, AI can be the result of HPA axis impair-
ment due to infection (a case of CIRCI), combined with the 
consequence of GC withdrawal [31]. It is important to con-
sider that there are no prospective studies on the best way to 
withdraw this therapy; therefore, most clinicians skilled in 
the use of GCs have developed their own tapering regimens 
that are suitable in real-life clinical experience [32], both to 
avoid AI and to increase patient’s adherence and compli-
ance. According with an experience-based approach, meth-
ylprednisolone was administered in most severe COVID-19 
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patients, at the dose of 1 mg/kg/day, or dexamethasone dur-
ing the post-acute phase of the disease, at the dose of 2 mg/
day for a long time.

Beside the use of GCs therapy in patients with Covid-19 
infections, some previous conditions may partially impair 
the HPA axis, thus increasing the risk of AI after GC with-
drawal. In fact central AI is common after pituitary or cranial 
radiation for intracerebral/nasopharyngeal tumours and total 
body irradiation for haematological malignancies (ranging 
from 12 to 68% [33–35], with similar risk with fraction-
ated, proton beam or stereotactic radiotherapy). It can take 
a few years to develop, with incidence of all pituitary hor-
mone deficiencies, almost doubling between years 2 and 7 
of follow-up [36, 37]. Moreover, also traumatic brain injury 
or subarachnoid haemorrhage [13], infectious meningitis 
or pituitary abscess [38, 39] are conditions at high-risk for 
central AI. Moreover, all patients with known adrenal insuf-
ficiency must follow the “sick-day rules”, increasing their 
usual substitutive GC treatment [40]. All these situations are 
not so rare in the general population and have to be recog-
nized also in patients admitted for Sars-Cov-2 infection and 
subjected to steroid therapy.

GC and drug interference

Side effects on HPA axis function are also common in 
patients treated with other medications that can alter the 
pharmacodynamics of GCs, potentiating their effects. 
CYP3A4 is the dominant isoenzyme of the hepatic 
cytochrome P450 system and is the primary metabolic step 
for the degradation of endogenous and most prescribed GCs. 
The concomitant use of drugs modulating cytochrome P450 
3A4 activity can increase the bioavailability of synthetic 
steroids leading to iatrogenic Cushing syndrome (ICS) and 
influencing the degree of inhibition of the HPA axis. On the 
other hand, GCs can themselves influence and regulate many 
xenobiotic-metabolizing enzymes of the cytochrome P450 
superfamily, via several molecular mechanisms, underpin-
ning potentially dangerous interactions with concomitantly 
administered drugs, with serious clinical consequence [41, 
42].

GCs, having anti-inflammatory, immunosuppressive and 
antiproliferative properties are commonly used in clinical 
practice in the treatment of several inflammatory and auto-
immune disorders. They are generally administered in com-
plex therapeutic regimens, which might amplify the risk of 
drug–drug interactions, especially in the elderly [42].

GCs exert an anti-inflammatory action by inhibit-
ing pro-inflammatory genes which encode for cytokines, 
chemokines, cell adhesion molecules, inflammatory 
enzymes and receptors involved in the inflammatory process. 
Therefore, GCs are often used as treatment/co-treatment in 
several infectious diseases including viral pneumonia. World 
is nowadays facing the global pandemic of the coronavirus 
SARS-CoV-2 infection causing COVID-19 disease. There 
is yet no specific treatment for COVID-19 patients, who can 
be administered antibiotics, antivirals, and in some cases 
GCs, with oxygen therapy and non-invasive ventilation for 
the most severely affected patients. Several randomized con-
trolled trials are underway testing antiviral medications tar-
geting different components of the SARS‐CoV‐2 lifecycle, 
including the following: (i) the viral entry into the host cells, 
by using chloroquine/hydroxychloroquine, umifenovir and 
interferon; (ii) the viral RNA synthesis, by administering 
remdesivir, favipiravir and ribavirin; (iii) and the viral repli-
cation, by using lopinavir–ritonavir and darunavir–cobicistat 
combination. On the other hand, in this setting, the thera-
peutic role of GCs remain controversial, as WHO suggest 
their use only to be considered if required for an alternative 
indication (i.e., septic shock, bronchoconstriction) [43].

In this clinical context, the potential risk of significant 
pharmacokinetic drug interactions between antiretrovi-
ral therapy and GCs treatment cannot be underestimated 
(Table 2). Several reports, mainly based on therapeutic expe-
rience in HIV-infected patients, have documented both iatro-
genic severe AI and ICS in patients concomitantly receiving 
GCs and a ritonavir boosted antiretroviral regimen [44, 45]. 
These complications result from ritonavir-mediated inhi-
bition of CYP3A4 enzymes, which increases the levels of 
GCs that are also metabolized via the same enzymatic sys-
tem. Most cases of ritonavir-associated adrenal suppression 
have involved inhaled fluticasone [46–52]. AI secondary to 

Table 2   Potential consequences of co-administration of glucocorticoids (GCs) and therapeutic agents used against Sars-COV-2 infection (TAS) 
and effects on HPA axis

^very limited data; ICS iatrogenic Cushing’s syndrome; AI adrenal insufficiency

TAS GCs-TAS interaction Effects on HPA axis

Ritonavir, Lopina-
vir, Cobicistat

GCs increased bioavailability (fluticasone, budesonide, mometasone, triamci-
nolone, prednisone, prednisolone/ methylprednisolone, dexamethasone)

Potential impairment of HPA axis (ICS/AI)

Darunavir GCs interference on darunavir plasma concentration^ –
Hydroxicloroquine GCs interference on hydroxicloroquine plasma concentration^ –
Interferon alfa/beta Potential effects on GCs bioavailability via modulation CYP3A expression/

activity (in vitro)?^
Functional alteration of HPA axis^
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inhaled steroid drugs is uncommon, but its frequency can 
increase if the patient is also under treatment with inhibi-
tors of cytochrome P450 3A4, such as protease inhibitors or 
triazoles. Fluticasone has a higher lipophilicity and longer 
elimination half-life and, therefore, has a greater inhibitory 
effect on the HPA axis. In a pharmacovigilance retrospec-
tive study conducted in France, the prevalence of AI over a 
5-year period in patients treated with inhaled steroid drugs 
has been assessed. Forty-six cases were reported, 52% of 
them with fluticasone, with drug interactions suspected in 
12 cases: six for concomitant use of fluticasone and ritonavir 
[53].

Pharmacogenetic analysis, in particular CYP3A geno-
typing, provides useful information in patients treated for 
viral infections such as HIV, with respect to potential steroid 
co-treatment. In this regard, Van der Berg et al. reported a 
case of ICS consequent to fluticasone furoate in a paediat-
ric patient treated for congenital HIV with a combination 
therapy of lopinavir/ritonavir. Pharmacogenetic analysis 
revealed that the patient carried the CYP3A4 *1B/*1G and 
CYP3A5 *3/*3 genotype, which is associated with a par-
tial and complete loss of enzyme activity, respectively [54]. 
Although most reported cases of Cushing’s syndrome and 
AI due to associated treatment with ritonavir and exogenous 
GCs have been caused by inhaled fluticasone, treatment with 
other inhaled steroids, such as budesonide or mometasone, 
can also be troublesome [55–57]. Some reports have also 
described ICS/AI with GCs delivered through topical and 
injectable ocular preparations, as well as following intrabur-
sal, intraarticular and epidural injections [58–60]. One report 
documented a case of ICS and secondary AI due to an inter-
action between ritonavir and GCs eye drops, while another 
described ICS following administration of orbital floor tri-
amcinolone in a patient taking ritonavir-boosted lopinavir 
[61]. ICS has been also reported after co-administration of 
injected triamcinolone and ritonavir [62–64]. In a systematic 
review, 24 cases of injected triamcinolone-induced ICS have 
been reported: 11/24 cases were related to epidural injec-
tion, 7/24 to intra-articular, 3/24 to intramuscular and 3/24 
to other injection sites. HPA axis suppression lasted beyond 
clinical recovery, for a median of 23 weeks after triamci-
nolone injection. In a multivariate Cox model, time to HPA 
axis recovery was shortened when ritonavir was withheld 
and was prolonged for higher dose of injected-triamcinolone 
or of ritonavir [65].

The time-span between initiation of ritonavir with GCs 
and the onset of symptoms of Cushing’s syndrome or AI is 
highly variable, depending on the potency, dose and scheme 
of GC therapy. It is worth noting that while most of the liter-
ature has focused on complications from ritonavir combined 
with GCs, cobicistat (which is included in certain combina-
tion medications/schemes) is also a non-selective CYP3A4 
inhibitor and could lead to the same complications if used 

with GCs [44]. In a retrospective case–control study describ-
ing ICS related to antiviral booster treatment, recorded in the 
French pharmacovigilance database between 1996 and 2018, 
among the 139 cases of ICS identified, 34 out of 35 cases 
of HIV-infected patients experienced drug–drug interaction 
(31 with ritonavir and three with cobicistat), as well as 7 
out of 104 controls (uninfected people). The main corticos-
teroid involved was inhaled fluticasone among the patients 
and oral prednisone among the controls [66]. Indeed, cau-
tion should be exercised when oral or injectable forms of 
methylprednisolone or prednisolone are administered in 
patients taking antiretroviral regimens containing protease 
inhibitors or boosting agents such as ritonavir or cobicistat. 
One pharmacokinetic study revealed a 28% increase in pred-
nisolone exposure when ritonavir was co-administered with 
its oral formulation [67]. Prednisolone is also known to have 
an incremented area under the plasma concentration versus 
time curve, with consequent increased effects, decreased 
oral clearance, with boosted absorption, when combined 
with ritonavir [68, 69]. As a consequence of GCs effects 
on the CYP3A4 enzymatic system, dexamethasone may 
also decrease levels of non-nucleoside reverse transcriptase 
inhibitors, compromising virologic efficacy [70].

Conversely, GCs can exert different effects on daruna-
vir plasma concentrations, as showed in a study in which 
dramatic reduction in the plasma of darunavir concentra-
tions occurred in one case while the other patient did not 
experience any difference in darunavir exposure during 
GCs therapy, as compared to pre-steroid co-administration. 
As mentioned before, genetic variants can contribute to 
intra- and inter-individual variability in CYP3A expression 
and activity; thus some authors suggested that the genetic 
background might potentially play a role in explaining the 
observed different effect of steroids on darunavir concentra-
tions, as well as GC type and dose, and/or darunavir boost-
ing agents (cobicistat versus ritonavir) [71].

On the other hand, treatment strategies of Sars-Cov-2 
infection can take advantage of the use of other drugs, alone 
or in combination with other therapeutic agents, with differ-
ent mechanisms of action, including chloroquine/hydroxy-
chloroquine and interferons (mostly interferon α).

In this regard, some reports identified CYP3As and 
CYP2D6 as the two major isoforms involved in the metabo-
lism of chloroquine. In a study in patients with systemic 
lupus erythematous, low blood hydroxychloroquine concen-
tration was associated with the absence of treatment with 
GCs, as if steroids may potentiate hydroxychloroquine, 
similar to their potentiation of oral anticoagulants, but —as 
stated by the Authors—this is completely hypothetical [72].

Interferon α (IFN-α) is used to treat chronic viral infec-
tions and has been found to decrease the rate of drug metab-
olism by acting on cytochrome P450 enzymes. Flaman et al. 
showed that IFN-α suppresses CYP3A4 expression in human 
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hepatoma cells, suggesting caution when it is administered 
in combination with CYP3A4 substrates to avoid the occur-
rence of adverse drug interactions [73]. In another study, 
interferon was able to directly alter the expression of con-
stitutive and inducible CYP3A genes in well-differentiated 
male rat hepatocytes in culture [74]. On the other hand, 
IFN-α/ribavirin administration was shown to affect adre-
nal function being associated with significant flattening of 
the diurnal ACTH and cortisol slope and increased evening 
plasma ACTH and cortisol concentrations [75]. Nonethe-
less, Interferon-β (IFN-β) has been shown to modulate the 
induction of cytochrome P450 enzyme in mice [76]. Fur-
thermore, IFN-β has been found to affect neuroendocrine 
system in healthy subjects and multiple sclerosis patients 
as well, inducing an elevation of cortisol levels after acute 
injection [77, 78], while HPA hyperactivation would reduce 
with prolonged treatment.

In a COVID-19 ward there are involved several physi-
cians, not only endocrinologists [79],;therefore, every clini-
cian should be aware of potential interaction of GCs with 
antiretroviral therapy and drugs used to treat associated co-
morbidities. When ICS/AI is suspected, prompt evaluation 
and appropriate change and/or discontinuation of involved 
medications can prevent potentially fatal complications.

Conclusions and future perspectives

In the middle of Spring 2020, COVID-19 has affected mil-
lions people and caused hundreds of thousands of death 
overall. Although the disease is asymptomatic or paucisym-
tomatic in most cases, it can sometimes induce viral pneu-
monia, complicated by ARDS and/or sepsis. In addition, 
myocarditis and acute kidney injury were also diagnosed 
in some patients [80]. A specific and effective treatment 
was not found until now, but several experience-based 
approaches are proposed and some clinical trials are cur-
rently ongoing. Nevertheless, data about their effectiveness 
and safety are still lacking.

Despite several concerns about GC administration in 
patients with viral infections, they were extensively intro-
duced in the management of most severely COVID-19-af-
fected patients. Beside the anti-inflammatory, immunosup-
pressive and antiproliferative properties, their use could be 
justified in many cases for replacing CIRCI, a condition of 
relative functional AI frequently observed in patients with 
critical illnesses. On the other hand, GCs can induce ICS 
signs and symptoms or HPA axis impairment, with a variable 
risk related to the route, dose and length of administration, 
individual hypersensibility and interaction with other drugs. 
Indeed, antiviral or other drugs act as potent inhibitors of 
the cytochrome P4503A enzymes, enhancing the exposure 
to GCs, metabolized through the CYP450 CYP3A pathway, 

and prolonging their half-life. This effect can increase their 
bioactivity and induce longer-lasting suppression of HPA 
axis. Symptoms of hypoadrenalism are not specific and may 
be confused with those caused by a severe infectious dis-
ease. Moreover, especially in frail patients, steroids’ with-
drawal can also precipitate an adrenal crisis that represents 
a life-threatening complication. Unfortunately, there are no 
GCs administration regimen, titration, treatment duration, 
or underlying health problems that could predict or exclude 
its occurrence. For this reason, physicians involved in the 
management of patients affected by COVID-19 should be 
aware of performing an appropriate GCs dose tapering, even 
if guidelines or consensus statements are lacking.

On the other hand, GCs can themselves influence and 
regulate many xenobiotic-metabolizing enzymes of the 
cytochrome P450 superfamily, via several molecular mech-
anisms, underpinning potentially dangerous interactions 
with concomitantly administered drugs, with serious clini-
cal consequence [25, 26]. For instance, some studies showed 
that GCs decrease plasma concentrations of antiviral drugs, 
e.g., ritonavir, at least in some cases. As mentioned before, 
genetic variants can contribute to intra- and inter-individual 
variability in CYP3A expression and activity, as well as GC 
type and dose.

In conclusion, present suggestions are based on prior 
experiences with SARS and on recent literature derived 
from small-scale studies, but analyses of data recorded dur-
ing COVID-19 outbreak will increase our knowledge about 
GCs’ effectiveness and safety and their antiviral drug inter-
action. There is an ample scope for future research on the 
field of these drugs, and we hope that this experience can 
teach us to better manage several endocrine and infectious 
diseases.
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