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Abstract
Researchers and practitioners recognize four domains of behavior analysis: radical 
behaviorism, the experimental analysis of behavior, applied behavior analysis, and 
the practice of behavior analysis. Given the omnipresence of technology in every 
sphere of our lives, the purpose of this conceptual article is to describe and argue in 
favor of a fifth domain: machine behavior analysis. Machine behavior analysis is a 
science that examines how machines interact with and produce relevant changes in 
their external environment by relying on replicability, behavioral terminology, and 
the philosophical assumptions of behavior analysis (e.g., selectionism, determinism, 
parsimony) to study artificial behavior. Arguments in favor of a science of machine 
behavior include the omnipresence and impact of machines on human behavior, the 
inability of engineering alone to explain and control machine behavior, and the need 
to organize a verbal community of scientists around this common issue. Regardless 
of whether behavior analysts agree or disagree with this proposal, I argue that the 
field needs a debate on the topic. As such, the current article aims to encourage and 
contribute to this debate.
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Since Skinner initially proposed a science of behavior in the 1930s, the world in 
which humans live has evolved tremendously. One of the most notable changes is the 
pervasive presence of technology in our homes and our workplaces. To put things in 
perspective, researchers only built the first automatic digital computers in the 1940s 
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(Watson & Calhoun, 1960). These computers needed large rooms and could only 
conduct basic calculations to solve scientific problems. Skinner experimented with 
machines (albeit nondigital) such as the air crib, the teaching machine, and the oper-
ant conditioning chamber (i.e., often referred to as a Skinner box) during his life-
time (Skinner, 1958, 1961). He even discoursed on whether humans and machines 
were really that different (Skinner, 1969). However, this early technology does not 
compare to the diversity of functions that contemporary computers can carry out. 
Nowadays, smartphones can not only fit in our pockets, but they are also signifi-
cantly more powerful than early computers. As an example of the omnipresence of 
technology in our lives, 84% of Americans with a smartphone report consulting it 
within 15 min of getting up in the morning (Levitas, 2013).

In the past decades, the development and the application of new algorithms (i.e., 
sets of computer instructions that solve a problem) as well as progress in comput-
ing power have allowed machines to reach a point wherein electrical and computer 
engineers1 are oftentimes unable to predict how machines will “respond” given an 
input (Rudin, 2019; Sendak et al., 202l; Watson et al., 2019). In an example popular-
ized by the media, Microsoft developed a Twitter chatbot, named Tay, which was 
supposed to learn to hold conversations online. After only 24 hr, the development 
team had to step in because Tay had learned “to tweet like a Nazi sympathizer, racist 
and supporter of genocide, amongst other things” (Wakefield, 2016). Based on their 
knowledge of machine learning algorithms and coding, the engineers could not pre-
dict Tay’s behavior once left to fend on its own “in the wild.” In this example, study-
ing the behavior of the machine (i.e., a chatbot) when presented with different inputs 
may have prevented this unfortunate incident. This article aims to argue that the field 
needs a science of machine behavior analysis to address this issue and many others 
that stem from rapid technological developments.

At present, behavior analysts typically recognize four domains of behavior anal-
ysis: radical behaviorism, the experimental analysis of behavior, applied behavior 
analysis, and the practice of behavior analysis (Cooper et al., 2020; Moore, 2008). 
The focus of these domains is humans and nonhuman living organisms. Behavior 
analysis does not have a domain that focuses on the responding of machines to their 
external environment. The main thesis of this conceptual article is that behavior 
analysts need to formalize a fifth domain to address this issue: machine behavior 
analysis.

Some Basic Characteristics

Before making an appeal for the formalization of a science of machine behavior 
analysis, the first step is to establish its potential boundaries. In the current section, 
I describe the five basic characteristics of a science of machine behavior analysis. 

1  To improve the flow of the article, I use the generic term “engineer” to refer to any professional who 
develops hardware, software, and algorithms for machines (including computer scientists).
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These characteristics should not be perceived as complete or exclusive, but rather as 
a starting point to better define the science and spur discussions.

Centered on Machine Behavior

As indicated in the introduction, the main distinction of machine behavior analysis 
is its emphasis on machines. Rather than directing its efforts towards the behavior 
of humans or other living organisms, the science focuses on machine behavior. The 
logical question that follows is: “What should be considered a machine?” Unfor-
tunately, this question does not have a straightforward answer. For example, the 
Merriam-Webster.com dictionary contains no fewer than 12 current definitions of 
machine, one of which refers to living organisms. It is clear that the current article 
should not focus on naturally occurring living organisms, which is already the pur-
view of the experimental and applied sciences of behavior analysis. Instead, machine 
behavior analysis involves fabricated apparatuses that produce an observable change 
in the environment following the presentation (or absence) of certain external events 
or stimuli while relying on retained system changes.

Whereas experimental and applied behavior analysis focus on the (natural) 
behavior of living organisms as dependent variables, machine behavior analy-
sis should focus on machine behavior. I use the expression “machine behavior” 
because behavior on its own is already well-defined. That is, the term “behav-
ior” implicitly applies to living organisms whereas “machine behavior” can be 
reserved for machines. A simple definition of machine behavior would involve 
any observable change in the environment produced by a machine. When con-
ducting machine behavior analysis, scientists should focus on the behavior of 
the machine rather than on the behavior of the living organism. Human behavior 
still plays a role in a science of machine behavior analysis as it may serve as the 
independent variable. For example, how does a machine respond to the changes 
in the environment produced by the human experimenter? In this case, behavio-
ral researchers manipulate human behavior and examine its effects on machine 
behavior. This approach is not unlike the other domains of behavior analysis: the 
main change is that the locus of analysis is now the machine. Some situations 
may also involve both the behavior of the human and the behavior of the machine 
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Fig. 1   Diagram of a Simplified Machine
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being studied simultaneously. This type of translational study would involve both 
applied and machine behavior analysis to identify relations between human and 
machine behavior.

Figure 1 presents a diagram of a typical machine that may provide meaningful 
analyses for behavior analysts. Most machines involve two main components: hard-
ware and software. Hardware is the physical apparatus that runs algorithms such 
as computers, smartphones, cars, smart speakers, and servers. Software (sometimes 
referred to as firmware in certain devices) includes the instructions, or algorithms, 
that tell the hardware what to do. The two components, hardware and software, 
interact and dictate what a machine can and cannot do. For example, the hardware 
controls what type of input a machine may receive from its external environment 
whereas the software uses this data to transform the environment within the limits 
set by the hardware. Hence, two machines composed of different hardware, but with 
the same software, may still produce the same behavior. A calculator, a smartphone, 
and a desktop computer can all multiply numbers efficiently and produce an output 
of the response on a screen (i.e., they are functionally equivalent). In the same vein, 
the same hardware may run two different software (e.g., a computer may run a cal-
culator and a music player). In the latter case, scientists would treat each as a differ-
ent machine process as their functions differ.

In a typical antecedent-behavior-consequence analysis of machine behavior, the 
antecedent component involves the external environment providing an input to the 
machine, which is captured by the hardware (see Figure  1). This antecedent may 
be any environmental change that a machine perceives with its sensors (part of the 
hardware). Examples include tactile (e.g., keyboard), visual (e.g., camera), auditory 
(e.g., a microphone), spatial orientation (e.g., gyroscope) and thermal (e.g., heat 
sensor) inputs. Next, the software uses the data collected by the hardware to deter-
mine the output. During this step, algorithms will use part or all of the input data to 
trigger a signal as output. This process is analogous to the function of the brain in a 
living organism. Based on this signal, the hardware will typically produce a human-
readable output, which can be referred to as a machine behavior in our three-term 
contingency. Outputs may include movements (e.g., a robot moving its arms), light 
(e.g., an image on a screen), sounds (e.g., a voice from a smart speaker), and heat 
(e.g., a heater). Finally, more complex learning machines will record changes pro-
duced by their behavior on their environment (i.e., the consequence component). If 
the machine has the hardware to detect them, the environmental changes produced 
by the machine (i.e., output) may function as setting events and consequences, which 
will affect future responding. Machine behavior may thus be amenable to similar 
analyses as the behavior of learning organisms.

The current article will mainly discuss and provide examples of fabricated non-
biological machines. Researchers have developed robots based on synthetic biologi-
cal systems (e.g., Blackiston et al., 2021; Kriegman et al., 2020). This reality blurs 
the distinction between fabricated machines as defined in the current article and liv-
ing organisms, which may no longer be considered as mutually exclusive (Deplazes 
& Huppenbauer, 2009). The characteristics and arguments in favor of a science of 
machine behavior analysis may also apply to organisms developed using synthetic 
biology (see Abramson & Levin, 2021).
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Relevant

From a behavior analytic perspective, not all machine behavior is relevant to study. 
The problem is that a machine may produce observable changes (machine behav-
ior) that have limited relevance for behavioral researchers. For example, machine 
learning may project sets of numbers used by the algorithms on a computer screen. 
Likewise, interacting with a machine may produce observable changes in electric 
current. Both these machine behaviors can be observed by the behavioral researcher, 
but I would argue that neither has a high relevance to them. In the same manner 
as the brain is the topic of physiological research, the internal state of the machine 
should remain the realm of engineers. To be relevant to a behavioral scientist, 
machine behavior should produce an environmental change designed to function as 
a specific antecedent or a consequence for its user; this user could be a human, a 
living organism or even another machine. For example, electric current and equa-
tions (even though observable) are not designed to function as antecedents and con-
sequences for a layperson using Facebook. As such, the machine behavior could 
be labeled as irrelevant. Instead, relevant machine behavior may involve Facebook 
showing you a specific ad on your smartphone, recommending a new friend on a 
computer, or ordering the posts of your friends on a tablet.

A second dimension of relevance involves the predictability of the machine 
behavior. When I press on the letter “k” on the keyboard of a computer, the letter 
“k” always appears on my screen. Although the appearance of “k” on my screen is a 
machine behavior produced by some external event, its predictability makes its rel-
evance very limited for behavioral researchers. If an algorithm produces responses 
with a known distribution (e.g., a random number generator returns values from 
a normal distribution), scientists already know what to expect if the process is 
repeated for a large number of trials. In other words, a machine behavior is only rel-
evant to study if scientists do not know a priori what specific patterns of responding 
should be observed. To return to the Microsoft experiment, an example of relevant 
machine behavior is how Tay, the chatbot, changes the content of its tweets based 
on different human behavior. The programmers themselves were unaware how the 
external environment (i.e., the tweets of others) would artificially shape its tweeting 
behavior. A behavior-analytic approach would have been well-suited to study this 
type of issue.

Replicable

To ensure progress, any science should be replicable and machine behavior analysis 
makes no exception. Consistent with the dimensions of applied behavior analysis 
(Baer et al., 1968), a replicable science should make use of technological descrip-
tions. Researchers must describe their procedures in sufficient detail so that someone 
with training in the science could replicate their methodology. Another dimension 
of replicability involves using research methodologies that can produce reproduc-
ible results. The science should strive to show prediction and control over machine 

403Perspectives on Behavior Science (2022) 45:399–419



behavior. Most machines that engage in relevant behavior probably have their own 
idiosyncratic responding because they may have different initial conditions (e.g., 
random number matrices to initiate model), different histories of contact with their 
environment, or both. Thus, single-case methodology may play a central role in the 
development of the science (Kazdin, 2021). Single-case designs may not only facili-
tate within- and between-subject replications, but they may also examine idiosyn-
cratic responding across machine subjects.

For example, let’s suppose that we want to study how a chatbot, that takes audi-
tory and visual stimulation as input, adapts its machine behavior to its social envi-
ronment. In a typical situation, engineers would use simulations by providing videos 
as input during training and testing to observe how the machine reacts and adapts. 
However, these simulations may not perfectly mimic the type of interactions that 
chatbots have in nonsimulated environments, making it difficult to predict how they 
will respond in different conditions (think of Tay here). To support their develop-
ment, behavioral researchers may work with engineers to test the chatbot in the 
real-world and recommend modifications. To examine how this chatbot learns new 
behavior, a behavioral researcher may use a basic reversal design. In Phase A, the 
experimenter may say a made-up word on a time-based schedule while maintaining 
a neutral facial expression. In Phase B, the experimenter may say the same made-up 
word and smile whenever the robot engages in a machine behavior (e.g., moving, 
saying “hi”) within 2 s of the stimulus presentation. This process would be akin to 
establishing stimulus control in a living organism by using positive reinforcement 
(if smiling were programmed as a reinforcer). Then, the teaching parameters may 
be manipulated (e.g., delay prior to reinforcement, schedule of reinforcement) to see 
how the robots adapts within an alternating treatment design to conduct a parametric 
analysis. Alternatively, these processes may be repeated in different environments 
or with chatbots with various learning histories using a multiple baseline design to 
examine the generalizability of the findings. These analyses would provide unique 
and valuable information that would be difficult to obtain using simulations in isola-
tion, which underlines the importance of interdisciplinarity in this type of research. 
Studying machine behavior in this manner, rather than conducting observational 
studies following release (as done with Tay the chatbot), may prevent unintended 
consequences for the end users.

One concern regarding replicability is that each machine is programmed in a 
unique manner. Thus, replicating the same results across different machines may 
be a challenge. Behavior analysts are already aware of this issue because each spe-
cies, as well as each individual within a species, is unique. For individuals within 
species, variations in responding may be explained by variations in the initial con-
ditions. These initial conditions include organism-specific genes and prior contact 
of the individual organism with the environment over which the experimenter has 
no control. These variations are even larger across species because different spe-
cies have distinct genes. Therefore, algorithms could be viewed as species. Each use 
of the same algorithms only differs in its starting condition (i.e., data provided by 
the experimenter and data extracted from the environment). Some general rules may 
emerge from studying the same algorithm, which may lead to replicable experimen-
tal results. In contrast, studying different algorithms could be viewed as studying the 
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behavior of different species. Given their emphasis on the study of the behavior of 
individuals, behavioral researchers should apply their expertise to this novel class of 
subjects (i.e., machines).

Consistent with Behavior Analytic Terminology

To allow communication between scientists working in different domains, a sci-
ence of machine behavior analysis should remain terminologically consistent. For 
example, assume that a robot was designed to respond to visual and auditory stimuli. 
When the robot perceives a human in its environment, it says “hello,” and the human 
interacts with it. When this same robot perceives a rat in the environment (in the 
absence of a human), the robot says “hello,” but this is never followed by a subse-
quent interaction. This robot eventually learns to say “hello” only when it perceives 
a human in its environment. If behavioral researchers applied consistent terminology 
to the previous example, they could describe the presence of a human in the environ-
ment as a discriminative stimulus for the robot engaging in the behavior of saying 
“hello,” and the human interacting with the robot as a positive reinforcer for this 
same machine behavior.

The prior example shows one of the challenges of using consistent terminol-
ogy. Even though the same terms (e.g., “discriminative stimulus,” “reinforcement”) 
are used, the internal learning mechanisms may differ significantly between living 
organisms and machines. By keeping the terminology consistent, it may seem that 
this characteristic is introducing a cognitive bias to the analyses by anthropomor-
phizing machines. Given that behavioral terms simply describe the impact of envi-
ronmental variables on behavior (rather than explain internal mechanisms), the ter-
minology remains an accurate description of what is being observed. This is why 
behavioral researchers may use the same terminology to describe learning across 
humans and other living organisms. Hence, the application of behavior analytic ter-
minology circumvents this potential cognitive bias.

Another argument in favor of keeping terminology consistent is that others have 
already appropriated behavioral terminology to describe similar procedures. For 
example, engineers use the expression “reinforcement learning” when describing 
a process wherein a machine is more likely to engage in responses that will lead 
to a preferred outcome (i.e., this preferred outcome is programmed). Abramson 
and Levin (2021) also proposed using behaviorist terms to study synthetic living 
organisms. Whenever the use of terms could be misleading, preceding the behav-
ior analytic term with “machine” may provide clarification (e.g., machine behavior, 
machine reinforcement, machine shaping). Adopting this approach in ambiguous 
contexts may prevent misleading verbal communities about the processes that scien-
tists are referring to.

Grounded in the Philosophical Assumptions of Behavior Analysis

As argued since the beginning of this article, I suggest that machine behavior 
analysis be considered as a fifth domain of behavior analysis. As such, sharing 
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philosophical assumptions with the other domains of behavior analysis appears 
essential to the development of a coherent and systematic science. Providing a 
detailed description of the philosophical underpinnings of behavior analysis is 
beyond the scope of this article, but I refer the reader to Moore (2008) for an intro-
duction to the topic. Nonetheless, the article will draw parallels with some of the 
philosophical assumptions that behavior analysts contact through their initial train-
ing: selectionism, determinism, empiricism, parsimony, and pragmatism (Behavior 
Analyst Certification Board [BACB], 2017).

Machine behavior analysis adheres to selectionism by relying on the external 
environment as an explanatory variable. The environment selects the behavior of the 
machine in the same manner as consequences select the behavior of living organ-
isms. Computer code obviously mediates machine behavior, but this area of research 
is left to engineers. The main interest of behavioral researchers is how the external 
environment affects machine behavior. As with the behavior of living organisms, 
the environment determines the behavior of machines (i.e., determinism). With 
sufficient experimentation and access to all initial conditions of a machine, scien-
tists should be able to predict machine behavior. As with the study of living organ-
isms and other complex sciences (e.g., weather prediction), the problem is that it 
may be difficult to consider all starting conditions and their subsequent effects on 
machine behavior, which limits its predictability in practice. Empiricism involves 
the assumption that the only way to study a phenomenon is through contact with the 
environment (Marr, 2008). Therefore, machine behavior analysis relies on human 
senses, and not on thought experiments, to observe and manipulate the environment 
to produce meaningful changes. This adoption does not mean that thought experi-
ments cannot be used as a starting point for novel ideas, but that the only way to 
develop a coherent and replicable science is through contact with the environment.

A science of machine behavior analysis adheres to parsimony. Parsimony justifies 
the selection of one theory, or concept, over another as follows: “Where we have no 
reason to do otherwise and where two theories account for the same facts, we should 
prefer the one which is briefer, which makes assumptions with which we can easily 
dispense, which refers to observables, and which has the greatest possible general-
ity” (Epstein, 1984, p. 119). Machine behavior analysis should strive to develop a 
parsimonious science to explain machine behavior by minimizing assumptions. Par-
simony may prevent the development of unnecessary concepts to explain machine 
behavior. For example, assume that a machine is learning to greet someone online 
to help them with a problem. An observer notices that over time the machine selects 
greetings in a manner that optimizes the time that the person spends online. A par-
simonious explanation may be that the machine selects its greeting based on its 
prior experience in similar situations, which have been associated with interactions 
of longer durations. A nonparsimonious explanation would be that the machine has 
developed self-awareness, which leads it to select an appropriate greeting. The latter 
concept is less parsimonious as it requires more assumptions (e.g., the existence of 
self-awareness) than the initial explanation that relies exclusively on the observable 
environment.

Philosophers have developed many different versions of pragmatism since 
the late 19th century, which can make it difficult to define (Bacon, 2012; Lattal & 
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Laipple, 2003). Despite being a key concept taught to future practitioners of the sci-
ence (BACB, 2017), behavior analysts do not necessarily agree on what being prag-
matic means (Barnes-Holmes, 2000; Leigland, 2003; Moore, 2016; Schoneberger, 
2016). This debate centers around the place of reality and truth within pragmatism 
as applied to behavior analysis. Nevertheless, a basic premise of pragmatism is that 
“the true value of a statement is a function of how well the statement promotes 
effective action” (Moore, 2008, p. 400). A pragmatic science values the extent to 
which it can control nature or the environment. In applied behavior analysis, this 
pragmatism transpires through its emphasis on the social significance of behavior 
and the magnitude of its change (Baer et al., 1968; Lattal & Laipple, 2003). In the 
prior definition of the science, both the focus on machine behavior and the relevance 
of such behavior underlie this pragmatic perspective. A science of machine behav-
ior analysis is relevant if it promotes effective action on the behavior of the user for 
which the machine was designed. By sharing philosophical assumptions with the 
other domains of behavior analysis, machine behavior analysis may produce results 
that are coherent and consistent with the sciences that focuses on living organisms.

This reliance on the philosophical underpinnings of behavior analysis should 
not restrict, or limit, interdisciplinary collaborations. On the contrary, a science of 
machine behavior analysis will most likely owe its success to fruitful collaborations 
with other natural scientists and engineers. For example, natural sciences and engi-
neering share many of our epistemological positions regarding determinism, empiri-
cism, parsimony, and pragmatism. Moreover, several behavioral terms have already 
made their way into the engineering of biological and nonbiological machines (e.g., 
shaping, schedules of reinforcement, classical conditioning, operant conditioning; 
Abramson & Levin, 2021; Kaelbling et al., 1995; Konidaris & Barto, 2006; Zhang 
et  al., 2020). Working in interdisciplinary teams may not only improve the scope 
and depth of research in machine behavior analysis, but it may also support the 
survival of the verbal community in the long term. The interdisciplinary approach 
has already supported our field in the past: interdisciplinarity collaborations in the 
treatment of autism and in the study of delay discounting have both contributed to 
the development and promotion of applied behavior analysis and the experimental 
analysis of behavior, respectively (Raches et al., 2019; Reynolds, 2006; Roane et al., 
2016).

Some Arguments in Favor

To summarize, machine behavior analysis is a science that examines how machines 
interact with and produce relevant changes in their external environment by rely-
ing on replicability, behavioral terminology, and the philosophical assumptions of 
behavior analysis (e.g., selectionism, determinism, parsimony) to study artificial 
behavior. Although this definition provides some boundaries for machine behavior 
analysis, a logical follow-up question is: Why should behavior analysts care about 
machine behavior? The next sections present arguments in support of encouraging 
more research on machines from a behavior analytic perspective and provide some 
examples of relevant areas of research.
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Machines Are Here to Stay and Just Keep Getting Better

Machines are an increasing part of every domain of our daily lives. In 2015, there 
was approximately two connected devices per human on earth (Safaei et al., 2017). 
Safaei et al. estimated that the number of connected devices would increase to nine 
per human on earth by 2030. Likewise, researchers expect that the amount of elec-
tronic waste (e.g., broken smartphones, obsolete computers) generated by humans 
will more than double between 2011 and 2030 (Shittu et al., 2020). Both prior esti-
mates were produced prior to the COVID-19 pandemic, which has only acceler-
ated the adoption of electronic machines in multiple domains of our lives (Vargo 
et al., 2021). That said, an increase in the number of machines alone may not justify 
the study of their behavior. As discussed previously, studying predictable machine 
behavior has limited relevance. The issue is that the number of machines has not 
only increased, but these machines are also getting much “smarter” and should keep 
doing so in the foreseeable future (Arif Wani et al., 2020; Hayhurst, 2019; Mammela 
& Anttonen, 2017). Said differently, both the amount of data taken as input and the 
algorithmic complexity of machines are increasing over time, which makes it more 
and more difficult to explain why they exhibit one specific response over another.

Some propositions for the future may push the limits of what machines may do 
and how they differ from humans. For example, researchers have recently devel-
oped a culturally competent robot that improves emotional well-being in older 
adults when compared to treatment as usual (Papadopoulos et  al., 2021). In time, 
such robots may take care of both the physical and psychological needs of older 
adults (e.g., Bardaro et al., 2021; Costa et al., 2018; Niemelä & Melkas, 2019; Papa-
dopoulos et al., 2021). In a more ambitious vein, the Alan Turing Institute (2020) 
proposed the AI Scientist Grand Challenge, which aims to develop a machine that 
could win a Nobel prize in science by 2050. These more complex machines mean 
that engineers are not necessarily able to predict whether a machine will exhibit one 
behavior rather than another (or not at all) when provided with a specific input (von 
Eschenbach, 2021; Wadden, 2021). Given recent developments in artificial intelli-
gence, the question is not if, but when machines will be able to have interactions that 
are indistinguishable from humans. Thus, behavior analysts should begin studying 
the behavior of machines now and develop tools to do so as they will become more 
complex in the future.

Machines Are Already Changing Human Behavior

A basic assumption of behavior analysis is that the environment evokes, elicits, or 
selects human behavior, and machines are already changing behavior. Amongst the 
most popular machines with which humans interact daily, Amazon recommends 
products based on prior purchases, Google autocompletes search queries and pro-
vides results based on history, Facebook relies on what people like to suggest news 
that they should watch, and Alexa adapts its responses to human interactions. There-
fore, machines can have a socially significant impact on behavior for better (e.g., rec-
ommending a mental health provider to someone who displays behaviors associated 
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with depression) or worse (e.g., recommending a news outlet that promotes bigotry 
or unvalidated treatments).

The applied and experimental sciences already study the interaction between 
humans and machines by focusing mainly on the behavior of the former (e.g., 
Critchfield & Perone, 1990; Dallery et al., 2021; Higbee et al., 2016). This reality 
begs the question, why should the field have a science of machine behavior analy-
sis if we already study interactions between humans and machines? The response is 
that there are many situations in which behavioral researchers may want to isolate 
machine, rather than human, behavior. In these situations, behavioral researchers 
reverse the role of each variable in their inquiry. The machine behavior becomes 
the dependent variable whereas the human behavior is the independent variable. 
This approach contrasts with traditional studies with machines in behavior analysis 
wherein the dependent variable is the human behavior and the machine functions 
as the independent variable. For the same reasons that experimental analysts study 
behavior in the laboratory to better control for the effects of confounding variables, 
studying machine behavior on its own appears essential to contribute to our under-
standing of its interaction with its external environment.

Engineers Alone Do Not Have all the Answers

In general, behavioral researchers perceive machine behavior as being the concern 
of engineers. Engineers have a clear and central role in machine behavior: they are 
the ones who develop the hardware and code the software that the machines use 
to behave. However, technology is reaching a point where engineers are unable to 
predict what behavior a machine will engage in following specific inputs, which is 
even leading to a crisis as to whether machines should be trusted with important 
decisions (von Eschenbach, 2021; Wadden, 2021; Wiens et  al., 2019). Moreover, 
engineers are trained to change machine behavior through coding, but are not spe-
cialized in modifying the physical and social environment to alter behavior. Because 
machine behavior may also be modified by altering the environment (other than cod-
ing), society needs a science beyond computer engineering to investigate machine 
behavior.

Behavior analysts are uniquely trained and positioned to address both the pre-
vious issues. First, the field has developed expertise and methodology in studying 
a subject that has a similar input (environment) and output (behavior). Likewise, 
behavioral researchers may look beyond the algorithms and coding (as with the 
brain and nervous system) and examine how the environment affects machine behav-
ior. Second, behavior analysts are experts in modifying behavior using the social and 
physical environment. As machines are being increasingly designed to interact with 
humans in a manner similar to other humans, behavioral researchers may apply their 
knowledge and experience to modify machine behavior without the use of coding. 
This involvement may eventually lead to machines responding in a manner that is 
more beneficial to its users.

This argument does not aim to exclude engineers from studying and contribut-
ing to a science of machine behavior. When studying human behavior, many covert 
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events (e.g., verbal behavior, imagery) remain inaccessible and unmanipulable to 
the experimenter. This inaccessibility issue does not apply to machine hardware and 
software, which is a major difference between machines and living organisms. Even 
though engineers may be unable to predict how specific environmental changes may 
affect the responding of their machine, they can still modify the machine rather than 
the environment to change behavior. This reality supports the relevance of study-
ing machine behavior using an interdisciplinary approach. Under ideal conditions, 
behavioral researchers and engineers should work together to address important 
questions involving machine behavior. Engineers can manipulate the machine itself 
(i.e., hardware and software) whereas behavioral researchers may support them in 
studying how changes to the environment affects behavior. This synergy should 
accelerate and contribute to the knowledge base in both fields while improving 
machines for the benefit of humankind.

A Science Requires an Organized Community

One alternative to formalizing a science of machine behavior analysis is to incor-
porate it within an existing domain of behavior analysis, such as the experimental 
analysis of behavior or applied behavior analysis. One problem with this integration 
is that the focus of these domains is the behavior of living organisms. At this point, 
researchers have no reason to believe that all machines will behave in the same way 
as humans, or other living organisms, in the presence of specific environmental 
stimuli. Although the philosophy and methodologies of behavior analysis appear rel-
evant to a science of machine behavior analysis, the processes and patterns uncov-
ered for machines may differ considerably from cell-based organisms. As such, hav-
ing a separate domain would allow for the eventual development of a knowledge 
base specific to machines.

The 20th century has seen the development of many theories of knowledge to 
explain what constitutes a science such as Popper’s falsification (1934/2002), Kuhn’s 
paradigm shift (1962/2012), and Rorty’s perspective on pragmatism (1979/2017). 
One commonality between these epistemologies is that a science develops within an 
organized community. To develop and to grow, sciences must be organized around 
a community who intersubjectively debate, discuss and agree on facts and ideas. In 
more behavior analytic terms, a science constitutes a verbal community that shares 
rules and contingencies acquired through contact with the environment (i.e., experi-
ences and training). When the words, rules, and contingencies among domains dif-
fer sufficiently, a new science typically emerges. The position of this article is that 
machine behavior differs enough from the behavior of living organisms to at least 
discuss the relevance of having its own domain.

To be clear, researchers have already conducted studies that meet most, if not 
all, the characteristics described previously. More than 20 years ago, Saksida et al. 
(1997) proposed using the principles of reinforcement to condition and shape 
robot behavior, albeit from an engineering standpoint. In the same year, Burgos 
(1997) discussed the training of artificial networks involving Pavlovian condition-
ing processes. Put differently, some researchers are already contributing to machine 
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behavior analysis, even though they may not refer to it as such. From philosophi-
cal and theoretical standpoints, behavioral researchers have speculated on important 
questions regarding machines such as whether a machine can be made “human” 
(Hutchinson, 2012; Rachlin, 2012) and whether having a nervous system is a nec-
essary precondition for learning (Burgos, 2018). From an empirical standpoint, 
behavior analytic journals have published several studies simulating the behavior of 
machines and how they compared to the behavior of living organisms (e.g., Burgos, 
2007; Lyddy et al., 2002; McDowell, 2004, 2019; Ninness & Ninness, 2020; Ver-
nucio & Debert, 2016). These examples are not exhaustive as the purpose of this 
article was not to provide a systematic review of prior research in machine behavior 
analysis. The proposal here is to organize and formalize the science within a com-
munity to accelerate and promote the development of this research domain.

To Simulate Organisms

As the behavioral literature contains numerous examples of simulations, I will take 
a concrete example to illustrate the characteristics and importance of having a sci-
ence of machine behavior. To this end, the current section will focus on a study pub-
lished by McDowell (2004) entitled, “A Computational Model of Selection by Con-
sequence.” In his study, McDowell created a digital organism programmed using 
the evolutionary algorithm, which was then subjected to a random-interval sched-
ule of reinforcement. Two of the main findings were that (1) the digital organism’s 
responding closely followed the hyperbolic form of the quantitative law of effect 
(i.e., single-alternative matching equation) and (2) responding under certain condi-
tions remained consistent with patterns observed in rats from prior research (Dallery 
et al., 2000).

Before discussing the relevance of such research, let’s examine whether the 
study meets the five characteristics of a science of machine behavior analysis. 
First, the study involves a machine behavior: printing numbers on a screen. Sec-
ond, this machine behavior is relevant to a behavioral scientist who aims to examine 
its patterns of responding. That is, examining the machine behavior directly alters 
the behavior of the scientist when developing and testing hypotheses and theo-
ries. Third, McDowell (2004) provides sufficient details for replication while using 
methods that can produce reproducible results. The methods of analyses used by 
McDowell are also common in the experimental analysis of behavior. The fourth 
characteristic involves remaining consistent with behavior analytic terminology. The 
author uses common terminology and concepts from behavior analysis such as fixed 
ratio 1 schedule, random-interval schedule, reinforcement rate, and responses rate. 
Finally, the article addresses and remains grounded in many philosophical underpin-
nings of behavior analysis. The title underlines the focus of the article on selection-
ism, the simulation and discussion rely on determinism to explain machine behavior, 
the study involves empirical methods, and explanations of potential mechanisms for 
change remain parsimonious. In sum, the study would meet all the defining charac-
teristics of a science of machine behavior analysis as proposed in the current article.
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This analysis leads to an important question: Why should behavioral research-
ers simulate organisms in the first place? The first answer to this question is dis-
cussed by McDowell (2004). Simulating organisms may assist researchers in test-
ing models or patterns of behavior that have been observed in living organisms. In 
general, because machine responding is more stable than that of living organisms, 
it may be possible to remove some of the noise to validate one model, or hypoth-
esis, over another. By simulating an organism’s behavior and observing patterns in 
responding, McDowell provided further support for the hyperbolic matching equa-
tion, which had been developed with living organisms. The second answer to the 
question involves experiments that would be difficult or impossible to conduct with 
living organisms. For example, a researcher may aim to examine how behavioral 
contingencies in one generation of organisms influence responding in future genera-
tions while interlocking contingencies (metacontingencies; Glenn, 1988) are operat-
ing. Studying more than a few generations of an organism may be a challenge in the 
laboratory and the same can be said of investigating many organisms simultaneously 
interacting within the same environment. Simulating organisms addresses these lim-
itations as computer simulations allow for the study of hundreds of digital organisms 
interacting together, which can be extended over numerous generations. Such an 
endeavor could inform researchers on how interlocking contingencies and complex 
systems influence behavior within a behavior analytic framework. Simulating organ-
isms thus opens innovative avenues for research in the field of behavior analysis.

To Study Machine Behavior

Another area of research to which behavioral scientists could contribute is the study 
of machine behavior. To describe what this approach may entail, I will discuss the 
development of socially assistive robots for people with autism as an example. Dick-
stein-Fischer et  al. (2018) proposed developing robots that could improve acces-
sibility to behavioral interventions in this population. For example, a simple robot 
could reinforce appropriate play behavior of a child with autism using a shaping 
procedure. If the robot is prepared using machine learning, engineers would initially 
train it by providing video exemplars of children playing and not playing. Once the 
engineers have developed and trained the robot, behavioral researchers could test the 
robot in generalized settings to examine how it responds and adapts to novel situa-
tions. The dependent variable could involve the number of steps implemented cor-
rectly in an integrity treatment checklist for shaping. In baseline, the experimenter 
could ask a confederate to wait quietly in a room while ignoring the robot. In this 
case, we would not expect the robot to display behavior from the treatment integ-
rity checklist. In the intervention, the confederate could follow a script by playing a 
game in an increasingly appropriate manner (with some occasional relapses) to see 
how the robot reacts. This process could be repeated across different confederates or 
different play behaviors within a multiple baseline design. It is important to stress 
that the dependent variable in this study is the percentage of treatment integrity steps 
completed correctly by the machine and not the play behavior of the confederate.
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This experiment would show whether the robot implements shaping correctly in a 
real-world environment. This step is essential to validate that the machine is safe and 
produces the expected response patterns given real-world inputs prior to conducting 
applied studies with children with autism. If the robot is not performing shaping cor-
rectly, engineers and behavioral researchers should go back to improve the machine 
and test it again within a contrived environment. Once the machine displays behav-
ior consistent with its intended functioning, studies can be conducted with children 
with autism. The locus of analysis would now change from machine behavior to 
child behavior, which falls within applied behavior analysis. This sequence moving 
from machine behavior analysis to applied behavior analysis would reduce poten-
tial harm by making sure that the machine performs as intended before conduct-
ing applied studies. Hence, behavioral researchers have an important role to play in 
studying the behavior of machines.

To Modify Machine Behavior

Some machines learn and adapt their responding to their environment. Tay the chat-
bot is good example of such a machine, which adapted its responding to what others 
were saying on Twitter. Engineers may struggle in dealing with the unpredictability 
of machine learning using programming alone without compromising other func-
tions or characteristics of Tay. One solution is for behavioral researchers, rather than 
engineers, to modify the behavior of machines that “misbehave.” In the coming dec-
ades, machines will only get more complex and may begin learning more from their 
environment than from the data that was provided initially by the engineer. In other 
words, the environment may eventually have a stronger effect on machine behav-
ior than the initial coding. Behavior analysts will be well-positioned to change the 
behavior of these machines by manipulating their external environment.

Imagine that a long-term care facility purchases a robot designed to socialize with 
older adults (e.g., Bardaro et  al., 2021). After a few weeks in the long-term care 
facility, the staff report that they find it disconcerting that the robot only interacts 
with the older adults, but never responds to the staff. The staff would like the robot 
to at least acknowledge their presence when they enter a room. If the behavior of 
the robot can be modified through reinforcement and shaping, a behavior analyst 
could manipulate the environment so that the robot begins also interacting with care 
staff. In this case, the machine does not need to be recoded by an engineer; instead, 
a behavior analyst sets up novel environmental contingencies that teaches the robot 
to generalize responding to younger individuals. In more general terms, a behavio-
ral researcher could manipulate the environment to evoke the target behavior under 
the expected stimulus conditions when a “learning” machine behaves in an unex-
pected or undesirable manner. This training could involve single-case experimental 
designs to identify the variables that control the target behavior akin to many studies 
in the experimental and applied domains. Once the behavior analyst has trained the 
machine to behave in the desired manner, the engineer can clone the state of the 
machine to replicate it. In this example, behavior analysts do not limit themselves 

413Perspectives on Behavior Science (2022) 45:399–419



to studying machine behavior: they actively contribute to modifying it through the 
manipulation of the environment for which they are experts.

Some Future Directions

Most exemplars of machine behavior analysis from the behavior analytic literature 
involve experimental work to simulate models of behavior. Behavioral research-
ers may also study machines that already exist or participate in the development 
of novel machines. One potentially fertile area for future research is the study of 
machines designed to shape consumer behavior. Every day, hundreds of millions 
of consumers use server-based applications such as Facebook, Netflix, Spotify, 
Amazon, TikTok, and Twitter. Because the code and algorithms of these apps are 
proprietary, researchers have limited knowledge on how these machines respond 
to human input. Even if researchers had access to the source code, predicting spe-
cific responses would probably be unrealistic, or even impossible, without conduct-
ing an empirical study to examine the effects of specific input on machine behav-
ior. In the prior example, interdisciplinary teams including behavioral researchers 
may work together and conduct empirical studies to uncover how the environment 
shapes the machine’s behavior. Such an approach could involve a combination of 
research methods from engineering as well as behavior analysis. As behavioral shap-
ing between machine and human can be a two-way interaction, studying how these 
machines respond to human behavior appears essential to improve their potential 
effects (Bucher, 2017).

Another area of research is health recommendation systems. Researchers are 
increasingly developing machines to support clinical decision making (Wiens et al., 
2019). One behavior analytic exemplar is a tool designed by Lanovaz et al. (2020) to 
determine whether an AB graph shows a clear change. This web app may be used by 
mental health professionals to decide whether to continue or interrupt a behavioral 
intervention. The machine may take better decisions than humans, but a problem 
that remains is that researchers and practitioners have no idea what type of decision 
errors this machine makes. To examine this question, researchers need to study the 
machine’s behavior in isolation when given different inputs. Recommendation sys-
tems may even adapt their responding over time based on human responding (Der-
akhshan et  al., 2019), underlining the relevance of the topic for behavior analytic 
research.

Machines may also be used to personalize teaching strategies to a learner’s 
characteristics and responding (Luan & Tsai, 2021). The issue is that some of the 
decision-making algorithms are proprietary and other algorithms function as black 
boxes, making it nearly impossible for a human observer to predict its behavior 
based on code alone. Before using these types of applications in practice or research, 
behavioral researchers may conduct studies to examine how the machine responds to 
different patterns of input. Systematically studying machine behavior is one way to 
identify how these machines will interact with us and clients, which may ultimately 
lead to better decisions when selecting one technological alternative over another. In 
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terms of ethics, behavior analysts may also need to understand how a learning appli-
cation operates prior to the implementing it with their students.

Engineers are developing machines that are increasingly designed to behave and 
interact like humans. As noted earlier, some behavioral researchers have even devel-
oped models that exhibit patterns similar to those observed in humans (e.g., Burgos, 
2007; Lyddy et al., 2002; Ninness & Ninness, 2020; Vernucio & Debert, 2016). Two 
categories of machines that are often designed to behave like humans are chatbots 
and social robots. Thus, one fruitful area of research could be to study the verbal 
behavior of chatbots. How do chatbots respond to a human given different anteced-
ents and consequences? Likewise, behavioral researchers may study the behavior of 
social robots who are designed to interact with, or even replace, humans in complex 
tasks. Manipulating the environment to examine how they react to changes is essen-
tial to ensure that these robots actually engage in behavior beneficial to humans. It 
should be noted here that the possibilities to study machine behavior are endless. 
The previous directions for future research are provided as examples as to how a sci-
ence of machine behavior analysis could contribute to the advancement of behavior 
analysis.

The use of machines to deliver educational and health services raises important 
issues related to the ethical, legal, and professional oversight of machine behavior. If 
a family chooses a teaching app that relies on machine learning for their child and 
this app proves ineffective or produces an undesirable side-effect, who is ethically 
and professionally liable for the machine’s behavior? What happens if the machine’s 
behavior was partly shaped by a behavior analyst? Does the behavior analyst have 
ethical and professional obligations towards every user of the app? Can a user file 
a complaint to their certification or licensing board? I do not have an answer to 
these questions, but these issues will have to be addressed in the years to come. 
The responsibility for machine behavior is an urgent issue that researchers need to 
consider promptly. This issue is not limited to machine behavior analysis: Both the 
applied and practice domains are at the frontlines of using machines in health care 
and education. A future direction should involve a collaboration between different 
domains of behavior analysis as well as engineers to tackle these important ques-
tions before the science moves forward.

Conclusion

Skinner (1969) argued that “man is a machine, but he is a very complex one” (p. 
294). The proposal for a science of machine behavior analysis remains consistent 
with this original conceptualization of humans. At the time, machine behaviors 
were probably not complex enough to warrant their own domain. With the evolu-
tion of computing power and algorithms, researchers have already reached a point 
where an understanding of engineering is insufficient to explain and predict all 
machine behavior. More important, the field needs a debate on the topic, regard-
less of whether behavior analysts agree or disagree with this proposal. Does behav-
ior analysis need a fifth domain? Do the proposed characteristics bound the science 
adequately? There is no doubt that behavioral researchers are already conducting 
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studies and having academic discussions on the topic. The current article aims to 
encourage and contribute to this debate. Ultimately, a science of machine behav-
ior analysis may help shape the behavior of machines to better meet the needs of 
humanity.
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